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Abstract: Molecular dynamics (MD) simulation is a powerful tool to study the molecular level work-
ing mechanism of corrosion inhibitors in mitigating corrosion. In the past decades, MD simulation
has emerged as an instrument to investigate the interactions at the interface between the inhibitor
molecule and the metal surface. Combined with experimental measurement, theoretical examination
from MD simulation delivers useful information on the adsorption ability and orientation of the
molecule on the surface. It relates the microscopic characteristics to the macroscopic properties which
enables researchers to develop high performance inhibitors. Although there has been vast growth in
the number of studies that use molecular dynamic evaluation, there is still lack of comprehensive
review specifically for corrosion inhibition of organic inhibitors on ferrous metal in acidic solution.
Much uncertainty still exists on the approaches and steps in performing MD simulation for corrosion
system. This paper reviews the basic principle of MD simulation along with methods, selection of
parameters, expected result such as adsorption energy, binding energy and inhibitor orientation, and
recent publications in corrosion inhibition studies.

Keywords: corrosion inhibitor; ferrous metal; molecular dynamics simulation; adsorption energy;
binding energy

1. Introduction

The use of computational method for studies of metal corrosion inhibition has pro-
gressively increased due to time, cost and environmental considerations as well as the
inadequacy of conventional methods to provide notable insight on metal surface-inhibitor
interaction. The performance of corrosion inhibitors in inhibiting metallic corrosion are
conventionally evaluated using experimental procedures such as weight loss method,
electrochemical impedance spectroscopy, potentiodynamic polarization and cyclic voltam-
metry. These methods are sufficient to obtain physical and electrochemical properties of
the corrosion inhibitor, yet require the usage of chemicals and are time consuming. Com-
putational studies of metal corrosion inhibition using molecular dynamic (MD) simulation
provides significant insight into the mechanism and interaction between a metal surface
and inhibitor molecules with minimum cost. While MD was first introduced in 1956 by
Berni Alder, the use of MD simulation for metal corrosion inhibition application was never
until reported 17 years ago in 2003 by Bartley et al., who studied copper corrosion inhi-
bition using alkyl ester compounds [1–3]. Since then, the use of MD for simulating metal
surface-inhibitor interaction had gained the attention of scientists and researchers all over
the globe and had progressed vastly in the field of corrosion science.
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Ferrous metals are iron-based metals such as mild steel, stainless steel and cast iron
that account for 80% of all metallic materials [4]. These metals are commonly used for
transportation, construction and manufacturing industries, owing to their high durability,
great tensile strength and relatively low cost. The major drawback of ferrous metals
especially low carbon steel is its low corrosion resistance [5,6]. The corrosion and oxidation
resistance of steel can be improved by adding alloy elements such as nickel and chromium,
yielding high alloy steel such as duplex stainless steel [7]. However, the price of stainless
steel is almost four times higher (2314 USD/tonne) compared to mild steel (614 USD/tonne)
as of April 2020 [8]. For most cases with economical concern, using lower-cost material
with proper corrosion protection is preferable.

Corrosion inhibitors (CIs) have been used extensively to prevent corrosion of ferrous
metals [9–13]. Inorganic CIs underlying mechanism are electron sharing and/or film-
forming action. However, toxic inorganic CIs such as chromates and nitrites are banned
due to health and environmental concern. Hence, the scientific community is devoting
major efforts to develop organic CIs that are environmentally benign. The inhibition
mechanism of organic CIs can be generally explained by the adsorption of the inhibitor
compounds on the metal surface by displacing water molecules. This occurs physically
and/or chemically, depending on the nature, chemical structure and electron distribution
of the inhibitor molecules. Typical organic CIs contain heteroatoms such as nitrogen,
oxygen, sulphur and phosphorus with lone pairs of electrons which act as the active sites
of adsorption. The adsorbed inhibitors form a thin layer of molecules which shields the
active sites of corrosion reaction [14]. The key to further understand the mechanism of
the inhibition lies in knowing the atomic and molecular level information on the metal
inhibitor interface. MD simulation is capable of identifying this information that can help
us understand the detailed mechanism of the inhibition. Other than the corrosion field,
MD simulation also offers numerous advantages in various sectors such as renewable
energy generation, food technology, medicine, and pharmaceutical [15–18]. A broad list
of reviews of MD simulation application for corrosion sector as well as other sectors had
been published in the literature [14,19–22]. In this context, numerous works have shown
that MD simulation is a promising method to obtain the molecular level information of a
system. Thus, in this paper, the basic principle of MD simulation along with the methods,
parameters and applications in corrosion inhibition are reviewed. This review also focuses
on the selection of parameters such as the force field, time step and ensemble in performing
an MD simulation for corrosion studies, which to the best of our knowledge, has not been
discussed in any review article found in the literature. The scope of this review is limited
to recent studies of ferrous metals corrosion inhibition using CIs in acidic solution.

2. Corrosion of Ferrous Metals in Acidic Solution
2.1. Corrosion Mechanism

Corrosion is the deterioration of a metal as a result of interactions or chemical reaction
with the surrounding environment. It is an electrochemical reaction which occurs due to
anodic and cathodic reaction. In the case of ferrous metal corrosion, the anodic reaction is
the oxidation of iron that can be expressed as follows:

Fe → Fe2+ + 2e− (1)

The generated electrons are consumed in cathodic reactions, which in an acidic envi-
ronment is predominantly hydrogen evolution as shown in Equation (2) [23]. In an aerated
condition where dissolved oxygen is present in the solution, a reaction in Equation (3) is
also possible.

2H+ + 2e− → H2 (2)

4H+ + O2 + 4e− → 2H2O (3)

Along with anodic and cathodic reactions, electron flows through the metal from
anodic site to cathodic site and an ionic flows through the solution in which cations
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(positively charged ions) move from anode to cathode, and vice versa [24]. As the cations
and anions interact between the anode and cathode, a precipitate of insoluble ferrous
hydroxide is likely to form (Equation (4)). In excess oxygen, ferrous hydroxide is rapidly
oxidized to ferric hydroxide (Equation (5)). The rust that is usually found on the surface of
metal is the dehydrated form of ferric hydroxide, which is ferric hydroxide (Equation (6)).
Figure 1 illustrates the processes of a ferrous metal corrosion system in acidic solution:

2Fe + 2H2O + O2 → 2Fe(OH)2 (4)

4Fe(OH)2 + 2H2O + O2 → 4Fe(OH)3 (5)

2Fe(OH)3 → Fe2O3 + 3H2O (6)

Figure 1. Electrochemical process of ferrous metal corrosion in acidic solution.

2.2. Corrosion Inhibition of Ferrous Metal

A corrosion inhibitor (CI) is a substance that can reduce the corrosion rate of metal
effectively. A wide range of CIs that include inorganic and organic (natural and synthetic)
CIs has been discovered in the past decade [25]. Inorganic inhibitor compound is typically
a compound that lacks carbon-hydrogen bonds. Zinc nitrate and sodium molybdate are
examples of efficient inorganic inhibitors for steel and nickel respectively [26,27]. The
understood mechanism of inorganic CIs is due to electron sharing and film-forming ac-
tion [26,27]. On the other hand, the inhibition capability of organic CIs is believed to be due
to the presence of heteroatoms such as oxygen, nitrogen, sulfur and phosphorus that exist
as polar functional groups (hydroxyl, amine, methoxy, and carboxyl groups) in the com-
pounds [14,25]. Generally, organic CIs inhibit corrosion by adsorbing physically and/or
chemically on the interface of metal, forming several monolayers that block ions from
reacting with the metal. The protective layer retards anodic, cathodic, or both reactions
depending on the type of CI used. Nowadays, organic CI is preferred over inorganic CI
due to sustainability, environmental, health and economical concerns [25].

In the perspective of ferrous metal corrosion inhibition in acidic solution, the inhibition
starts as the heteroatoms in the structure of organic CI get protonated and adsorbed on
the negatively charged iron surface due to electrostatic interaction [28]. This is known as
physical adsorption or physisorption. At this stage, the inhibitor ions are not in direct
contact with the iron atoms, but rather “bridged” by a layer of water molecules or negative
ions from acid such as chloride from hydrochloric acid [29,30]. This kind of adsorption
is relatively weak, reversible, nearly temperature-independent and has low adsorption
energy (typically 20 kJ/mol) [31]. During the later stages of interaction, the neutral form of
CI molecules begins to move towards the iron surface and start to share their free electron
pairs (p electrons) from the heteroatoms and π electrons from the double and triple bonds,



Metals 2021, 11, 46 4 of 22

respectively, with the vacant d-orbital of the iron atoms [29]. This chemical interaction
forms a strong chemical bond which is recognized as chemical adsorption or chemisorption.
It is characterized as a slow, irreversible, temperature-dependent and has high adsorption
energy (equal or more than 40 kJ/mol).

The adsorption strength is significantly affected by a plethora of variables related to
the inhibitor such as the molecular weight, electron density, asymmetry, polarity, hydropho-
bicity and solubility. As the performance of a CI is significantly affected by the adsorption
strength, it is crucial to take all parameters into consideration. Conventional experimen-
tal method alone is not capable of considering molecular level parameters into account.
Hence, the use of a computational tool such as MD along with experimental approaches
such as gravimetric analysis, electrochemical impedance spectroscopy, potentiodynamic
polarization and cyclic voltammetry has therefore been of considerable benefit.

3. Molecular Dynamics Simulation of Ferrous Metal Corrosion Inhibition
3.1. Basics of Molecular Dynamics Simulation

Molecular dynamics (MD) simulation is a method used to compute the trajectory
or transport properties of a macromolecular structure. In simpler words, it determines
how atoms or molecules move within a specified time frame by conducting calculations
computationally. The goal of MD simulation may vary depending on one’s interest, but
typically it is conducted to obtain the equilibrium properties of the system [14]. In the
context of a corrosion system, for instance, an inhibitor molecule surrounded with water
molecules that mimic a corrosive solution positioned next to the iron atoms that represent
the metal surface, the MD simulation is intended to reach the most stable state (lowest
energy at equilibrium) of the inhibitor molecule. Based on the result, one can determine
whether the inhibitor molecule prefer to be adsorbed or desorbed from the metal surface.
Aside from that, the strength of the adsorption can also be obtained in terms of energy
which can be used to screen inhibitor molecules before conducting a real experiment.

The underlying principle behind an MD simulation is simple and straightforward.
Given the initial positions (coordinates) and velocity of all atoms in a system, the force
acting on each atom by all other atoms in the system in terms of potential energy can be
obtained. The potential energy that acts on an atom can be categorised into two; bonding
potentials (bonds, angles and dihedrals) and non-bonding potentials (van der Waal and
Columbic). Upon knowing the potential energy, the force can be derived from the energy
function. This stage of computing the force is the utmost importance in getting a reliable
and accurate simulation result [32]. Finally, Newton’s law of motion is integrated in order to
calculate the acceleration of each atom, enabling the prediction of the new position of each
atom as a function of time [33]. Again, the new potential energy, force and acceleration can
be obtained from the updated position and velocity of each atom. As this step is repeated,
it is possible to simulate the trajectory of each atom that describes each configuration of
the atoms within a small time interval in real-time. The overall step in MD simulation is
illustrated in Figure 2.
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Figure 2. Computational flow of molecular dynamics simulation.

3.2. Steps in Performing a Molecular Dynamics Simulation for Corrosion Studies
3.2.1. Construction of a Corrosion System

The first step of performing an MD simulation for corrosion system is constructing
the components of the interaction model. A corrosion system typically consists of two
components; an inhibitor molecule and a metal surface. Typically, the inhibitor molecule is
sketched and its geometry is optimized to obtain an accurate geometry. In real condition,
the inhibitor does not exist in isolated space of vacuum, but as an aqueous phase in the
corrosive solution [32]. Besides, the degree of inhibitor adsorption is greatly influenced by
the surroundings as an unbounded inhibitor is more vigorous in interacting with metal
surface compared to inhibitor surrounded by solvent molecules [14]. Hence, to ensure
that the simulation resembles actual scenario as close as possible, the simulation should be
performed in the presence of water molecules and ions, typically ranging from 200 to 600
total molecules combined [34–36]. In addition, the proportion of water molecules to the
ions should also roughly resemble the actual concentration of the solution. For instance,
1 M of hydrochloric acid (HCl) is composed of 55.5 mol of water molecules (H2O), 1 mol of
hydronium ions (H3O+) and 1 mol of chloride ions (Cl−), which makes the ratio of water to
hydrogen chloride is 55.5:1 or roughly 500:9. Thus, it can be deduced that the most suitable
composition of 1M HCl aqueous phase is 500 H2O, 9 H3O+ and 9 Cl-. The aqueous phases
used for several acidic solutions in recently reported studies are summarized in Table 1.
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Table 1. Aqueous phase of acidic solution in MD simulation.

Acid Solution Aqueous Phase Reference

HCl
0.1 M 556 H2O, 1 H3O+ and 1 Cl− [37]
0.5 M 491 H2O, 9 H3O+ and 9 Cl− [38]
1.0 M 500 H2O [39]

H2O, H3O+ and Cl− [40]
233 H2O, 15 H3O+ and 15 Cl− [41]
350 H2O, 10 H3O+ and 10 Cl− [42]
491 H2O, 9 H3O+ and 9 Cl− [43,44]
500 H2O, 5 H3O+ and 5 Cl− [45]
533 H2O, 5 H3O+ and 5 Cl− [46]

H2O [47]
15% (4.86 M) 500 H2O [48]

H2SO4

0.5 M H2O [49]
400 H2O [50]

1.0 M 500 H2O, 20 H3O+ and 10
SO4

2− [51]

HClO4

0.1 M 400 H2O, 15 H3O+ and 15
ClO4

− [52]

The second component resembles the metal surface which is composed of iron atoms
in the case of ferrous metal. In normal temperature and pressure, iron exists as body-
centred cubic (bcc) structure with (110), (100), (211), (311), (111), (321) and (210) as the most
densely packed surfaces as depicted in Figure 3. Typically, a Fe(110) surface is used as the
adsorption site for simulation of corrosion inhibitor adsorption because it contributes the
largest area of the Fe crystal and is the most thermodynamically stable facet among the
others [53–58]. Contrarily, Zhu et al. [59] demonstrated the use of Fe(100) surface as the
adsorption site for 2-aminobenzimidazole derivative inhibitor. The order of surface energy
of the iron surface is Fe(110) < Fe(100) < Fe(111), which makes Fe (110) to be the most stable,
followed by Fe(100) and Fe(111) facets [60]. Regardless of the type of ferrous metal (carbon
steel, alloy steel or stainless steel) studied experimentally, pure iron atoms instead of a
mixture of iron with alloying elements are usually used for theoretical studies [11,38,61–63].
Table 2 shows the implementation of several Fe surfaces for different types and grade of
ferrous metal in corrosion inhibition studies in acid solution.

Figure 3. Top view of most densely packed surfaces of bcc structure, reproduced from [53], with
permission from Elsevier, 2007.
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Table 2. Fe surfaces used to resemble several types and grades of ferrous metals in MD simulation.

Ferrous Metal Fe Lattice Reference

Fe (110)

Mild steel [40,41,43,45,51,52,64,65]
Carbon steel [44,66]
C35E steel [42]
N80 steel [48]
Q235 steel [39,49,50]
XC48 steel [67]
X80 steel [46]

AISI 304 stainless steel [38]

Fe (100)
Mild steel [47]

Carbon steel [59]

Fe (001) Q235 steel [68]

3.2.2. Specifying Boundary Condition

Simulating a bulk of system with an infinite number of molecules is computationally
expensive. As the positions, velocities and forces of each atom need to be recomputed in
every time step, the calculation time required for a large number of molecules (>10000)
using average performance computers is infinite [69]. Constructing a smaller system in
an enclosed simulation box is a less expensive option, but the forces acting on atoms near
the “walls” of the box and atoms in the center differs significantly due to boundary effect.
To solve this issue, periodic boundary condition (PBC) can be implemented to the system,
which replicates the simulation box in all directions as images. These images behave exactly
like the original simulation box and have the same number, position and momentum of
atoms. PBC is always employed for the simulation of corrosion inhibitor adsorption onto
the metal surface to avoid any arbitrary boundary effects [70–74].

3.2.3. Simulation Tool

To perform any computational simulation, it is necessary to use a tool or module that
is usually embedded in the simulation software. Forcite or Forcite Plus is an advanced
tool in Materials Studio Software (BIOVIA Materials Studio 2017, 17.1.0.48, San Diego,
CA, USA), to compute classical simulation that utilizes molecular mechanics or molecular
dynamics [75]. It can be used to calculate energy, optimize geometry or determine the
trajectory of a system. Forcite module has been extensively used for a broad range of
properties determination in countless types of system such as the interaction property of
nanoform zinc oxide with Covid19, the mechanical properties of polyvinyl chloride/high-
density polyethylene composite, the mechanism of Schiff base as an anticancer drug and a
lot more [76–78]. On top of that, Forcite is the most frequently used module for corrosion
inhibition studies using MD simulation reported in the literature [45,79–82].

3.2.4. Selection of Ensembles

An ensemble is a collection of microscopic states (position and velocity of atoms
at a timestep) that have the same thermodynamic state such as energy, E, volume, V,
temperature, T, pressure, P and number of particles, N. The most common ensembles
for MD simulation are microcanonical ensemble (constant N,V,E), canonical ensemble
(constant N,V,T) and isothermal-isobaric ensemble (constant N,P,T). Canonical ensemble
or NVT ensemble is usually used for the determination of adsorption energy in a cor-
rosion system [11,49,83–85]. With the implementation of this ensemble, the number of
particles, volume and temperature of the system are conserved in every step of calculation
or integration.

3.2.5. Choosing Time Step

MD simulation works by integrating Newtonian equation to compute the state of
a system (velocity and position) by given the initial state of the system. Any mistake in
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specifying the numerical integrator will produce biased results and errors in calculation.
Hence, it is crucial to select the proper time step to obtain a reliable result. As the integration
in MD simulation computes the movement of atomic-scale system with chemical bonds,
the scale of time step should match the scale of the fastest vibrational frequency of the
chemical bonds which is on the order of fractions of femtosecond (fs). Ideally, the time
step should be set as large as possible in order to simulate for a longer time span, with less
integration step. The relationship of the time step with the integration step and length of
the simulation is expressed as follows:

Integration step =
length o f simulation ( f s)

time step ( f s)
(7)

However, large time step will cause “exploding”; a phenomenon where the total
energy increases rapidly with time, which causes atomic collision [86]. On the other hand,
small time steps will cause unnecessary calculations which extend the calculation time.
Therefore, the time step should be set optimum value, at least ten times lower than the
highest frequency of the system [87]. For the simulation of compounds with hydrogen
bonds (such as corrosion inhibitor molecules) that has the highest vibrational frequency
among other chemical bonds, the ideal time step is 1–2 fs [39,88].

3.2.6. Selection of Force Field

A force field is a set of mathematical expression that is used to calculate the forces in
terms of the potential energy of the interacting atoms in a simulation system. It is considered
as the soul of MD as the selection of force field affects directly towards the accuracy of
the simulation results [89]. The Condensed-phase Optimized Molecular Potentials for
Atomistic Simulation Studies (COMPASS) force field is extensively used relative to other
force fields for the simulation of corrosion inhibitor adsorption [11,90–92]. It is originally
designed to describe forces for organic liquids and polymers, and then extended further
for the application of organic compounds with H, C, N, O, S, P and metals [93]. Due to the
broad coverage of COMPASS force field, it is a suitable force field to be used for a corrosion
system, which typically contains organic compounds (inhibitor molecule) and metal atoms.

3.3. Parameters Derived from Molecular Dynamics Simulation of Corrosion Inhibition
3.3.1. Adsorption Energy

Adsorption energy or interaction energy resembles the amount of energy released or
absorbed as 1 mole of adsorbate molecules is adsorbed on the adsorbent. The information
of adsorption energy is crucial to understand the underlying mechanism of the adsorption.
The main factors that affect the energy include the electronegativity, valence of adsorbate,
and the coordination of active sites (adsorbent) [94]. In view of corrosion inhibition, the
inhibitor molecule is regarded as the adsorbate, while the metal surface is referred as the
adsorbent. It can be expressed as follows:

Eads = Etotal − ( E metal + solution + Einhibitor ) (8)

where Eads is the adsorption energy, Etotal is the total energy of the whole system, Emetal + solution
is the energy of the metal and the aqueous phase and Einhibitor is the energy of the inhibitor
molecule. A negative value of adsorption energy is an indication of an exothermic and
spontaneous process. This means that the inhibitor is attracted towards the metal surface,
causing adsorption of either physically, chemically or a combination of both. The greater the
magnitude (more negative) of the energy released, the stronger the strength of adsorption,
and hence the higher the corrosion inhibition efficiency [14].

3.3.2. Binding Energy

Binding energy is the energy required to separate a particle from a system. It can
be viewed from several standpoints according to the distance and energy scale of the
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system of interest. Electron binding energy, atomic binding energy, bond dissociation
energy, nuclear binding energy and gravitational binding energy are the types of binding
energy for different systems. The adsorption of CIs on the metal surface is closely related
to bond dissociation energy because the formation and dissociation of chemical bonds are
ubiquitous in the process [94]. Hence in the perspective of corrosion inhibition, binding
energy is the energy required to desorb the inhibitor molecule from the metal surface due to
bond dissociation. It is regarded as the reciprocal of adsorption energy as expressed below:

Ebind = − Eabs (9)

where Ebind is the binding energy. The greater the binding energy (more positive), the
stronger the attraction force between the inhibitor and the metal surface, and hence the
higher the inhibition efficiency.

3.3.3. Inhibitor Molecule Orientation

The adsorption configuration of the inhibitor molecule on the metal surface is an
important finding from MD simulation. Upon several calculation iterations done by the
software, the most stable configuration of inhibitor with lowest energy level will be ob-
tained. The final configuration of adsorption depends on the chemical structure and
electron density of the inhibitor molecule [95]. Figure 4 shows the example of different
possible configuration of sodium 2-quinoxalinecarboxylate on an iron substrate [96]. Typi-
cally, horizontal, flat or planar orientation as depicted in Figure 4b is preferred for better
corrosion inhibition performance because it can cover a larger surface area of metal and
has higher binding energy [14].

Figure 4. Adsorption configuration of sodium 2-quinoxalinecarboxylate on iron substrate; (a) vertical
and (b) horizontal orientation, reproduced from [96], with permission from Elsevier, 2016.

3.4. Application of Molecular Dynamics Simulation for Corrosion Inhibition Studies of Ferrous
Metal in Acidic Solution

The corrosion inhibition of ferrous metals in acidic media has been extensively in-
vestigated due to its exceptional industrial use [97]. As it is crucial to understand the
mechanism of corrosion inhibition, MD simulation is normally performed alongside ex-
perimental procedures. Haque et al. carried out an experimental and an MD simulation
to elucidate the inhibition of mild steel corrosion in 1 M hydrochloric acid (HCl) by two
synthesized amino acid derivatives; hydroxyl-containing zwitterion (H-zwitterion) and
sulfur-containing zwitterion (S-zwitterion) [54]. Two types of adsorption sites that repre-
sent the metal surface was used in the simulation for comparison purposes; neutral Fe (110)
and α-Fe2O3 (110). The MD simulation results revealed that both inhibitors were adsorbed
in a planar position with both surfaces (Figure 5a,b). However, S-zwitterion provided a
greater extend of adsorption than the H-zwitterion based on the interaction and binding
energy. This suggests that the presence of sulfur atom promotes bonding with the iron
atoms. The adsorption model of S-zwitterion is illustrated in Figure 5c. Aside from that, it



Metals 2021, 11, 46 10 of 22

was also found that there was no significant difference in adsorption behaviour for Fe (110)
and α-Fe2O3 (110) surface.

Figure 5. Side view of (a) H-zwitterion; and (b) S-zwitterion adsorbed on α-Fe2O3 (110) surface; and
(c) adsorption model of S-zwitterion, reproduced from [54], with permission from Elsevier, 2020.

Saranya and coworkers described the adsorption of three synthesized pyran deriva-
tives; ethyl 2-amino-4-(4-hydroxyphenyl)-6-(p-tolyl)-4H-pyran-3-carboxylate (HP), ethyl
2-amino-4-(4-methoxyphenyl)-6-(p-tolyl)-4H-pyran-3-carboxylate (MP) and ethyl 2-amino-
4-(4-hydroxy-3,5-dimethoxyphenyl)-6-(p-tolyl)-4H-pyran-3-carboxylate (HDMP) on Fe
(110) surface in 1 M H2SO4 [51]. It is interesting to note that only the p-tolyl-pyran skeleton
of all molecules preferred to adsorb completely on the iron surface with flat orientation.
This phenomena can be explained by the non-planar geometry of the inhibitor molecules,
which caused only the most electron-rich site to be adsorbed on the metal surface. The
strongest adsorption property on Fe (110) surface was manifested by HDMP followed by
MP and HP molecule. The presence of oxygen atoms, π electrons and electron-donating
groups in the molecular structure can be attributed as the driving force for adsorption.

The inhibition effect of pentaglycidyl ether pentabisphenol A of phosphorus (PGEP-
BAP) phosphorus polymer on carbon steel corrosion in 1 M HCl was investigated by
Hsissou and coworkers [36]. According to the MD simulation result, it was revealed that
the PGEPBAP molecule was adsorbed in a parallel position to the metal surface. The
molecule surface with phosphorus and oxygen heteroatoms was oriented towards the iron
atom. 1478 kcal/mol of adsorption energy was obtained from Monte Carlo simulation, but
there was no quantification of interaction or binding energy reported from MD simulation.

El Arrouji et al. performed an experimental, Monte Carlo simulation and MD
simulation to study the corrosion inhibition of two pyrazole derivatives which are (E)-
N′-benzylidene-2-(3,5-dimethyl-1H-pyrazol-1-yl) acetohydrazide (DPP) and (E)-N′-(4-
chlorobenzylidene)-2-(3,5-dimethyl-1H-pyrazol-1-yl)acetohydra zide (4-CP) on steel in
1 M HCl [41]. The Monte Carlo simulation suggested that 4-CP inhibitor exhibited stronger
adsorption on Fe (110) surface with −109.18 kcal/mol adsorption energy compared to
DPP inhibitor with −103.38 kcal/mol adsorption energy, respectively. This finding was
in agreement with the experimental result, which showed that the inhibition efficiency
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of 4-CP is relatively higher than DPP inhibitor. The lowest energy configuration of the
inhibitor and Fe (110) surface obtained from MD simulation is shown in Figure 6. The site
of the inhibitor molecules with oxygen and nitrogen heteroatoms were oriented towards
the metal surface, but it is apparent that the orientation of the overall molecule was not
completely parallel. This is probably due to the arrangement of heteroatoms, which is
more concentrated at one side of the molecule instead of evenly distributed throughout the
structure. No energy value was computed from the MD simulation.

Figure 6. Side view of (a) DPP; and (b) 4-CP adsorbed on Fe (110) in HCl, reproduced from [41], with
permission from Elsevier, 2020.

An MD simulation study on the adsorption of quercetin-3-glucuronide, a major
compound of Lavandula mairei (LM) ethanolic extract, on mild steel in 1 M HCl was reported
by Berrissoul et al. [98]. The final configurations of the inhibitor and their respective
interaction energy after equilibrium at different simulated temperatures (303, 313, 323
and 333 K) are reflected in Figure 7. It is apparent that the LM inhibitor was adsorbed in
planar arrangement to the Fe (110) surface, which is due to the aromatic rings and oxygen
atoms that are present in the inhibitor molecule. As the temperature was increased, it was
found that the interaction energy of the LM inhibitor-Fe (110) system was becoming less
negative. This indicates that the adsorption strength is weaker at elevated temperature,
hence the LM inhibitor should be intended for lower temperature application to anticipate
high performance.

Zhang et al. investigated the inhibition of mild steel corrosion in 15% HCl using the
extract of aloe gel, which is composed of polysaccharides. For MD simulation purpose,
four main monomers of the polysaccharide; glucose, mannose, galactose and fructose were
used to resemble the extract. The final positions of the inhibitors were completely parallel
to the Fe (110) surface, thanks to the planar geometry of the monomers. Based on the
computed binding energy, fructose exhibited the strongest adsorption strength (598.35
kJ/mol), followed by mannose (593.96 kJ/mol), galactose (587.47 KJ/mol) and glucose
(578.22 kJ/mol).
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Figure 7. Side view of adsorbed LM molecule on Fe (110) and its interaction energy at different temperatures reproduced
from [98], with permission from Elsevier, 2020.

The chemical structures, MD simulation parameters, and the results of the MD of
several investigated organic corrosion inhibitors for various types of ferrous metal in acidic
solution are summarized in Table 3. Generally, most studies had focused on the corrosion
inhibition of mild steel, which is probably due to the extensive use in the industry relative
to other ferrous metal and its poor resistance towards acid corrosion. With regard to the
acidic media, the majority of the reviewed literature investigated corrosion inhibition in
HCl solution, followed by H2SO4. It seemed like there was less than a handful of studies
that performed MD simulation in other acidic media such as perchlorate acid and ethanoic
acid. In terms of the simulation result, after a detailed review, it can be inferred that
most inhibitors were adsorbed on the metal surface in planar or parallel orientation. This
configuration is preferred as the molecule can cover a larger surface of the metal and
displace more water molecules and other corrosive species.
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Table 3. Name and chemical structure of corrosion inhibitors for ferrous metals in acid solution, MD simulation parameters
and MD results.

Name and Chemical
Structure of Corrosion

Inhibitor
Metal and Acid Solution

MD Parameters

• Fe Surface
• Simulation Box Size
• Aqueous Phase
• Time Step and Simulation

Time or Total Step
• Module, Force Field and

Ensemble

MD Result Orientation and
Binding Energy (kJ/moL) Ref.

Bis-phosphonic acid

XC48 steel
1 M HCl

Fe (110)
17.20 Å × 22.93 Å × 22.93 Å
H2O
0.1 fs, 50 ps
COMPASS, NVT

Horizontal to Fe surface
Ebinding = 5027.03 [67]

Surfactant

Mild steel
15% HCl

Fe (110)
23.00 Å × 23.00 Å × 10.03 Å
500 H2O
1 fs
Forcite

Parallel to Fe surface
Ebinding = 1971.50 [47]

Amine derivative

Mild steel
1 M HCl

Fe (110)
24.82 Å × 24.82 Å × 38.10 Å
100 H2O, 1 Cl−, 1 H3O+

1.0 fs, 500 ps
COMPASS

Flat position
Ebinding = 1562.3 [99]

Losartan potassium drug

Q235 steel
1 M HCl

Fe (110)
24.3 Å × 17.2 Å × 67.1 Å
500 H2O
1.0 fs, 500 fs
COMPASS, NVT

Horizontal orientation
Ebinding = 1120.89 [39]

Vanillin Schiff base

Mild steel
1 M HCl

Fe (110)
40.11 Å × 40.11 Å × 78.00 Å
150 H2O, 15 Cl−, 15 H3O+

1.0 fs, 100 fs
COMPASS, NVT

Close to Fe surface
Ebinding = 1199.05 [100]

Bamboo leaves extract

Cold rolled steel
0.1 M Cl3CCOOH

Fe (001)
31.53 Å × 31.53 Å × 15.30 Å
1.0 fs, 1000 ps
COMPASS, NVT

Flat orientation
Ebinding = 1104.35 [101]

Cassava starch ternary graft
copolymer

Steel
1 M HCl

Fe (001)
31.53 Å × 31.53 Å × 15.30 Å
500 H2O
1.0 fs, 1000 ps
COMPASS, NVT

Flat orientation
Ebinding = 1072.90 [102]

Quinoxaline compound

Mild steel
1 M HCl

Fe (110)
24.82 Å × 24.82 Å × 25.28 Å
491 H2O
1.0 fs, 200 fs
COMPASS, NVT

Distributed over Fe surface
Ebinding = 903.70 kJ/mol [103]
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Table 3. Cont.

Name and Chemical
Structure of Corrosion

Inhibitor
Metal and Acid Solution

MD Parameters

• Fe Surface
• Simulation Box Size
• Aqueous Phase
• Time Step and Simulation

Time or Total Step
• Module, Force Field and

Ensemble

MD Result Orientation and
Binding Energy (kJ/moL) Ref.

Amino acid

derivatives

Mild steel
1 M HCl

Fe (110), α-Fe2O3 (110)
24.82 Å × 24.82 Å × 35.69 Å
491 H2O, 9 Cl−, 9 H3O+

1.0 fs, 2000 ps
Forcite, COMPASS, NVT,

Planar orientation
Ebinding = 829.17 [54]

Isoniazid derivative
Mild steel
1 M HCl

Fe (110)
24.82 Å × 24.82 Å × 25.14 Å
491 H2O, 9 Cl−, 9 H3O+

1.0 fs, 5000 ps
COMPASS, NVT

Close to Fe surface
Ebinding = 804.20 [104]

Substituted acridines

Mild steel
15% HCl

Fe (110)
24.82 Å × 24.82 Å × 43.21 Å
500 H2O, 5 Cl−, 5 H3O+

1.0 fs, 500 ps
COMPASSII, NVT

Parallel to Fe surface
Ebinding = 791.40 [105]

Bisbenzothiazole derivative
Mild steel
1 M HCl

Fe (110)
39.85 Å × 39.85 Å × 76.79 Å
150 H2O, 15 Cl−, 15 H3O+

1.0 fs, 200 ps
COMPASS, NVT

Distributed over Fe surface
Ebinding = 789.20 [106]

Thiadiazole-Derived Bis-Schiff
Base

Mild steel
1 M HCl

Fe (110)
24.82 Å × 24.82 Å × 35.69 Å
491 H2O, 9 Cl−, 9 H3O+

1.0 fs, 2000 ps
COMPASS, NVT

Parallel to Fe surface
Ebinding = 758.79 [107]

Thiazole carboxylates

Mild steel
1 M HCl

Fe (110)
25.02 Å × 25.02 Å × 38.32 Å
491 H2O, 9 Cl−, 9 H3O+

0.1 fs, 5000 ps
Forcite, COMPASS, NVT

Planar arrangement
Ebinding = 753.20 [43]

Phosphonic acid

Mild steel
1 M HCl

Fe (110)
9.78 Å × 29.78 Å × 60.13 Å
500 H2O, 10 Cl−, 10 H3O+

1 fs, 100,000 steps
Forcite, NVT

Parallel to Fe surface
Ebinding = 722.00 [108]

Pyridinium-derived ionic
liquid

Mild steel
1 M HCl

Fe (110)
32.27 Å × 32.27 Å × 34.13 Å
500 H2O, 5 Cl−, 5 H3O+

1.0 fs, 400 ps
Forcite, COMPASS, NVT

Parallel to Fe surface
Ebinding = 689.27 [109]

Benzimidazole derivative
Mild steel
1 M HCl

Fe (110)
32.27 Å × 32.27 Å × 31.13 Å
500 H2O, 5 Cl−, 5 H3O+

1 fs, 400 ps
Forcite, COMPASS, NVT

Parallel to Fe surface
Ebinding = 641.94 [45]
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Table 3. Cont.

Name and Chemical
Structure of Corrosion

Inhibitor
Metal and Acid Solution

MD Parameters

• Fe Surface
• Simulation Box Size
• Aqueous Phase
• Time Step and Simulation

Time or Total Step
• Module, Force Field and

Ensemble

MD Result Orientation and
Binding Energy (kJ/moL) Ref.

Aloe polysaccharide

Mild steel
15% HCl

Fe (110)
24.82 Å × 24.82 Å × 43.21 Å
500 H2O, 5 Cl−, 5 H3O+

1.0 fs, 500 ps
COMPASSII, NVT

Parallel to Fe surface
Ebinding = 598.75 [110]

Quinoxaline derivative

Mild steel
1 M HCl

Fe (110)
500 H2O, 5 Cl−, 5 H3O+

NVT
Forcite

Parallel to Fe surface
Ebinding = 583.12 [111]

Amine derivative

Mild steel
1 M HCl

Fe (110)
24.82 Å × 24.82 Å × 38.10 Å
100 H2O, 1 Cl−, 1 H3O+

1.0 fs, 500 fs
COMPASS

Parallel to Fe surface
Ebinding = 541.55 [112]

Mixture of cellulose derivative
and Gemini surfactant Mild steel

1 M HCl

Fe (110)
24.82 Å × 24.82 Å × 35.69 Å
491 H2O, 9 Cl−, 9 H3O+

0.1 fs, 2000 ps
COMPASS, NVT

Parallel to Fe surface
Ebinding = 507.48 [113]

Pyrazole derivatives

Mild steel
1 M HCl

Fe (110)
14.89 Å × 14.89 Å × 6.45 Å
230 H2O, 15 Cl−, 15 H3O+

1 fs, 500 ps
COMPASSII,
NVT

CI molecule oriented towards
Fe atoms
Ebinding = 456.81

[41]

Pyran derivatives

Mild steel
1 M H2SO4

Fe (110)
27.45 Å × 27.45 Å × 29.14 Å
500 H2O, 5 10 SO4

2−, 20 H3O+

Forcite, COMPASS, NVT

Flat configuration
Ebinding = 438.47 [51]

Lemon seeds extract

Mild steel
1 M HCl

Fe (110)
25.22 Å × 25.22 Å × 39.62 Å
1.0 fs, 2000 ps
Forcite, COMPASS, NVT

Parallel to Fe surface
Ebinding = 375.65 [64]

Chondroitin sulfate

Mild steel
1 M HCl

Fe (110)
24.82 Å × 24.82 Å × 25.14 Å
491 H2O, 9 Cl−, 9 H3O+

1.0 fs, 5000 ps
COMPASS, NVT

Parallel to Fe surface
Ebinding = 334.24 [114]

Pistachio nut extract

Mild steel
1 M HCl

Fe (110)
H2O, Cl−, H3O+

(and vacuum)
1.0 fs, 50,000 steps
COMPASS, Forcite

Distributed over Fe surface
Ebinding = 317.25 [115]



Metals 2021, 11, 46 16 of 22

Table 3. Cont.

Name and Chemical
Structure of Corrosion

Inhibitor
Metal and Acid Solution

MD Parameters

• Fe Surface
• Simulation Box Size
• Aqueous Phase
• Time Step and Simulation

Time or Total Step
• Module, Force Field and

Ensemble

MD Result Orientation and
Binding Energy (kJ/moL) Ref.

Penicillamine drug

Mild steel
1 M HCl

Fe (110)
H2O, Cl−, H3O+

1.0 fs, 1000 fs
COMPASS, NVT

Close to Fe surface
Ebinding = 268.00 [88]

Artemisia herba alba Extract

Mild steel
1 M HCl

Fe (110)
27.30 Å × 27.30 Å × 37.13 Å
500 H2O, 5 Cl−, 5 H3O+

1 ns, 200 ps
Forcite, COMPASS, NVT

Parallel to Fe surface
Ebinding = 256.00 [116]

Rosa damascena flower extract

Mild steel
1 M HCl

Fe (110)
491 H2O, 9 Cl−, 9 H3O+

1.0 fs, 20,000 steps
COMPASS, NVT

Planar orientation
Ebinding = 237.69 [117]

Ziziphora leaves extract

Steel
1 M HCl

Fe (110)
24.82 Å × 24.82 Å × 38.10 Å
491 H2O, 9 Cl−, 9 H3O+

1.0 fs, 1000 ps
COMPASS, NVT

Parallel to Fe surface
Ebinding = 216.68 [118]

Phosphonium compound

Mild steel
0.5 M H2SO4

Fe (110)
37.22 Å × 37.22 Å × 38.69 Å
5 Cl−, 5 H3O+

1.0 ns, 600 ps
Forcite, COMPASS, NVT

CI molecule located on Fe
atoms
Ebinding = 212.75

[119]

Lavandula mairei extract

Mild steel
1 M HCl

Fe (001)
27.30 Å × 27.30 Å × 33.13 Å
500 H2O, 5 Cl−, 5 H3O+

1.0 fs, 400 ps
Forcite, COMPASS, NVT

Distributed over Fe surface
Ebinding = 197.75 [98]

Phosphorus polymer

Carbon Steel
1 M HCl

Fe (110)
39.72 Å × 39.72 Å × 56.08 Å
500 H2O, 50 Cl−, 50 H3O+

1.0 ps, 300 ps
COMPASSII, NVT

CI molecule positioned above
Fe atoms [36]

4. Future Prospects

MD simulations have been used to obtain molecular-level information in order to
understand the mechanism of corrosion inhibition. The expected results of MD simulation
in corrosion studies can be categorized into two: (1) the configuration of the inhibitor
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molecule upon adsorption on the metal surface and (2) the strength of adsorption based on
the computed energy values (adsorption and binding energy). The main challenges for
upcoming circumstances are to further explore the ability of MD simulation to provide
value-added results that is able to describe the corrosion inhibition mechanism in more
detail. For instance, the simulation of more than one inhibitor molecule can be performed
with the aid of high performance computers, which is possible to simulate the adsorption
isotherm (such as Langmuir, Freundlich and Temkin) theoretically. Possibly, the electro-
chemical potential of the corrosion system can be modelled with the integration of MD
simulation with other computational methods.

With respect to the current technology of MD simulation, the scope of reported
corrosion inhibition studies which concentrated on the effect of the inhibitor molecular
structure and different metal substrate towards inhibition performance is only the tip of the
iceberg. Other feasibly conducted studies such as the effect of different types of aqueous
phase and flow condition (stagnant or agitated) towards the adsorption strength have yet
to be reported elsewhere. In addition, the presence of impurities in the actual metal (such
as carbon in mild steel) could also affect the performance of corrosion inhibitor to an extent.
More broadly, future research should consider the alloying elements of the metal instead
of only using pure metal atoms in the simulation model. Apparently, the use of mixtures
of atoms in MD simulation model; such as iron and carbon that resembles steel, is well
established in other field especially in material science. Hence, it is possible to construct
similar system for corrosion application as well. It is also worth to mention that the metal
surface roughness is another parameter that can be taken into account in an MD simulation
model of inhibitor adsorption. Quite a number of studies related to this parameter in other
fields are available in the literature, yet none was found in the field of corrosion. Since
the surface roughness is a significant parameter in the experimental approach, adding this
parameter into consideration will produce results that are applicable to real cases.

It is encouraging to mention that the use of radial distribution function (RDF) in MD
in the field of corrosion science has been emerging over the past years. RDF provides the
information that can be used to determine the type of adsorption of the inhibitor on the
metal atoms; either physically or chemically. It is anticipated that more corrosion inhibitor
adsorption simulation that utilizes RDF are to be published in the future.

5. Conclusions

In this review, MD simulation is described in terms of its basic principles, computa-
tional flow and expected outcome on the inhibition mechanism of ferrous metal in acidic
solution. Steps in performing MD simulation such as the construction of a corrosion system,
and selection of the boundary condition, simulation tool, ensembles, time step and force
field are emphasized in the hope to provide readers better understanding in the theoretical
approach of corrosion studies.

Aside from that, some recent works on interactions between a corrosion inhibitor and
ferrous metal surface in acid solution studied using MD simulation have been collected
and summarized in this review. It can be concluded that most inhibitors are adsorbed
on the metal surface in a planar or parallel orientation, which larger surface coverage of
the metal, and hence better performance. The vital parameters quantified from the MD
simulation such as binding energy and adsorption energy are useful to determine the
degree of adsorption between the inhibitor and metal atoms. The insights gained from
this review may be of assistance to researchers in developing new and improved corrosion
inhibitors. Finally, the challenges and future trends of MD simulation in corrosion science
are also obviously highlighted in the final section. Considerably more work will need to be
done to overcome the challenges and to boost the potential of MD simulation in the field of
corrosion science.
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