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Abstract: Microstructural optimization of Al-Li alloys plays a key role in the adjustment of mechan-
ical properties as well as corrosion behavior. In this work, Al-5Cu-1Li-0.6Mg-0.5Ag-0.5Mn alloy
was homogenized at different temperatures and holding times, followed by aging treatment. The
microstructure and composition of the homogenized alloys and aged alloys were investigated. There
were Al7Cu4Li phase, Al3Li phase, and Al2CuLi phases in the homogenized alloys. The Al7Cu4Li
phase was dissolved with an increase in homogenization temperature and holding time. Al2Cu phase
and Al2CuLi phase coarsened during the homogenization process. The alloy homogenized at 515 ◦C
for 20 h was subjected to a two-stage aging treatment. Peak-age alloy, which had gone through age
treatment at 120 ◦C for 4 h and 180 ◦C for 6 h, was mainly composed of α-Al, Al20Cu2Mn3, Al2CuLi,
Al2Cu, and Al3Li phases. Tafel polarization of the peak-age alloys revealed the corrosion potential
and corrosion current density to be −779 mV and 2.979 µA/cm2, respectively. The over-age alloy
had a more positive corrosion potential of −658 mV but presented a higher corrosion current of
6.929 µA/cm2.
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1. Introduction

Due to their lightweight, high strength, and hardness, Al-Li alloys have become one of
the most potential materials in the aerospace field. Adding 2 wt.% Li can cause the density
of aluminum alloys to decrease by 10% while increasing their elasticity modulus by 25–35%.
This factor remains unmatched when compared with adding other light elements like Be
and Mg [1]. Nevertheless, excessive Li content will cause some negative effects, such as
reduced toughness due to excessive precipitation of free-cutting δ‘(Al3Li) phase [2,3], and
even enhancing the risk of hydrogen absorption [4]. In contrast to the second-generation
Al-Li alloys with over 2 wt.% Li content, the third-generation Al-Li alloys have lower Li
and Mg content. The mechanical strength can be improved through alloying with Ag and
Zr [5].

Alloying and heat-treatment are effective ways to improve the microstructure and
properties of alloys. For example, Wu et al. [6] found that adding Cu not only accelerated
the precipitation of the θ‘(Al2Cu) phase and T‘(Al2MgLi) phase but also narrowed the
precipitation-free zone. Zheng et al. [7] reported the precipitation sequence of Al-Cu-Li
alloys with different Cu content. They found that when the Cu content is above 5 wt.%,
the precipitation sequence was GP Zone→ θ′′ → θ′ → θ , and the δ‘(Al3Li) phases would
transfer to δ(AlLi) phases. On the other hand, Huang et al. [8] reported the interaction
mechanism of adding Mg and Ag elements during phase precipitation. Mg-Ag clusters
formed during the aging process and segregation of the clusters could be found on Al {111}α.
At the same time, the interaction of Ag-Li and Cu-Mg could result in the diffusion of Cu
and Li toward Mg-Ag clusters, which facilitated the precipitation of the T1 (Al2CuLi) phase.
Eventually, nucleation and growth of T1 (Al2CuLi) phases could be greatly enhanced [9,10].
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Both Zr and Mn could effectively refine the grains. In addition, being different from Mn,
Zn could also dissolve into the matrix to form β‘(Al3Zr) phases, which could become the
nucleation core of δ‘ (Al3Li) phase [11]. According to recent research [12,13], rare-earth
elements such as Ce and La could effectively decrease the negative effect caused by Fe and
Si and remove the grain boundary weakening effect from Na and K impurities.

Commonly, heat treatment of Al-Li alloys includes homogenization, thermo-mechanical
and aging treatment. Homogenization is a method that can greatly reduce the segrega-
tion, cavity, and porosity in ingots. Gupta et al. [14] reported that single-homogenization
treatment could make low-melting-point compounds precipitate from grain boundaries,
which weakened grain boundary strength. However, two-stage homogenization treatment
could restrain the precipitation of compounds while preventing over-burning. Pitcher
et al. [15] reported that through processing 8091 alloys by two-stage age treatment, pancake
structure phases could show up and greatly enhance the mechanical properties of the
alloys. Further research [16] reported the strengthening mechanism for two-stage age.
During the first-stage aging at a lower temperature, the GP zone (segregation zone of atoms
during aging treatment in Al-Cu alloys) showed up and became the nucleation core for
precipitation, and several transient phases precipitated along sub-boundaries during the
second-stage aging at a higher temperature.

Researchers are exploring the new potential of alloys by alloying specific elements and
adjusting the Cu: Li ratio based on the Al-Cu-Li alloy system. The T84 2055 alloys [17,18],
developed by Acronic Company (USA), had better static strength. Compared to the third
generation alloys, the alloy even had a lower density than other high strength aluminum
alloys. To date, few works have been reported on the microstructural revolution and
precipitation behavior of Al-Cu-Li alloys with high Cu content, let alone the electrochemical
property of the alloys.

Hence, in this study, different homogenization treatment coupled with two-stage age
treatment was performed to optimize the microstructure of an Al-Cu-Li-Mg-Ag-Mn alloy.
Microstructure evolution and precipitation behavior of the homogenized alloys and aged
alloys were investigated. Corrosion behavior of the aged alloys was also studied.

2. Experimental Procedures

The Al-Cu-Li based alloy (Al-5Cu-1Li-0.6Mg-0.5Ag-0.5Mn-0.13Zr-0.1CeLa) were made
by vacuum melting. The machined debris of the alloys was tested with DSC (differential
scanning calorimetry) of Simultaneous Thermal Analyzer (STA 449 F3, NETZSCH, Selb,
Germany) for identifying melting point and optimizing the heating treatment temperature.
The heating rate of the DSC test was 10 K/min. After ensuring the suitable homogeniza-
tion temperature, the ingots were homogenized at different temperatures for different
holding times.

The homogenized alloys were hot-extruded to a bar with a diameter of 30 mm. The
extruded alloys were solution-treated at 520 ◦C for 2 h and then quenched by water. The
alloy sample of the supersaturated solid solution was put in an electro-thermostatic blast
oven (DHG-9075A, Shanghai YiHeng, China) at 120 ◦C for 4 h, which was the first-stage
aging treatment. During the second-stage aging treatment, the samples were aged at
180 ◦C for different holding times. The hardness of the aged samples was tested with
a microhardness tester (400SXV, Shanghai ShangCai, China). The alloy samples were
cut into plates and embedded in epoxy resin. The metal surface of the homogenized
alloys and the aged alloys were ground with 800, 1000, 2500, 3000, 5000, and 7000 size
metallographic sandpapers and polished by polishing clothes. The polishing agent was
made up of ethyl alcohol and MgO particles. The precipitation phases of the homogenized
alloys and the aged alloys were characterized with a Low Vacuum Ultra-high-resolution
Field Emission Scanning Electron Microscope (NOVA nano SEM 230, FEI, Hillsboro, OR,
USA) with backscattered SEM detection. Some of the aged alloys were ground into
slices with a thickness of 80 µm and thinned by an ion thinning instrument (PIPS 695).
The microstructure of the aged alloys was analyzed with a field emission transmission
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electron microscope (TALOS F200X, FEI, Hillsboro, OR, USA). The phase composition of
the precipitates of the homogenized alloys and the aged alloys were characterized with
X-ray diffraction instrument (max 2500, Rigaku D, Japan, Cu target) and EDS (Energy
Dispersive Spectrometer) instrument (NOVA nano SEM 230, FEI, Hillsboro, OR, USA).

Electrochemical tests were conducted on an electrochemical workstation (CHI 660E,
Shanghai ChenHua, China). To avoid electrochemical test error, three parallel experiments
were carried out. All of the aged alloys used 3.5 % NaCl solution as an electrolyte at room
temperature with a three-electrode system. The testing range was from−1 V to−0.6 V, and
the scan rate was 0.001 V/s. The reference electrode and auxiliary electrode were saturated
calomel electrode and platinum, respectively, and the working electrodes were the samples.
All potentials were relative to the saturated calomel electrode. The corrosion surfaces were
observed with Field-emission Scanning Electron Microscope (Sirion 200, FEI, Hillsboro,
OR, USA).

3. Results and Discussion
3.1. As-homogenized Alloys

The alloys were Al-5Cu-1Li alloying with 0.6 wt.% Mg, 0.5 wt.% Ag, 0.5 wt.% Mn,
0.13 wt.% Zr, 0.1 wt.% Ce and La. To determine the optimal homogenization temperature
and avoid over-burning, a DSC test was conducted. As shown in Figure 1, the initial
melting point was around 520 ◦C, and the melting point was 620 ◦C. As a result, the
homogenization temperature of our alloy was set at 500 ◦C and 515 ◦C, which could
decrease the segregation and guarantee that the alloys would not be over-burned.
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Figure 1. Differential scanning calorimetry (DSC) curve of the alloys.

Figure 2 shows the backscattered SEM images of the homogenized alloys. By com-
parison, it can be seen from Figure 2a,c that the bone-like phases were smaller and fewer
with the increase of the homogenization temperature. Furthermore, with the increase
of holding time, bone-like residual phases that precipitated at grain boundaries nearly
disappeared, and needle-like precipitates obviously coarsened (Figure 2b,f). Meanwhile,
after prolonging the holding time and increasing the homogenization temperature, the
distribution density of dot-like particles in Figure 2h was lower than those in Figure 2b.
When the homogenization temperature rose to 515 ◦C, the tabular precipitates show up
and coarsen with the increase of holding time (Figure 2h).
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microstructure of the alloys as-homogenized at (a,b) 500◦C for 8 h, (c,d) 515◦C for 8 h, (e,f) 500◦C for
20 h, and (g,h) 515◦C for 20 h.

XRD patterns of the Al-5Cu-1Li-0.6Mg-0.5Ag-0.5Mn-0.13Zr-0.1CeLa alloy in Figure 3
show that Al7Cu4Li phases existed in each sample. The Al7Cu4Li phase had a low melting
point and usually precipitated along grain boundaries [19], and the peak intensities of
Al7Cu4Li phase weakened with the increase of homogenization temperature and holding
time, which indicated that the content of Al7Cu4Li phases decreased. They were dissolved
into the matrix during the homogenization treatment. Moreover, according to the recent
research and evident morphology features of the second phases [20], the scattered black
particles were Al3Li, and the oriented needle-like precipitates were Al2CuLi. Table 1 also
shows the element composition of marked phases (arrowed by J and K) in Figure 2. It was
inferred that the J pointed precipitate was AlCu precipitates. Moreover, according to Chen
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et al. [21], research and the morphology of J pointed precipitates, the bone-like precipitates
can be identified as AlCuLi precipitates.
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Figure 3. XRD (X-ray diffraction) patterns of the homogenized alloys.

Table 1. Chemical composition of marked phases of homogenized alloys.

Phases Mg Al Mn Cu Zr Ag La Ce

J, at.% 0.73 69.49 0.24 29.40 0.05 0.08 0.00 0.02
K, at.% 5.78 65.31 0.00 28.84 0.03 0.03 0.00 0.00

With the proceeding of homogenization treatment, a phase transition could happen.
As shown in Figure 3, Al2Cu phases were detected in the sample that was homogenized at
515 ◦C for 20 h. Meanwhile, it was not hard to speculate from the XRD (X-ray diffraction)
spectrum in Figure 3 that the growth effect of Al2Cu phases with the increasing holding
time was more prominent when the homogenization temperature was higher. The peaks
of Al2Cu phase were evidently intensified with the extension of holding time when the
homogenized temperature was at 515 ◦C. This phase transition phenomenon can also be
found in Figure 2. The particle (K point) showed up when the homogenization temperature
rose to 515 ◦C, and phase precipitation was more distinct as holding times were longer.

In general, Al7Cu4Li precipitated along grain boundaries during the casting process.
As the homogenization went on, Al7Cu4Li was dissolved into the matrix, which resulted
in enhanced Cu supersaturation. The higher the homogenization temperature was, or
the longer the holding time was, the dissolution of Al7Cu4Li was more complete. The
undissolved phases, like Al2CuLi and Al2Cu, grew up during the homogenization process.

Figures 4–7 present Cu, Ce, and La elemental mapping of the alloys homogenized at
different temperatures for different times. It indicated that the Ce and La elements had
noticeable segregation. With the increase of homogenizing temperature, the segregation
of Ce and La still existed at partial residual phases in Figures 4 and 6. Figures 4b,c and
5b,c show that the segregation of Ce and La elements could not be removed by prolonging
the holding time. As shown in Figures 2e and 4b,c, there was no Ce-La segregation where
Al7Cu4Li phases were located.
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Since Mg, Ag, Zr and Mn element were uniformly distributed in the homogenized
alloy, the segregation of Ce and La element were exclusively studied as follow. As shown
in Figures 4, 5 and 7, the marked particles L, M, N, and O had the Ce and La aggregation.



Metals 2021, 11, 37 7 of 13

According to Table 2, the Al:Cu atomic ratio of M, N, and O marked particles was close
to 7:2. The marked particle L could be identified as Al2Cu, since the Al:Cu atomic ratio is
2:1. The Ce-La segregation could be partially found at Al2Cu of the alloy homogenized at
500 ◦C for 8 h, but the Ce-La segregation did not exist at the particle (K point in Figure 2h)
in the sample homogenized at 515 ◦C for 20 h.

Table 2. Chemical composition of marked phases in homogenized alloys.

Phases Mg Al Mn Cu Zr Ag La Ce

L, at.% 1.32 62.68 0.15 32.53 0.53 0.13 1.21 1.45
M, at.% 1.37 75.43 0.14 20.86 0.24 0.12 0.87 0.98
N, at.% 1.09 72.13 3.24 20.05 0.03 0.17 0.85 2.44
O, at.% 1.81 69.97 2.56 23.42 0.00 0.19 0.77 1.28

Hence, it can be inferred that the segregation of Ce and La elements tended to form
at Cu-rich precipitates, which precipitated at the grain boundaries. The Ce-La elements
existed at undissolved precipitates, whose Al:Cu atomic ratio was 7:2, and Al2Cu phases.
With the increase of homogenization temperature and holding time, the segregation of Ce
and La elements disappeared from Al2Cu precipitates.

3.2. Aged Alloys

The alloy homogenized at 515 ◦C for 20 h were chosen to be solution treated and aged
at 120 ◦C for 4 h and 180 ◦C for different times. Vickers hardness of aged Al-5Cu-Li-Mg-Ag-
Mn alloys is shown in Figure 8. The hardness of the aged alloys increased with an increase
in the aging time until it reached the maximum. After the aging time exceeded 6 h, the
hardness of aged alloys gradually decreased. Therefore, the peak-age of the alloys could be
realized when the alloy was aged at 120 ◦C for 4 h and then aged at 180 ◦C for 6 h, and the
hardness of the peak-aged alloy was 223 HV of the average value.
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Microstructure and phase composition of the peak-age alloys was investigated. Backscat-
tered SEM images of the peak-age alloys shown in Figure 9. As shown in Figure 9a, grain
boundaries were clear in the backscattered SEM images. The average grain size of the peak-
age alloys was close to 30 µm. Compared to the homogenized alloy, there were no needle-like
precipitates but scattered bright dot-like particles instead, which can be seen in G area of
Figure 9b. The residual phases in the peak-age alloy became smaller. The element composition
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of the bright and scattered particles (H point in Figure 9c) was shown in Table 3. It was found
that the particle P contains Mn, Cu, and Al elements, so the particle could be identified as Al-
CuMn precipitates. Moreover, according to Skolianos et al. [20], the Al20Cu2Mn3 precipitates
existed in Al-Cu-Mn alloy, and the Al20Cu2Mn3 precipitates were scattered and tiny at the
grains. Therefore, it could be inferred that the scattered dot-like particles could be identified
as Al20Cu2Mn3 precipitates. The Al: Cu atomic ratio of Q point was close to 7:2, and we
could find the segregation of Mn element at Q point Cu-rich residual phases, according to the
composition of Q point of Table 3.Metals 2020, 10, x FOR PEER REVIEW 8 of 13 
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Figure 9. Backscattered SEM images of the aged alloys: (a) grains and precipitates, (b) bright and
scattered Al20Cu2Mn3 precipitates (high magnification image of scattered Al20Cu2Mn3 in area G),
and (c) residual precipitates arrowed by Q and scattered Al20Cu2Mn3 precipitates arrowed by P.

Table 3. Chemical composition of marked phases in the peak-age alloys.

Point Mg Al Mn Cu Zr Ag La Ce

P, wt.% 0.79 84.76 7.03 6.79 0.33 0.30 0.00 0.00
Q, wt.% 0.78 68.62 6.70 19.26 0.37 0.36 2.79 1.13

Figure 10 also shows element mapping of the aged alloys. It could be found that
element distributions of Mg, Ag, and Zr were uniform, but Ce and La segregations still
existed, according to the Ce and La contents of Q point spot scan in Table 3. Compared to
the homogenized alloys, segregation of Mn element became distinct after aging treatment,
which could prove that Al20Cu2Mn3 tends to precipitate at the Cu-rich residual phase. After
extrusion, the dislocations were generated and entangled, forming lineage boundaries,
which could become nucleation point of phase precipitation [22]. Moreover, alloying with
Mg, Ag, Zr, and Mn could make precipitates become smaller and more scattered [8,23].
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Figure 11 present TEM (Transmission Electron Microscope) images of the aged alloy
in which Al20Cu2Mn3 precipitates were observed as well as T1 (Al2CuLi), δ‘ (Al3Li) and θ‘
(Al2Cu). The average diameter of the Al20Cu2Mn3 phases was around 0.3 µm. Dispersed
distribution of Al20Cu2Mn3 particles was attributed to alloying with Mn element. Sko-
lianos et al. [20] reported that scattered Al20Cu2Mn3 precipitates in Al-4.5Cu-2.0Mn alloy
could become the nucleation point of recrystallization. Therefore, the recrystallized grain
became fine.Metals 2020, 10, x FOR PEER REVIEW 10 of 13 
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Figure 11. TEM (Transmission Electron Microscope) images of the aged alloy: microstructural mor-
phology of (a) nano-scale precipitates of θ’, T1 and δ’, and (b) Al20Cu2Mn3 phase in the aged alloys.

According to Wang et al. [24], the T1 (Al2CuLi) phases precipitated along {111}α,
and θ’(Al2Cu) precipitated along {100}α. The T1 (Al2CuLi) phases had an orientation
relationship with α-Al of (0001)T1//{111}α and <1010>//<110>. Figure 11a shows TEM
image of the aged alloys recorded along <110>. The T1 (Al2CuLi) precipitates in Figure 11,
presented as needle-like precipitates, and the Al2Cu precipitates were the same. Meanwhile,
according to Kilmer et al. [25], the bright particles in Figure 11a were δ’ (Al3Li) phase,
which was much smaller than Al20Cu2Mn3 particles shown in Figure 11b. The T1 (Al2CuLi)
precipitates were attributed to alloying with Mg and Ag elements [26]. Mg-Ag clusters
diffused toward GP zone along {111}α during the first aging treatment, and at the second
aging treatment, the Li and Cu elements diffused toward the GP zone due to the interaction
between Ag-Li and Mg-Cu [8]. Hence, the nucleation and growth of the T1 (Al2CuLi) phase
could be realized during the two-stage aging treatment. T1 (Al2CuLi) precipitate could
make the dislocation bend when the dislocation passed by the T1 (Al2CuLi) hard phase. In
this case, the T1 (Al2CuLi) phase could greatly restrain the movement of dislocation and
produce dislocation tangling, and thus strengthen the alloys [24].

3.3. Corrosion Performance

Figure 12 showed typical Tafel curves of the peak-age alloy and over-age alloy, which
was first aged at 120 ◦C for 4 h and then aged at 180 ◦C for 16 h. Tafel polarization
parameters are shown in Table 4. Ecorr represents the corrosion potential of alloy corrosion,
and Icorr represents corrosion current density. It could be found from Figure 12 that the
Tafel curves of different aged alloys were typical Tafel curves of aluminum alloys. The
higher Ecorr was, the alloys were more difficult to be corroded [27]. The Tafel polarization
parameters in Table 4 revealed that Ecorr of the aged alloys increased with the increase
of the second stage aging time. It could be inferred that the over-aged alloys were more
difficult to be corroded than the peak-aged alloys. However, the over-aged alloys also have
higher Icorr, which indicated that the corrosion of the over-age alloys in 3.5% NaCl solution
was faster than that of the peak-aged alloys.
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Table 4. Tafel polarization parameters of the aged Al-Li alloys tested in 3.5% NaCl solution.

Alloy Ecorr (mV vs. SCE) Icorr (µA/cm2)

Peak-age −779 2.979
Over-age −658 6.929

Ecorr: corrosion potential of alloy corrosion; Icorr: corrosion current density.

The corrosion surfaces of the aged alloys tested after Tafel tests were shown in
Figure 13. The aged alloys presented pitting corrosion. However, comparing Figure 13a,b,
there was difference in the number of corrosion pits for different aging treatments. The
over-age alloys showed more corrosion pits than those of the peak-age alloys. Meanwhile,
Figure 14a,b also show the high-magnification images of corrosion pits of the peak-age
alloy and the over-age alloy. The corrosion pit of the over-age alloy was much bigger than
that of the peak-age alloy. The number of corrosion pits and the size of the pit could reflect
the degree of corrosion. Therefore, the corrosion became more severe, which was consistent
with the Tafel curves and Tafel polarization parameters. Commonly, the bigger the second
phase was, the more severe the corrosion was [28]. Consequently, the severe corrosion of
the over-aged alloy also reflected the bigger second phases in the over-aged alloy.
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4. Conclusions

The Al-5Cu-1Li-0.6Mg-0.5Ag-0.5Mn alloys with Zr, Ce, and La elements should be
homogenized at a temperature lower than 520 ◦C to avoid over-burning. Due to the high
content of Cu element, the phase precipitation during the homogenization treatment was
abundant and dispersed. Al7Cu4Li, Al2Cu, Al3Li, and Al2CuLi were the main phases in
the homogenized alloys. With an increase of homogenization temperature and holding
time, the Al7Cu4Li phases were gradually dissolved, and Al2Cu phases and Al2CuLi
grew up. The growth rate of the Al2Cu precipitates was remarkably increased after the
homogenization temperature increased from 500 ◦C to 515 ◦C. Moreover, the Ce and La
segregations were found in the Cu-rich precipitates.

After extrusion, solution treatment, and two-stage age treatment, the mechanical
property was greatly enhanced. Peak-age could occur after the alloy was aged at 120 ◦C for
4 h and then aged at 180 ◦C for 6 h. The hardness of the peak-age alloy was 223 HV. The
precipitation of the aged alloys was more scattered and uniform in comparison with that
of the homogenized alloys. The Al20Cu2Mn3 precipitates were distributed in the matrix,
and Cu-rich particles mainly precipitated along grain boundaries. Moreover, the Al2CuLi,
Al2Cu, and Al3Li phases exited in the aged alloy. The typical Tafel testing showed that the
corrosion resistance effect could be enhanced with an increase of the aging time, but the
over-aged alloys presented a higher corrosion speed.
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