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Abstract: In this study we present a series of light-weight (6.24 to 6.42 g/cm3), Ti-rich Mo-Si-Ti alloys
(≥40 at.% nominal Ti content) with the hitherto best combination of pesting and creep resistance at 800
and 1200 ◦C, respectively. This has been achieved by fine-scaled eutectic-eutectoid microstructures
with substantial fractions of primarily solidified (Mo,Ti)5Si3. (Mo,Ti)5Si3 was found to be oxidation-
resistant in these alloys and also beneficial for the creep resistance. The enhanced solidus temperature
is of specific relevance with respect to the latter point. The creep resistance is competitive to the
non-pesting resistant, but most creep-resistant (among the Mo-Si-Ti alloys) eutectoid alloy Mo-21Si-
34Ti developed by Schliephake et al. [Schliephake et al., in Intermetallics 104 (2019) pp. 133–142].
Moreover, it is favourably superior to the commercially applied Ni-based single crystal alloy CMSX-4
for the applied compressive loading conditions under vacuum.

Keywords: intermetallics; creep; Mo-Si-based; pesting resistance

1. Introduction

High-temperature applications demand materials with manifold property profiles,
including especially suitable creep and oxidation resistance. International research activi-
ties have been facing tough challenges in order to achieve those properties in Mo-Si-based
alloys. Understanding and suppression of the so-called ”pesting“-phenomenon [1,2] below
temperatures of 1000 ◦C is of major interest [3–6]. Pesting is the common term for typical
catastrophic oxidation behaviour being characterised by either volatilisation of the oxida-
tion product or sample degradation caused by the formation of high voluminous solid
oxides at interfaces like grain boundaries [1,2,7]. This oxidation behaviour is observed in
well evolved creep-resistant Mo-Si-B-(Ti) alloys, due to the formation of volatile MoO3;
even though, these alloys benefit from the formation of a low viscous borosilicate layer at
temperatures above 1000 ◦C [8,9]. Based on the previous idea of macro-alloying Mo-Si-B
alloys with Ti, which led to a significant reduction in density and an improvement of
the oxidation behaviour at higher temperatures [8,9], B-free Mo-Si-Ti alloys have been
developed [4,10,11]. The ternary Mo-Si-Ti system profits from eutectic and eutectoid phase
reactions [12,13], which result in fine-scaled microstructures, which are likely to be benefi-
cial for a sufficient oxidation behaviour. The development of eutectic-eutectoid Mo-Si-Ti
alloys has shown promising results [10]. A fully eutectic alloy Mo-20Si-52.8Ti (at.%) com-
posed of bcc Mo solid solution MoSS and intermetallic hexagonal D88 (Ti,Mo)5Si3 was found
to possess an outstanding oxidation behaviour in the pesting regime at 800 ◦C [11] even
up to 1000 h of oxidation [4] combined with a reasonable creep resistance at 1200 ◦C [11].
Further alloy design led to eutectic-eutectoid alloys without any significant primary solidi-
fication (other than (Mo,Ti)3Si, which serves as the precursor of the eutectoid fraction in the
microstructure). These alloys are composed of MoSS + (Ti,Mo)5Si3 (hexagonal Mn5Si3-type,
D88) and MoSS + (Mo,Ti)5Si3 (tetragonal W5Si3-type) regions, respectively and withstand
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catastrophic oxidation at 800 ◦C when the threshold of the nominal Ti concentration of
43 at.% is exceeded [10]. The suitable oxidation resistance is attributed to the formation of
thin mixed SiO2-TiO2 oxide scales outbalancing the evaporation of MoO3. Furthermore, the
Ti content in the pesting-critical phase MoSS (strongly correlating to the nominal Ti content
in the alloy) is found to be decisive whether pesting can be suppressed or not. In order to
combine an adequate oxidation resistance with a suitable creep performance within this
alloy system an optimum ratio of Ti/Mo needs to be established. An increase in Mo content
leads to an increased solidus temperature and therefore improved creep resistance on the
one hand, but to a deterioration of the oxidation resistance on the other hand, as MoO3
formation is getting more dominant. However, the potential of these eutectic-eutectoid
alloys seems to be already exploited as it is shown that the creep resistance is mainly
determined by the solidus temperature of the alloys [10].

Consequently, the predicament within these alloys is the ratio of Mo to Ti, which
determines the solidus temperature, and thus, the creep resistance [10]. Conclusively, the
best creep performing and pesting-resistant alloy is the one with a sufficient Ti content
providing pesting stability, but maximised Mo content for creep resistance. Hence, Mo-
21Si-43.4Ti, presented in [10], is presumably the best choice for an optimum creep and
pesting resistance.

For further improvement of the creep resistance, while maintaining pesting-stability,
strengthening phases need to be considered. As Ti5Si3 is known to possess an inferior
creep resistance compared to the other phases, which are thermodynamically stable in the
Ti-/Mo-rich Mo-Si-Ti system, (Mo,Ti)5Si3 is considered as strengthening phase by primary
solidification. Mo5Si3 is especially targeted, as it is known to be creep-resistant [14], but also
pesting-resistant when macro-alloyed with 40 at.% Ti [15,16]. Supported by thermodynamic
calculations, tailored eutectic-eutectoid microstructures with varying fractions of primary
(Mo,Ti)5Si3 crystals will be presented over the course of this article. In conjunction with
microstructural analysis, compression creep testing is conducted for evaluation of the
achieved creep performance, which is compared to the commercially applied single crystal
Ni-based superalloy CMSX-4 providing a frame of reference of industrial relevance.

2. Materials and Methods

The alloy design was guided by thermodynamic calculations based on the Calphad
approach (Calculation of Phase Diagrams), which were performed using Pandat (version
of 2018) and a commercially available PanMo2018a database (both CompuTherm LLC,
Middleton, WI, USA).

The standard arc-melting route was applied to manufacture the investigated alloys
from high-purity elements (Mo: 99.95%, Si: 99.99%, Ti: 99.8%). An arc melter of type
AM/0,5 (Edmund Bühler GmbH, Bodelshausen, Germany) was used with a water-cooled
Cu crucible. An Ar atmosphere was established after evacuating and flooding multiple
times and cleaned from O residuals by means of melting a Zr getter in advance. The
melting process was performed five times in a half mould crucible and the last melting
step in a cuboid-shaped one. The resulting composition was confirmed to deviate less than
0.5 wt.% from the nominal composition, which was initially weighted in.

The samples were machined by electrical discharge machining (EDM) and afterwards
ground down to SiC grit P2500. Further polishing steps, including a final step with colloidal
suspension OP-S (Buehler ITW, Esslingen, Germany), were performed depending on their
intended use. While all faces of the oxidation samples and the punch contact faces of the
compression creep samples were prepared by grinding, the microstructural samples for
secondary electron analysis (SEM) were additionally polished.

Hardness tests were performed at room temperature by means of a Q10A+ Vickers
hardness tester (Qness ATM GmbH, Mammelzen, Germany). A load of 9.8 N (HV10) was
applied. Five individual indentations were used for determination of the average hardness.

Cyclic oxidation testing was performed with samples of dimensions of (5 × 5 × 4) mm3,
which were taken from the middle of the as-cast cuboid by EDM. The samples were placed
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in Al2O3 crucibles throughout the whole testing procedure. The cycles were conducted in
a muffle furnace at 800 ◦C (and 1200 ◦C) in stationary laboratory air. Between each cycle,
cooling down to room temperature was allowed within 15 min. Then, the weight was
precisely determined, namely, ±1 µg, by means of a high precision balance. The first cycles
lasted 1 h and were extended to 5 and 10 h after 20 and 50 h total test duration, respectively,
as illustrated in Figure 1.
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Figure 1. Schematic illustration of the cyclic oxidation testing with different cycle durations of 1 (highlighted in dark grey),
5 (highlighted in blue) and 10 h (highlighted in orange).

The creep tests were performed at constant true compressive stresses between 50 to
300 MPa at 1200 ◦C under vacuum (<2 × 10−3 mbar) on parallelepiped creep samples
with dimensions of (5 × 3 × 3) mm3, which were machined from the center of the as-cast
cuboid. Vacuum was used here to exclude possible superimposed impact of oxidation on
the creep performance. For that, a universal testing machine of type Z100 (ZwickRoell,
Ulm, Germany) was used, which was combined with a vacuum furnace (Maytec GmbH,
Olching, Germany). Si3N4 compression punches were used and the impact of friction
between them and the creep samples was minimised by lubricating the contacting faces
with hexagonal BN. Creep strain was continuously monitored by utilising extensometer
with three Al2O3 sticks, detecting the distance to the upper crosshead as well as the
reference distance to the lower compression punch. Additionally, compression tests were
performed for selected alloys at 1200 ◦C. The same testing machine and sample geometry
were used as for the compression creep tests. An initial strain rate of 10−3 s−1 was applied.

Scanning electron microscopy (SEM) analysis was carried out in order to study the
microstructure in the as-cast state, after oxidation and creep testing. An EVO 50 SEM with
an integrated energy dispersive X-ray spectroscopy (EDX) system (Thermo Fisher Scientific
Inc., Waltham, USA) was used, as well as an Auriga 60 SEM (Carl Zeiss AG, Oberkochen,
Germany). An operating acceleration voltage of 20 kV was applied. The constituting
phases were distinguished by applying backscatter electron imaging (BSE) in combination
with EDX measurements and were identified by X-ray diffraction (XRD). For the latter, a
D2 Phaser (Bruker Corporation, Karlsruhe, Germany)was used, which was operated in
Bragg–Brentano geometry. The measurements were performed with Cu Kα radiation at
30 kV and 10 mA. Ni foil was used for filtering the resulting radiation, which was then
detected by means of a LynxEye line detector by at a step size of 0.01◦ in 2Θ.

Moreover, the areal fractions of the constituting phases/microstructural regions were
determined from BSE micrographs by manual assignment and greyscale evaluation with
the image processing software Corel Photo Paint and ImageJ. The areal fractions were
regarded as volume fractions based on the assumption that the microstructures are isotropic
and isometric. The microstructural length scale was evaluated by determining the interface
boundary fraction P by a line intersection method analogous to [5]. P is calculated by the
number of intersections N of the lines with phase boundaries and of the overall line length
L, as expressed in the following equation:

P =
2N
L

. (1)
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3. Results and Discussion
3.1. Alloy Design and Microstructural Characterisation

Figure 2 represents the liquidus projection of the Mo-Si-Ti phase diagram with the
composition ranges of the primarily solidifying phases as denoted in grey colour. The
initial eutectic-eutectoid alloy development as studied in [5,10] has been performed within
the grey rectangle framed by a fully eutectic (white circular symbol) and eutectoid alloy
(black circular symbol).
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Figure 2. Metal-rich portion of the liquidus projection of the ternary Mo-Si-Ti system with highlighted
chemical compositions of the here investigated alloys (coloured symbols) in comparison to former
presented alloys (black/white circular symbols). The region with a Si content of around 20 to
21 at.% is highlighted by a grey rectangle symbolising the region of former research in Refs. [5,10] on
eutectic-eutectoid Mo-Si-Ti alloys by Obert et al.

In this article, the above mentioned Mo-21Si-43.4Ti alloy represents the intermediate
eutectic-eutectoid reference alloy without primarily solidified (Mo,Ti)5Si3 (half-opened
circular symbol). In order to investigate the impact of primarily solidified (Mo,Ti)5Si3
on the creep behaviour, the pesting-resistant alloy Mo-21.6Si-44.6Ti [5] (here designated
as alloy A, orange diamond symbol) is of particular interest, as it is just located in the
primary solidification region of (Mo,Ti)5Si3 and, thus, comprises a low fraction of primarily
solidified (Mo,Ti)5Si3. Additionally, significant primary solidification of (Mo,Ti)5Si3 is
triggered by considerably increasing the Si content (here to 26 at.%), which is pursued
in two novel alloys: Mo-26Si-40Ti (designated as alloy B, blue triangular symbol) and
Mo-26Si-44Ti (designated as alloy C, green square symbol). The Ti content is varied here
deliberately with the purpose of investigating the creep behaviour of alloys with different
Mo to Ti ratios and, thus, different solidus temperatures (see Table 1).

The compositional and microstructural, as well as physical details of the investigated
alloys are summarised in Table 1. It is revealed that the fraction of silicide phases is
increased from around 50 vol.% in the eutectic-eutectoid reference alloy and alloy A up
to more than 70 vol.% in the high (Mo,Ti)5Si3-containing alloys B and C. The hardness at
room-temperature was determined to be in the range of 660 to 730 HV10 for the eutectic
and eutectic-eutectoid reference alloy. The (Mo,Ti)5Si3-containing alloys B and C exhibit
820 to 960 HV10.
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Table 1. Overview on the compositional, microstructural and physical features of the investigated alloys A to C in
comparison to the eutectic-eutectoid reference alloy Mo-21Si-43.4Ti [10]. Calculated data are labelled by “calc.”; all other
data were experimentally determined. The Mo/Ti ratio is calculated from the nominal alloy composition.

Alloy Mo/Ti Ratio (calc.)/− vsilicides/vol.% Tsolidus/◦C (calc.) Density ρ/g/cm3

Mo-21Si-43.4Ti [10]
(eutectic-eutectoid) 0.82 52 ± 1 1885 6.49 ± 0.11 [10]

Mo-21.6Si-44.6Ti (A) 0.77 53 ± 3 1877 6.44 ± 0.14

Mo-26Si-40Ti (B) 0.85 74 ± 2 1947 6.42 ± 0.05

Mo-26Si-44Ti (C) 0.68 72 ± 4 1915 6.24 ± 0.08

The corresponding as-cast (ac) microstructures of the alloys A to C are shown in
Figure 3a–c. The eutectic and eutectoid regions (formed from (Mo,Ti)3Si) are distinguished
by both, the greyscale value of the silicide phase caused by the Z-contrast in BSE imaging
mode (bright grey: (Mo,Ti)5Si3, dark grey: (Ti,Mo)5Si3 vs. white: MoSS) and the mor-
phology indicating the solidification sequence from which the respective microstructural
constituents originate. The eutectic regions originate from the final solidification step of
the residual melt and are, therefore, apparent in interdendritic form, while the eutectoid
regions are either present as dendrites (alloys A and B) or located adjacent to (Mo,Ti)5Si3
regions (alloy C). The transition between the eutectic and eutectoid regions is shown in
higher magnification in the insets in Figure 3. Alloy A is characterized by an intermixed
eutectic-eutectoid matrix with a small fraction of embedded globularly-shaped (Mo,Ti)5Si3
precipitates, which are considered as primarily solidified (see Figure 3a). In contrast, al-
loys B and C reveal a high fraction of primarily solidified (Mo,Ti)5Si3 particles, which are
surrounded by eutectic, as well as by eutectoid regions (see Figure 3c,d). The presence of
bcc MoSS, hexagonal D88 (Ti,Mo)5Si3 and tetragonal W5Si3-type (Mo,Ti)5Si3 was confirmed
by XRD (see Figure A1). (Mo,Ti)3Si is completely decomposed during the eutectoid de-
composition. The comparison of the experimentally determined volume fraction of the
microstructural constituents with the thermodynamic predictions reveals good agreement,
especially in alloys B and C (see Figure 3d). The increase in Ti content from alloy B to C
leads to a reduction in eutectoid volume fraction from (28 ± 5) to (10 ± 3) vol.%, while
the amount of primarily solidified (Mo,Ti)5Si3 remains nearly unaffected in the range of
(30 ± 5) vol.%. The latter is determined by the temperature range during which primary
solidification of (Mo,Ti)5Si3 occurs, which was found to be comparable for both alloys by
thermodynamic solidification simulations.

3.2. Investigation of the Oxidation Behaviour at 800 and 1200 ◦C

Prior to assessing the creep behaviour of the (Mo,Ti)5Si3-containing alloys, the oxida-
tion resistance is briefly addressed at 800 and 1200 ◦C, as these alloys are only viable when
being oxidation-resistant, especially pesting-resistant below 1000 ◦C. Therefore, small
mass changes (smaller than ± 5 mg/cm2) are targeted in conjunction with thin oxide
scale growth for achieving pesting-resistance. A temperature of 800 ◦C represents the
critical pesting regime, whereas 1200 ◦C is regarded as future application temperature
and the temperature creep is assessed at in the last part of this publication. The results
on the cyclic oxidation experiments at 800 ◦C are depicted in Figure 4a (note that three
specimens were tested for each alloy, but only one representative sample is shown). In
general, the observed mass changes are a superposition of mass gain due to solid oxide
scale growth and mass loss caused by evaporation of gaseous MoO3 [10]. The eutectic alloy
Mo-20Si-52.8Ti (opened circles) and the eutectic-eutectoid reference alloy Mo-21Si-43.4Ti
(half-filled circles) are considered as benchmark, as these represent excellent [10,11] and
just adequate pesting resistance [10], respectively. Alloy A (orange diamonds) has already
been oxidation tested and was found to exhibit pesting resistance as well [5]. Therefore, a
direct comparison with the novel high (Mo,Ti)5Si3-containing alloys B (blue triangles) and
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C (green squares) is allowed. Both new alloys exhibit good pesting resistance with mass
changes of (−0.2 ± 0.1) (alloy B) and (0.2 ± 0.0) mg/cm2 (alloy C) after 100 h, which is
even better compared to the eutectic-eutectoid reference alloy. The negative mass changes
observed for alloy B and the eutectic-eutectoid reference alloy are likely to be caused by the
initial evaporation of MoO3 until an oxide scale is formed passivating the alloy substrate.
As has been previously reported [5,10], the Ti content solved in MoSS is decisive for the
suppression of pesting. A threshold of 35 at.% Ti solved in MoSS was postulated to be
exceeded in order to achieve pesting resistance [10]. The here investigated alloys A, B, and
C comprise 39, 37, and 34 at.% Ti in MoSS (determined by comparing the lattice parame-
ters of bcc MoSS to literature data on resulting Ti concentrations [17], analogous to [10]).
These results support the former determined threshold [10] and lead to the suggestion
that the threshold can be adjusted to minimum 34 at.% Ti in MoSS for pesting resistance.
However, although the Ti content in MoSS is very similar in the eutectic-eutectoid reference
alloy (35 at.% [10]) and alloy C (34 at.%), the difference in mass change is considerable.
Thus, the high fraction of (Mo,Ti)5Si3 seems to be beneficial and even compensates the
conceivable deteriorative impact of the reduced concentration of nominal Ti (43 at.% in the
eutectic-eutectoid reference alloy vs. 40 at.% in alloy C).
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ents originate. The eutectic regions originate from the final solidification step of the resid-

ual melt and are, therefore, apparent in interdendritic form, while the eutectoid regions 

are either present as dendrites (alloys A and B) or located adjacent to (Mo,Ti)5Si3 regions 

(alloy C). The transition between the eutectic and eutectoid regions is shown in higher 

magnification in the insets in Figure 3. Alloy A is characterized by an intermixed eutectic-

eutectoid matrix with a small fraction of embedded globularly-shaped (Mo,Ti)5Si3 precip-

itates, which are considered as primarily solidified (see Figure 3a). In contrast, alloys B 

and C reveal a high fraction of primarily solidified (Mo,Ti)5Si3 particles, which are sur-

rounded by eutectic, as well as by eutectoid regions (see Figure 3c,d). The presence of bcc 

MoSS, hexagonal D88 (Ti,Mo)5Si3 and tetragonal W5Si3-type (Mo,Ti)5Si3 was confirmed by 

XRD (see Figure A1). (Mo,Ti)3Si is completely decomposed during the eutectoid decom-

position. The comparison of the experimentally determined volume fraction of the micro-

structural constituents with the thermodynamic predictions reveals good agreement, es-

pecially in alloys B and C (see Figure 3d). The increase in Ti content from alloy B to C leads 

to a reduction in eutectoid volume fraction from (28 ± 5) to (10 ± 3) vol.%, while the amount 

of primarily solidified (Mo,Ti)5Si3 remains nearly unaffected in the range of (30 ± 5) vol.%. 

The latter is determined by the temperature range during which primary solidification of 

(Mo,Ti)5Si3 occurs, which was found to be comparable for both alloys by thermodynamic 

solidification simulations. 
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Figure 3. BSE micrographs of the as-cast (ac) microstructures of the alloys A (a), B (b) and C (c). The microstructural
constituents are highlighted in orange (globularly-shaped (Mo,Ti)5Si3), white (eutectic region) and black (eutectoid region).
The transition between eutectic and eutectoid regions is displayed in the insets with higher magnification. In alloy C, a
primarily solidified (Mo,Ti)5Si3 region is shown as well in the inset (c). Additionally, the experimentally determined volume
fractions (solid bars) are compared to the thermodynamic predictions (hatched bars) (d).
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of the eutectic and eutectic-eutectoid reference alloy are taken from [10], ** data of alloy A at 800 ◦C are taken from our
previous article [5].

At 1200 ◦C, the alloys A to C exhibit adequate oxidation resistance as well (see
Figure 4b). Due to accelerated oxide scale growth kinetics at higher temperatures, which
hinder the MoO3 volatilization, positive mass changes are observed. The mass changes of
alloy A are comparable to the ones observed for the eutectic-eutectoid reference alloy, which
are (1.2 ± 5.3) and (2.7 ± 1.9) mg/cm2, respectively [10]. The high (Mo,Ti)5Si3-containing
alloys reveal mass changes in the range of (8.0 ± 0.2) (alloy B) and (8.8 ± 0.2) mg/cm2

(alloy C). Note the temporary decline in mass change for alloy A and the eutectic-eutectoid
alloy after 30 to 40 h. Since no indications of scale spallation were observed by SEM, it is
likely that somehow the evaporation of MoO3 is gaining temporarily dominance.

SEM analyses of the oxide scales formed at 800 ◦C reveal that comparably thin, mixed
SiO2-TiO2 oxide scales are formed with thicknesses of (4.3 ± 1.8) (alloy A), (4.1 ± 2.4) (alloy
B) and (2.3 ± 1.7) µm (alloy C) after 100 h of cyclic oxidation (see Figure 5a,b, micrographs
of the oxide scale formed on alloy B are not included due to similarity to alloy C). The
surface-near (Mo,Ti)5Si3 precipitates slowly oxidise outwards to thin oxide scales, while the
oxide scale grows quicker and especially inwards on surface-near MoSS regions within the
eutectic and eutectoid areas (see Figure 5b). This selective oxidation behaviour is especially
observed in the high (Mo,Ti)5Si3-containing alloys B and C.

The oxide scales formed at 1200 ◦C are characterised by a similar morphology like of
the eutectic and eutectic-eutectoid reference alloys [10,11] (see Figure 5c,d). An outer TiO2
oxide scale is formed on top of a SiO2-TiO2 duplex scale with average scale thicknesses
of (60 ± 12) (alloy A), (40 ± 16) (alloy B), and (38 ± 7) µm (alloy C) in total. The oxide
scales are thinner on the high (Mo,Ti)5Si3-containing alloys B and C with a lower fraction
of around (30 ± 7) vol.% SiO2 within the duplex scale. For comparison, the duplex scales
formed on the eutectic and eutectic-eutectoid reference alloys are composed of around
(50 ± 5) vol.% SiO2 [10,11]. This difference is likely to be caused by the primarily solidified
(Mo,Ti)5Si3 particles, which oxidise slower and, therefore, the fast growing TiO2 forming
from the MoSS regions is dominating. Some porosity is enclosed at the substrate/oxide
scale interface, which is only below 2 vol.% of the oxide scale including the interface region.
The surface-near pores or cavities might result from the oxide scale growth. It is assumed
that the porosity does not directly affect the oxidation resistance of the investigated alloys.

Conclusively, all alloys are found to be oxidation-resistant at 800 and 1200 ◦C and are,
hence, considered for creep testing.
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Surface-near, characteristic regions below the oxide scale are labelled for the sake of clarity. Oxide scales formed after 100 h
of cyclic oxidation at 1200 ◦C in air of alloy A (c) and C (d).

3.3. Investigation of the Creep Behaviour

The capability of the developed alloys to withstand plastic deformation caused by
constant load at temperature higher than 0.4–0.5 Tsolidus, namely the creep resistance, is
of key importance for future application. Thus, the creep behaviour of the alloys A to C
was exemplarily assessed at 1200 ◦C under compressive true stress σ. The evolution of
the true strain with time is shown in Figure 6a for alloy A and the resulting true creep
rates are displayed in Figure 6b–d for alloys A to C as a function of true strain. In general,
the evolution of the creep rate is characterized by a significant deceleration during the
primary stage of creep until a minimum

.
εmin is reached (marked by square symbols). These

observations apply to all alloys at almost all stress levels, independent of the (Mo,Ti)5Si3
fraction. The only exception is observed at 50 MPa for alloys B and C. Here, the true creep
rate seems to assume a macroscopic steady-state for the tested strains [18].

The determined creep rate minima as well as the steady-state values are plotted against
the corresponding stress levels for all alloys along with the commercially applied Ni-based
superalloy CMSX-4 in a Norton plot in Figure 7a. Note that up to three tests were performed
at selected stress levels (especially at 200 MPa) and the respective average values are used
with standard deviations (see error bars). The eutectic, eutectic-eutectoid and eutectoid
alloys (Mo-20Si-52.8Ti, Mo-21Si-43.4Ti, and Mo-21Si-34Ti, respectively) are included as
well for comparison. These represent the potential of the hitherto developed Mo-Si-Ti
alloys and highlight the already mentioned dilemma of oxidation and creep resistance. The
most creep-resistant eutectoid alloy (black circular symbols) is not pesting-resistant [11].
In contrast, the eutectic-eutectoid alloy, just exhibiting pesting resistance is less creep-
resistant by more than half an order of magnitude increased minimum creep rates [10].
However, the here investigated (Mo,Ti)5Si3-containing, pesting-resistant alloys exhibit
creep resistances competitive to the eutectoid alloy and superior to CMSX-4. Especially,
the creep behaviour of alloy A is improved compared to the eutectic-eutectoid reference
alloy, although it exhibits a lower Mo/Ti ratio of 0.77 and even a slightly lower solidus
temperature. This is unexpected, and it is questionable whether this enhancement in creep
resistance can be reasoned by the rather low fraction of (5 ± 1) vol.% of primarily solidified
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(Mo,Ti)5Si3. Assuming power law creep:
.
εmin ∝ σn, two different creep mechanisms

seem to be apparent in alloy A, as the stress exponent n is determined to be 3.4 for stresses
up to 200 MPa, and then 8.6 at increased stress levels. The exponent n = 3.4 reveals
dislocation climb controlled creep, which is in accordance to the eutectic, eutectic-eutectoid
and eutectoid alloys, exhibiting stress exponents in the range of 3.5 to 3.7 [10,11]. At higher
stress levels power law break-down seems to be apparent in alloy A indicating that particle
strengthening effects determine the creep mechanism. This is further supported by SEM
analysis of the deformed microstructure showing precipitates in (Mo,Ti)5Si3, as well as in
MoSS regions as displayed in Figure 8a. Such precipitation is not observed for the as-cast
state (see Figure 3a).
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Figure 6. Compression creep testing at 1200 ◦C under vacuum: True creep strain vs. time for alloy A (a), creep rate vs. true
strain for the alloys A (b), B (c) and C (d). The creep rate minima are highlighted by square markers.
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To further investigate the mechanical behaviour of these Ti-rich Mo-Si-Ti alloys, 

some compression tests were conducted for the eutectic reference alloy and alloy B. Since 

Figure 7. Norton plot (a) and by the solidus temperature normalised Arrhenius plot (b) of the investigated alloys A to C
(colored symbols) in comparison to previously investigated alloys (black/white circular symbols) (a). * Data of CMSX-4
taken from [19]. ** Some data of the eutectic alloy taken from [11] and all data on the eutectoid alloy taken from [11], *** and
of the eutectic-eutectoid alloy from [10].
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Figure 8. BSE micrographs of the microstructures of the alloys A to C (a–c) after creep deformation at 1200 ◦C and 200 MPa
up to 20% true compressive strain. The insets provide higher magnification images of regions with primarily solidified
(Mo,Ti)5Si3 and the surrounding microstructural constituents. Precipitation of Mo-rich particles is observed within the
(Mo,Ti)5Si3 regions (highlighted by white arrows), as well as of Mo-lean particles within MoSS regions (highlighted by
grey arrows).

Alloy B, which contains a considerably increased volume fraction of silicide phases of
around 70 vol.% compared to the so far investigated Mo-Si-Ti alloys (alloy A, the eutectic-
eutectoid alloy [10], and the eutectic and eutectoid alloy [11]) and the highest Mo/Ti
ratio of 0.85, competes with the eutectoid alloy the best at intermediate stress levels. At
stresses below 200 MPa, the stress exponent is found to be around 3.5 indicating dislocation-
controlled creep deformation. At stresses exceeding 200 MPa, power law break-down is
indicated by an increased stress exponent of 6.7. This results in higher minimum creep
rates than those of the eutectoid alloy. Particle strengthening effects seem to become more
relevant as also indicated by SEM analysis confirming severe precipitation in the deformed
microstructure (see Figure 8b).

Alloy C, being characterized by the lowest Mo/Ti ratio of 0.68, reveals a comparable
creep behaviour to alloy A for intermediate stress levels (up to 200 MPa). The main
difference is the constant stress exponent of 3.0 of alloy C within the entire tested stress
regime (50 to 300 MPa). The reduced Mo/Ti ratio of alloy C compared to alloy A is
presumably compensated by its significantly higher volume fraction of silicide phases and
increased solidus temperature.

Interestingly, there is no immense improvement in creep resistance from alloy A to B or
C. This indicates that the volume fraction of primarily solidified (Mo,Ti)5Si3 does not control
the creep resistance. Therefore, the solidus temperatures of the alloys are considered for
further discussion. Thus, the minimum creep rates are assessed as a function of temperature,
which is normalised by the solidus temperature, in double logarithmic manner. The
resulting Arrhenius plot allows for the solidus-temperature-independent comparison of
the creep resistance of these alloys (see Figure 7b). It is found that alloys A, B, and C
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possess an apparent activation energy for creep of 405, 403, and 463 kJ/mol, respectively.
As this is in the same order of the other Mo-Si-Ti alloys (eutectic alloy: 471 kJ/mol [11],
eutectic-eutectoid alloy: 484 kJ/mol [10] and eutectoid alloy: 444 kJ/mol [11]), all data
points nearly represent a single master straight. Conclusively, all alloys exhibit comparable
creep resistance when compared at the same homologous temperature. These results are
in good agreement with the observations made for the Mo-Si-Ti alloys without primarily
solidified (Mo,Ti)5Si3 by Obert et al. [10].

To further investigate the mechanical behaviour of these Ti-rich Mo-Si-Ti alloys, some
compression tests were conducted for the eutectic reference alloy and alloy B. Since 1200 ◦C
represents a high testing temperature and the selected strain rate of 10−3 s−1 is rather
fast, the ultimate compressive strength (maximum stress) was chosen as parameter for
comparison to avoid influence of inhomogeneous, localized sample deformation. The
eutectic alloy exhibits a compressive strength in the range of 305–355 MPa, while alloy
B reveals a higher compressive strength of around 675–690 MPa. In order to relate this
to the creep behaviour, the linear fit functions in the Norton plot (see Figure 7a) were
(i) extrapolated to a strain rate of 10−3 s−1; and (ii) varied by ± 0.2 in the slope (less
bold straights), considering the uncertainty of the stress exponent n. A stress regime of
350–420 MPa is identified for the eutectic alloy, in comparison to 490–515 MPa for alloy B.
Note that these ranges might scatter due to the logarithmic extrapolation of the apparent
power law for creep. Additionally, the discrepancy between the compressive strength and
the stress range observed for alloy B might be attributed to the limited data in the vicinity
of the power law break-down at around 200 MPa. If the stress for the break-down is taken
higher, or if the stress exponent in the break-down regime is assumed to be lower, the stress
range is observed at higher stress levels. Better consistence with the ultimate strength of
the quasistatic compression tests is observed in that case.

In order to investigate the impact of the different microstructural constituents on
the overall creep deformation, microstructural analyses after 5, 20, and 40% true strain
were undertaken. As no considerable microstructural changes were observed in the 5%
compressed samples, these are excluded in the following discussion. Representative BSE
micrographs of alloys A to C are shown in Figure 8 after 20% creep deformation. It is
revealed that the eutectic, as well as the eutectoid regions deform considerably in alloy
A. Thus, it is not possible to identify whether either one of those regions is less prone
to creep deformation, even after only 5% strain (not shown here). However, there is
evidence of considerable degeneration and alignment of MoSS along the loading axis (see
Figure 8a). In comparison, it seems as if the eutectoid regions still exhibit their original
as-cast morphology in alloy B, while the interdendritic, eutectic regions are degenerated as
well (see Figure 8b). The (Mo,Ti)5Si3 regions are not aligned noticeably and seem not to
participate in creep deformation at 20% compression. In contrast, the crept microstructure
of alloy C is characterized by significant compression and alignment of the (Mo,Ti)5Si3
regions perpendicular to the loading axis (see Figure 8c). The former eutectic regions
are degenerated and coarsened compared to the as-cast condition. Moreover, the former
eutectoid regions cannot be distinguished anymore. Precipitation within the primarily
solidified (Mo,Ti)5Si3, as well as in MoSS regions is observed in all alloys (see white and grey
arrows in insets of Figure 8). Interestingly, alloys A and B show power law break-down at
around 200 MPa, which is assumed to be controlled by particle strengthening effects. The
respective stress level for power law break-down seems higher for alloy C, or might not be
interpreted as clear as for the other alloys due to the statistical deviations in the creep data.
The precipitation is triggered by the thermal heat impact during creep testing at 1200 ◦C as
SEM analyses confirm similar precipitation in heat-treated, but not deformed samples (not
shown here).

The determination of the volume fractions of the microstructural constituents after
creep deformation at 1200 ◦C confirms that no phase transformation has occurred in alloys
A and B (see Figure A2). This applies to alloy C as well, but only up to 5% true strain, as for
higher strains the eutectoid regions cannot be identified anymore. However, it is proven
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that the volume fractions of primarily solidified (Mo,Ti)5Si3, MoSS and the silicide phases
remain unchanged after creep deformation (Figure A2).

In order to analyse the individual contributions of the thermal impact and the com-
pressive load to the observed microstructural changes, solely heat-treated microstructures
(σ = 0, 1200 ◦C, 100 h) were analysed for comparison. The interface density P was de-
termined according to Equation (1) in Section 2 for the as-cast, heat-treated, and creep
tested conditions (see Figure 9). It reveals that the microstructures of all investigated
alloys are stable at 1200 ◦C for at least 100 h, as the interface density is comparable to the
as-cast condition. Thus, the observed coarsening in 20 and 40% deformed creep samples
of the alloys A and B is related to the degeneration and coagulation of phase regions like
MoSS. In comparison, the microstructure of alloy C does not show any change in interface
boundary fraction.
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Figure 9. Phase boundary fraction of alloys A to C in as-cast condition (black squares), after creep deformation of 20 and
40% (blue triangles and orange circles, respectively) and after heat treatment at 1200 ◦C for 100 h (green diamonds). The
durations of the compression creep tests are included as well.

The microstructural degeneration and coagulation was quantitatively assessed by
analysing the size and orientation of the different phase regions (MoSS and (Mo,Ti)5Si3).
Thereby, only phase regions with a minimum areal size of 12 µm2 (corresponding to
100 pixels) were considered, in order to avoid misleading results due to small precipitates
of MoSS in (Mo,Ti)5Si3 and vice versa. The shape of these regions was approximated by
an ellipsoid and the corresponding area (regarded as an estimate for the particle size) and
orientation towards the loading axis were evaluated (see Figure 10a for results of alloy
B and Figure A3a of alloys A and C, respectively). The analysis was performed for one
individual sample for each condition (as-cast, 20 and 40% creep compression). Thereby,
for the analysis in as-cast condition, a representative cross-section of the as-cast cuboid
(investigated cross sectional area: 15 × 20 mm2) was analysed allowing for conclusions
on the overall microstructural appearance. Thus, variations between different locations
within the as-cast cuboid are minimised.

The coarsening/coagulation of MoSS regions as observed by SEM analysis is confirmed
for all alloys. This is demonstrated when comparing the fraction of particles with an
intermediate size of 12 to 50 µm2 in as-cast condition and after creep deformation. The
fraction of such small MoSS particles reduces from 73 to 51% (alloy A), 79 to 57% (alloy
B) and 73 to 61% (alloy C) when comparing the as-cast state with the 40% compressed
microstructures. Especially, large MoSS particles of more than 200 µm2 in size are present
(see Figure 10a orange circle). While there are less than 1% of the particles of more than
200 µm2 in size in the as-cast condition, this fraction is increased up to 11, 14, and 7% in
alloys A to C, respectively.
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Figure 10. Particle size distribution of MoSS (a) and (Mo,Ti)5Si3 particles (b) and their orientation
(c,d) (particle shape approximated as ellipse) in alloy B in as-cast condition and after compressive
creep testing at 1200 ◦C, 200 MPa up to a true compressive strain of 20 and 40% in comparison to
heat-treated samples at 1200 ◦C for 100 h.



Metals 2021, 11, 169 14 of 18

In the heat-treated samples of all alloys (no external load), the fraction of particles of
size 12 to 50 µm2 is determined to be comparable to the as-cast condition. Conclusively, it
is the creep loading, which accounts for the coarsening or coagulation of the MoSS regions.

The investigation of the primarily solidified (Mo,Ti)5Si3 particles does not reveal
coarsening upon creep deformation. Their size is considerably varying due to the casting
procedure and is not changing consistently with increasing true strain (see Figure 10b for
results of alloy B and Figure A3b of alloys A and C).

The assessment of the particle orientation reveals strong alignment of both MoSS
and (Mo,Ti)5Si3 regions perpendicular to the loading axis (corresponds to a reference
angle ω = 0◦, see inset in Figure 10c,d. This is demonstrated in alloy B by the increase
in relative frequency of such oriented particles from the as-cast to the 40% compressed
state (see Figure 10c,d for results of alloy B and Figure A3c,d of alloys A and C). Especially,
(Mo,Ti)5Si3 aligns with increasing creep deformation, as in the as-cast state only 8% are
oriented perpendicular to the loading axis, while this are 17% after 40% creep compression.

In conclusion, MoSS is regarded as main participant to the plastic deformation under
creep conditions in all alloys. However, note the different degrees of deformation of the
primary (Mo,Ti)5Si3 particles in alloys B and C, as (Mo,Ti)5Si3 deforms to a greater extent
than in alloy C (compare Figure 8b,c). This is confirmed by the following observations for
the deformed microstructures of alloys B and C: (i) The primarily solidified (Mo,Ti)5Si3
particles are less deformed in alloy B than in alloy C. (ii) The degeneration and coagulation
of MoSS is more pronounced in alloy B, as the particles size is reduced by a factor of
approximately 0.27 (from 79 to 57%) after 40% compression in contrast to a factor of only
0.16 (from 73 to 61%) in alloy C. (iii) The boundary fraction remains nearly unchanged upon
creep deformation in alloy C. Conclusively, it seems as if (Mo,Ti)5Si3 and MoSS participate
with a varying degree to the overall creep deformation in alloys B and C.

The difference in creep behaviour of alloys B and C might be influenced by the fol-
lowing reasons: (i) Solid solution strengthening of (Mo,Ti)5Si3 by Ti to a different extent,
as the alloys possess a difference in nominal Ti content of 4 at.%. However, thermody-
namic calculations in equilibrium conditions reveal a reduced difference in dissolved Ti
in (Mo,Ti)5Si3 of 2 at.% when comparing alloys B and C. Hence, this impact is assumed
to be negligible. Additionally, this is difficult to assess experimentally due to significant
segregation within (Mo,Ti)5Si3 (see varying BSE contrast in (Mo,Ti)5Si3 regions) and the
fine scaled microstructure. (ii) Particle strengthening of (Mo,Ti)5Si3 by Mo-rich particles
(see bright particles within (Mo,Ti)5Si3 in the insets of Figure 3b,c and Figure 8b,c. However,
further research on those particles has to be conducted in order to quantitatively evaluate
their impact on the creep performance. (iii) The different volume fraction of eutectoid
microstructure, which is (28 ± 5) and (10 ± 3) vol.% in alloys B and C, respectively. Thus, as
the same loading and compression state was applied to both alloys, the load partitioning on
the different microstructural constituents is assumed to result in the different deformation
behaviour of the primarily solidified (Mo,Ti)5Si3 regions.

4. Summary and Conclusions

By adjusting the chemical composition of the Mo-Si-Ti alloys, considerable volume frac-
tions of primarily solidified (Mo,Ti)5Si3 up to 30 vol.% were attained in eutectic-eutectoid
microstructures. Alongside with this increase in the volume fraction of silicide phases
(≈70 vol.%), an increase in solidus temperature (>1900 ◦C) was achieved. The oxidation be-
haviour at 800 ◦C was found to be comparable to the behaviour observed for a single-phase
(Mo,Ti)5Si3 alloy in [16] and, thus, is characterized by pesting resistance. While a threshold
of 35 at.% Ti content in MoSS was postulated to be exceeded in order to achieve pesting
resistance in eutectic-eutectoid Mo-Si-Ti alloys [10], in the here investigated (Mo,Ti)5Si3-
containing alloys, 34 at.% Ti are found to be sufficient for suppression of pesting. The
creep performance of these alloys was found to be superior to the so far presented pesting-
resistant Mo-Si-Ti alloys in [10,11]. Alloy B revealed the lowest minimum creep rates,
which are comparable to the eutectoid, non-pesting-resistant Mo-21Si-34Ti alloy [11]. The
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creep behaviour of the here investigated (Mo,Ti)5Si3-containing alloys was confirmed to be
dependent on the solidus temperature, as was already observed for other Mo-Si-Ti alloys
in [10]. Therefore, it is not the volume fraction of primarily solidified (Mo,Ti)5Si3, but the
increase in solidus temperature, which accounts for the improved creep resistance due to
creep at lower homologous temperature. The microstructures of alloys A to C were found
to degenerate upon creep loading. Especially MoSS participates in creep deformation by
coagulation and alignment to the loading axis. The (Mo,Ti)5Si3 particles deformed and
orientated perpendicularly to the loading axis as well, particularly at higher strain. The
analysis of heat-treated, non-deformed microstructures confirmed microstructural stability
and no coarsening by thermal impact at 1200 ◦C. Thus, the coagulation of MoSS is attributed
to the applied compressive creep loading.

In conclusion, the here investigated (Mo,Ti)5Si3-containing Mo-Si-Ti alloys are promis-
ing for high-temperature applications, as these are light-weight (density <6.5 g/cm3),
pesting-resistant and exhibit superior creep resistance to the Ni-based superalloy CMSX-4
for the here applied testing conditions (1200 ◦C, vacuum, compressive loading 50–300 MPa).
Furthermore, these alloys are the most creep-resistant among the other so far investigated
pesting-resistant Mo-Si-Ti alloys.
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Figure A1. XRD pattern of the investigated alloys A to C in as-cast condition. Bcc MoSS is highlighted
by grey diamonds, hexagonal D88 (Ti,Mo)5Si3 by black triangles and tetragonal (Mo,Ti)5Si3 by
orange squares.
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Figure A2. Thermodynamic predicted volume fractions (hatched bars) in comparison to the exper-
imentally determined volume fractions of the microstructural constituents (filled bars) in as-cast
condition and after compressive creep strain of 5 and 40% attained at 1200 ◦C, 200 MPa for the alloys
A to C.
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Figure A3. Particle size distribution of MoSS (a) and (Mo,Ti)5Si3 (b) particles and their orientation
(c,d) (particle shape approximated as ellipse) in the alloys A and C in as-cast condition and after
compressive creep testing at 1200 ◦C, 200 MPa up to a true strain of 20 and 40% in comparison to
heat-treated samples at 1200 ◦C for 100 h.
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