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Abstract: The finite element method (FEM) is a widely used technique in research, including but not
restricted to the growth of cracks in engineering applications. However, failure to use fine meshes
poses problems in modeling the singular stress field around the crack tip in the singular element
region. This work aims at using the original source code program by Visual FORTRAN language
to predict the crack propagation and fatigue lifetime using the adaptive dens mesh finite element
method. This developed program involves the adaptive mesh generator according to the advancing
front method as well as both the pre-processing and post-processing for the crack growth simulation
under linear elastic fracture mechanics theory. The stress state at a crack tip is characterized by the
stress intensity factor associated with the rate of crack growth. The quarter-point singular elements
are constructed around the crack tip to accurately represent the singularity of this region. Under
linear elastic fracture mechanics (LEFM) with an assumption in various configurations, the Paris
law model was employed to evaluate mixed-mode fatigue life for two specimens under constant
amplitude loading. The framework includes a progressive analysis of the stress intensity factors
(SIFs), the direction of crack growth, and the estimation of fatigue life. The results of the analysis are
consistent with other experimental and numerical studies in the literature for the prediction of the
fatigue crack growth trajectories as well as the calculation of stress intensity factors.

Keywords: LEFM; mesh density; mixed mode stress intensity factors; fatigue crack growth; FEM

1. Introduction

The finite element method (FEM) is definitely the most common and effective analyt-
ical technique for analyzing the behavior of a wide variety of engineering and physical
issues. One of the essential uses of FEM is the study of crack propagation. The propagation
of the crack reduces components’ ability to resist the external load and eventually break the
components. Analyzing fatigue crack growth is necessary to ensure the stability of struc-
tures subjected to cyclic loading. Cracks begin due to the presence of plastic strain caused
by cyclic tension, and they grow due to the tensile stress. However, compressive loads
do not lead to fatigue cracks due to the local tensile stress [1]. A variety of software has
been developed for general purposes for finite elements, verified and calibrated through
the years and now available on request, the most well-known being three-dimensional,
such as ANSYS [2], ABAQUS [3], NASTRAN, FRANC3D, and COMSOL. In addition, there
are numerous 2D simulation software for crack propagation simulation, e.g., NASGRO,
AFGROW, FRANC2D, and FASTRAN. Many researchers have also developed an effective
method for estimation of fatigue breakage growth in 2D linear elastic structures with multi-
mode loading [4–7]. Determining the accurate stress intensity factor of a cracked structure
in LEFM is very crucial in accessing the integrity of the crack, especially if the calculation is
carried out using the finite element technique with extremely fine mesh. The propagation
of the crack can be simulated at the highest accuracy by increasing the mesh density, as
well as estimating the stress intensity factors accurately. In addition, very fine mesh around
the crack tip is needed for precise prediction of SIFs using a nodal displacement technique
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such as the displacement extrapolation technique (DET). The DET requires configuration
of special elements in the vicinity of the crack tip, by correctly representing the stress field
singularity at the crack tip. These special elements, known as singular elements, need to be
constructed in a rosette formation around every crack tip. Very small-size elements can
be optimally created around the crack tip with the use of an adaptive mesh refinement
scheme. Generating overall fine mesh leads to greater computational time. This procedure
was reduced by using the adaptive mesh strategy, which increases the mesh only on the
required areas. The adaptive mesh refinement scheme is another method to generate the
optimal mesh in a very efficient way. Many studies on mesh refinement problems and
related errors in computing SIFs using the FEM were conducted [8,9]. Another study [10]
was been performed to clarify the effect of the in-plane and out-of-plane constraints on
the ductile fracture with different crack sizes, specimen thicknesses, and span lengths.
They concluded that the lower in-plane and out-of-plane constraint levels introduce higher
fracture properties. It is more challenging to combine the extreme fine mesh generation
with the adaptive scheme and solve the stiffness equation matrix. The benefits sought
here are both faster execution time and the ability to process larger problems. In order to
simulate 2D cracks under mixed mode loading, the current developed software code is
formulated to allow the researcher to estimate the fatigue life and crack trajectory using the
automated adaptive mesh finite element [11–15]. This software was created in 2004 and
continues to include several features for the simulation of two-dimensional fatigue crack
growth under LEFM assumptions [12,16–21]. The use of commercial software for engineers
is not appropriate in at least two aspects: First, the basic algorithm that lies behind it is not
fully understood, and second, the execution is completely apprehended throughout the
programming ability. Commercial software can be used to model crack propagation as
well, but such software is very expensive and can hardly get the source code to develop it.

2. Developed Program Framework

The code that was developed is a simulation software to assess the 2D crack propa-
gation process under LEFM conditions. This software predicts the growth of quasi-static
crack growth in 2D components using the finite element method, taking into account
the mechanical parameters of the fracture. Four essential features for the adaptive mesh
finite element (FE) analysis are used for the crack direction simulation, namely, the mesh
optimization algorithm, the crack criteria, the criterion of direction, and the methodology
of crack propagation. The mesh refining can be controlled by the characteristic scale of
each element predicted, based on the current error estimator. An incremental principle
with the von Mises yield criterion is applied to this initial model. The solution errors are
computed after each load stage is over. The incremental analysis is interrupted when the
error exceeds a specified cumulative error at some stage and a new FE plan is generated.
The program automatically configures the mesh with a new mesh refinement. After it is
generated, the solution variables (displacement, stresses, strains, etc.) are transferred from
the old mesh to the new mesh. The analysis is then resumed and progresses until the errors
are again higher than the pre-decided amount.

In order to examine the start of the crack growth, the crack growth criterion is em-
ployed. The LEFM typically utilizes SIFs as a fracture criterion. Various techniques of
estimating the path of a crack are used, such as the maximum circumferential stress theory,
theory of maximum energy release, and theory of minimum energy density. At any stage
of crack propagation, a FE model is defined. This model is given in the first step as an
input for the modeling. The algorithm output is then generated via the models in the
subsequent steps. At each stage, as the crack grows, the geometry elements are deleted and
reconstructed using an adaptive technique and updated for the next propagation process.
Figure 1 demonstrates the simulation procedure used to model quasi-static crack growth.
The main steps of this procedure are explained in detail by [11,14].
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Figure 1. General flow chart of the quasi-static crack growth program.

2.1. Displacement Extrapolation Technique (DET)

The DET is based on the nodal displacement around the crack tip. The construction
of quarter-point elements around the crack tip is generally needed for this procedure.
Generally, the existence of the quarter-point element is essential in order to correctly
represent the linear elastic singularity (1/

√
r) for stresses and strains at the crack tip. The

polynomial isoparametrically representative of the singularity is typically obtained by
moving the mid-side nodes adjacent to the crack tip to a quarter-length edge closer to the
crack tip. Crack tip elements based on this method were separately suggested by [22,23]. In
this study, the natural triangle–quarter-point element was selected as the type of crack-tip
element and its configuration follows the schematic formation of the rosette around the
crack-tip, as seen in Figure 2.
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Figure 2. A quarter-point singular element around the tip of the crack.

For the calculation of stress intensity factors, the displacement extrapolation method [24]
was used as follows:

KI =
E

3(1 + ν)(1 + κ)

√
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]
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where E is the modulus of elasticity, ν is the Poisson’s ratio, κ is the elastic parameter
defined by

κ =

 3− 4ν for plane strain

(3−ν)
(1+ν)

for plane stress
(3)

and L is the quarter-point element length. The u′ and v′ are the displacement components
in the x’ and y’ directions, respectively. The subscriptions represent their position, as seen
in Figure 2.

2.2. Adaptive Mesh Refinement

To minimize expected errors after a finite element solution has been achieved, an
adaptive mesh refinement technique is used. The method of adaptive mesh refinement
measures the mesh’s adequacy and refines the mesh wherever the estimated error is large.
Until user-definable error tolerance is reached, the system iterates the mesh refinement
and solution. Because the precision of the solution depends on these tolerance limits, it
is important for the use of adaptive mesh generators to provide a good understanding of
the FEM in an effective manner. The method is referred to as adaptive since at all times
the process relies on previous results. The adaptive remeshing method was carried out
on the basis of the posteriori stress error standard scheme to achieve the optimum mesh
from [16]. The software adopted a frontal solver that is an effective direct solver used to
solve a linear equation system. In h-type adaptive mesh refinement, the major point is to
obtain the ratio of element normal stress error to the average normal stress error for the
entire domain, which is also known as the relative stress norm error, and a new size can
be predicted from this ratio for the refinement method. The mesh size is defined in the
procedure of each element as:

he =
√

2Ae (4)
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where Ae is the area of the triangle element. The norm stress error for each element is
defined by

‖e‖2
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whereas the average norm stress error for the whole domain is
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where m indicates the total number of elements in the whole domain and σ∗ is the smoothed
stress vector. In the finite element treatment the integration with the isoparametric triangu-
lar element is converted by the summation of quadratures following the Radau rules [25]
as follows:
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where WP is a weighting factor and is Je is the Jacobian matrix.
Similarly,

‖ê‖2 =
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m
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where te is the element thickness for a plane stress condition and te = 1 for a plane strain
condition. Therefore, the relative stress norm error ζe for each item is considerably less
than some identified value [26]. Thus,

ζe =
‖e‖e
‖ê‖ ≤ ζ (9)

And the relative stress error level of the new element is defined as permissible error as

εe =
‖e‖e
ζ‖ê‖ ≤ 1 (10)
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This implies that any element with εe > 1 must be optimized and the new mesh size
must be predicted. The asymptotic convergence rate criteria are used, which assumed

‖e‖e ∝ hp
e (11)

where p is the approximation of the polynomial order. In the analysis, p = 2 is used for the
approximation of finite elements as a quadratic polynomial. The predicted sizes of the new
element are stated as follows:

hN =
1√
εe

he (12)

where he is the old element size and p is the order of the interpolation shape function.
Convergence of the mesh is dependent of the size of the new element, which defines

how many elements in a model are required to ensure that the results of an analysis are not
affected by changing the mesh size. System response (stress, deformation) converge with
decreasing element size to a repeatable solution. Further refinement of the mesh does not
affect results because the model and its results are now independent of the mesh.

The present mesh is known as the new background mesh and the advancing front
method is replicated according to the amount of mesh refinements set by the user.

The mesh optimization is used in the final stage of the mesh generation in order to
enhance the shape of the elements. The topological structure of the mesh is fixed in the
process of mesh smoothing, i.e., the element’s nodal connections are not changed, but the
inner nodes are repositioned to create triangles with much improved shapes. The most
effective computational smoothing algorithm is the well-known Laplacian smoothing [27],
which repositions the inner node created by its neighboring nodes at the center of the
polygon. The new position of an internal node i is computed as

(xi, yi) =
1

Nn

N

∑
j=1

(
xj, yj

)
(13)

where Nn is the number of nodes linked to node i. The mesh smoothing process consists of
several iterations.

2.3. Crack Growth Analysis

The direction of the crack path under linear elastic conditions must be computed
to facilitate crack propagation simulation. The maximum circumferential stress theory
states that for isotropic materials under mixed loading mode the crack grows in a direction
normal to a maximum tangential tensile stress. The tangential stress is estimated in polar
coordinates as

σθ =
1√
2πr

cos
θ

2

[
KI cos2 θ

2
− 3

2
KI I sin θ

]
(14)

The direction normal to the tangential maximum stress can be obtained by resolving
dσθ/dθ = 0 for θ. The nontrivial solution is determined by

KI sin θ + KI I(3 cos θ − 1) = 0 (15)

which can be solved as

θ = ± cos−1

3K2
I I + KI

√
K2

I + 8K2
I I

K2
I + 9K2

I I

 (16)

The sign of θ must be opposite the sign of KI I to ensure the optimal opening stress
associated with the crack direction [28]. Figure 3 illustrated the two possibilities of the
crack growth direction.
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In the case of fatigue crack growth, the resulting stress intensity range at each crack
tip must exceed the stress intensity threshold, specified as

∆Kth = f ∆σth
√

πa (17)

where f is a geometrical and loading function and ∆σth is the stress range limit. According
to Equation (17), the crack is not propagated if ∆σ < ∆σth. This equation was practically
modified by using another parameter known as the equivalent stress intensity factor range,
∆KIeq. Therefore, if ∆KIeq > ∆Kth, this indicates commencement of fatigue crack growth.
This parameter is set to

∆KIeq = ∆KI cos3(θ/2)− 3∆KI I cos2(θ/2) sin(θ/2) (18)

In the modified equation of the Paris law, Tanaka [20] derived an innovative law
known as the power law for determining crack growth in response to fatigue with the
equivalent stress intensity factor (∆Keq) as

da
dN

= C(∆Keq)
m (19)

where a is the length of the crack, N is the number of cycles, C is the Paris constant
(mm/cycle), and m is the Paris exponent.

The total number of fatigue lifecycles can be calculated using Equation (19) for an
increase in crack length as

∆a∫
0

da
C(∆Keq)

m =

∆N∫
0

dN = ∆N (20)

3. Numerical Results and Discussion
3.1. Two Internal Non-Colinear Cracks

For this geometry, there were two internal, parallel, non-colinear, and non-angled
cracks in a rectangular specimen with dimensions (90 mm/180 mm). The initial crack
length was a = 10 mm for both cracks. As seen in Figure 4a, this geometry was subjected
to acyclic tension (σmax = 160 N/mm, σmin = 0) at the upper end and restricted at the
bottom side. The distance between the two tips was 15 mm in the horizontal direction
and 5 mm in the vertical direction. The adaptive dense mesh is shown in Figure 4b. The
selected material was aluminum, which has the material properties shown in Table 1.
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Table 1. Material properties of aluminum.

Property Value in Metric Unit

Modulus of elasticity, E 74 GPa
Poisson’s ratio, υ 0.3

Fracture toughness, KIC 60 MPa
√

m
Threshold stress intensity factor, Kth 4 MPa

√
m

Paris law coefficient, C 2.087136 × 10−13

Paris law exponent m 3.32

This specimen contained four crack tips, which made it interesting to observe the in-
teraction between cracks and to further explore the performance of the developed software
in the simulation of multiple cracks.

The predicted crack growth is shown in Figure 5a, which closely resembled the
experimental result of Tu and Cai (1993), as illustrated in Figure 5c. These predicted crack
growth trajectories were also in agreement with the numerical results obtained by [29]
using the linear smoothed extended finite element method, which was compared to the
numerical results reported by [5] using a meshless method with enriched weight functions,
as shown in Figure 5b.
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Figure 5. (a) Crack propagation simulation for the two internal non-colinear cracks specimen, (b) the numerical results
of [29], with permission from Elsevier 2019, and (c) the experimental results [30].

Figure 6 compares stress intensity factors in tips A and B along the crack length with
the result from the meshless finite element [5]. Actually, the crack length values were the
cumulative crack increment in tips A and B, starting at 10 mm in each stage, which was the
original crack length. Only the upper right slip result was selected in the graph. The figure
shows good agreement for the comparison results. The deviation of KA

I at a crack length of
27 mm above was attributable to the contact with the opposite crack trajectories.
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Both cracks demonstrated in the beginning a pure mode I of approximately the same
SIF values. After that, the mode II of the SIF increased at tip A above that of tip B while
the second mode of SIFs became negative at A, thus making the crack path curve towards
the other break. Eventually the second mode of the SIFs at A tended to decrease as crack
tip A moved closer when the first mode at B increased continually. Finally, the equivalent
mode I of the SIF at B exceeded the fracture toughness and unstable fracture occurred at
crack tip B. The fatigue life of the structure was evaluated as 6840 cycles, which was in
good agreement with the results obtained by [5] using a meshless method, as shown in
Figure 7, as well as with the numerical results obtained by [29].
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3.2. PMMA Beam Specimen

The PMMA beam geometry offers a benchmark evaluation based on the numerical and
experimental work of [31]. The beams were made of polymethyl methacrylate (PMMA), which
is a standard material option for crack path investigations as it is relatively homogeneous
and exhibits brittle fracture behavior at room temperature. The specimen was under a cyclic
point load and acted on the top mid-span position with a value of 4.448 kN. The properties
of the materials were taken as modulus of elasticity, E = 205 GPa, yield stress σy = 516 MPa,
threshold stress intensity factor ∆kth = 80 MPa

√
mm, ∆KIC = 730 MPa

√
mm, Paris law

coefficient, C = 1.2 × 10−11, Paris law exponent m = 3, and Poisson’s ratio ν = 0.3. The
thickness of the specimen was 12.7 mm and there were two different configurations depending
on the initial crack length (a) and its position (b), as shown in Table 2. The specimen’s geometry
and the initial adaptive dens mesh are shown in Figure 8.

Table 2. Configurations of the PMMA specimen.

Specimen a b

Case I 25.4 152.4
Case II 38.1 127
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Figure 8. Problem statement for the PMMA specimen (dimensions in mm) and initial adaptive
dens mesh.

3.2.1. Case I

The simulated crack growth for this specimen moved between the bottom and mid-
hole and reached the mid-hole on the right side. It presented a significant increase in the
KII component of the shear stress intensity factor across the cracks, which forced the step-
sizes of the crack to be shortened. The findings of the crack trajectory during propagation
were excellently consistent with the experimental results of the crack trajectory [32], the
numerical results obtained by [33] using A polygonal extended finite element method
(XFEM) with numerical integration for linear elastic fracture mechanics, the XFEM results
using ABAQUS software obtained by obtained by [34], and with the numerical results
using the coupled extended meshfree–smoothed meshfree method presented by [35], as
shown in Figure 9a–e, respectively. The maximum principal stress distribution is shown in
Figure 10.
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Figure 10. Maximum principal stress distribution of case I for the PMMA specimen.

The results of this simulation were compared with those from XFEM using the smooth
nodal stress technique by Peng et al. 2017, as shown in Figure 11, with good agreement. It
was found that as the crack approached the hole, the SIFs appeared to change to a greater
amplitude. The predicted fatigue life for this specimen was compared to the analytical
results calculated by [36] using Paris and Walker models, as shown in Figure 12, with good
agreement.

3.2.2. Case II

According to Table 2, the differences between this case and the previous case were the
initial crack length and its position from the mid-span, which were 38.1 mm and 127 mm,
respectively. The crack moved above the lower hole in this specimen and stopped at the
central hole from the left. The results of the crack trajectory during propagation were
excellently close to the experimental results of the crack trajectory obtained by [32], XFEM
results using ABAQUS software obtained by [34], as well as the numerical results obtained
by [35] using the coupled extended meshfree–smoothed meshfree method, as shown in
Figure 13a–d, respectively. The distribution of the von Mises stress is shown in Figure 14.
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The findings of the study for the dimensionless stress factor were compared with
those achieved in XFEM with the smooth nodal stress system [37], as seen in Figure 15,
with identical results.
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4. Conclusions

The results of the developed program simulation were compared with experimental
and numerical data for the two internal non-colinear cracks and the three-point bending
beam with three holes with two different configurations. The developed program combines
the adaptive mesh refinement with increasing mesh density in the required area only in
order to reduce the computational time while increasing the solution accuracy. The norm
stress error is taken as a posterior estimator for the h-type adaptive refinement. With
this series of simulations, the capability of the developed program was demonstrated to
accurately predict the crack path trajectory, stress intensity factors, and fatigue life under
constant amplitude loading. In these simulation sequences, holes act as a crack stopper
and attract a crack trajectory to growth. Such findings support that the algorithm can be
used to identify crack-stopping holes used in damage tolerance designs.
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