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Abstract: The inhibition effect of Na2HPO4 on the electrochemical migration (ECM) of pure tin
was investigated by means of water drop testing and surface characterizations. The effects of
concentration of Na2HPO4 and applied direct current (DC) bias voltage on the ECM were also studied.
Results showed that the mean time to failure caused by ECM decreased with the increasing bias
voltage. Upon addition of relative high concentrations of Na2HPO4, Na2HPO4 can react with metallic
tin or tin ions to form a protective film on the surface of anode and increase the pitting potential.
The rate of anodic dissolution can be slowed down and thus ECM of tin was retarded. Fractal-like
dendrites formed after ECM tests in the absence and presence of low concentrations of Na2HPO4

mainly consisted of tin elements. Relevant reactions were proposed to explain the inhibitory effect of
Na2HPO4 on the ECM of tin.
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1. Introduction

With the advent of microelectronics over the past few decades, electronic components are becoming
more sensitive to corrosion due to miniaturization and integration processes [1]. As for various kinds of
electronic materials, such as tin, copper, nickel, silver and their alloys [2], the common failure behaviors
include: atmospheric corrosion [3], electrochemical migration (ECM) [4], formation of conductive
filament [5] and deformation [6], etc. ECM can be defined as a form of corrosion caused by the
applied bias voltage, which can result in insulation resistance degradation or short circuit in electronic
devices [7]. The required conditions for ECM mainly include bias voltage between two electrodes,
elevated relative humidity, temperature and time. Three basic steps consist of ECM, including anodic
dissolution, migration of metal ions and deposition of metal ions.

Due to excellent electric conductivity, low melting point, moderate corrosion and oxidation
resistance, tin-based alloys were commonly utilized in practical electronic connections [8]. This has
made the research of reliability for tin-based solder alloys an important issue for electronic assembly
and encapsulation [9]. Numerous authors have reported on atmospheric corrosion [10], mechanism of
ECM [11], and the effect of some environmental or material factors on ECM (such as the addition of
alloy elements [12], type of the applied bias voltage [13], thickness of the absorbed electrolyte [14],
typical contaminants [15], etc.). Tin and tin-based alloys are sensitive to ECM [16], but few methods for
mitigating ECM of tin and tin-based alloys have been established [17].
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Phosphate compounds, including disodium hydrogen phosphate (Na2HPO4) [18],
zinc phosphate [19], cerium dibutylphosphate [20], lithium zinc phosphate [21], etc., were widely
used as environmentally-friendly inorganic inhibitors due to their low toxicity and low cost [22].
Awad et al. [23] found that tertiary phosphate ions exhibited a corrosion inhibition effect on tin owing
to the formation of a passive film on the surface of electrode. Yohai et al. investigated the competitive
adsorption inhibition mechanism of phosphate by changing [PO4

3−]/[Cl−] and [Cl−]/[OH−] ratios.
It was found that tin phosphate complexes can retard the anodic dissolution and migration of metal
ions as phosphate corroded metallic tin [24]. Na2HPO4 can be used as an inhibitor for tin in a proper
concentration [25]. In this case, phosphate compounds can be used as an alternative inhibitor for ECM
of tin by forming a protective film on the anode and retarding the migration behavior of tin ions.

The objective of the present work is to evaluate the inhibition effect of Na2HPO4 on the ECM of
tin. The effects of Na2HPO4 concentration and applied DC bias voltage on the ECM of tin were studied.
Potentiodynamic polarization was used to investigate the effect of Na2HPO4 on the anodic and cathodic
reactions. The surface characterizations of scanning electron microscopy (SEM) and energy-dispersive
spectrometry (EDS) were used to clarify the relevant mechanisms. This study can provide a basis for
the development of phosphate compound-based ECM inhibitors for tin and tin alloys.

2. Materials and Methods

2.1. Materials and Solution Preparation

The tin samples were processed from commercial pure Sn (>99.999%, mass%) (Sichuan Xinlong
Hoof Technology Development Co. Ltd., Sichuan, China) with dimensions of 2 mm × 5 mm × 10 mm.
Each electrode for ECM test had two tin samples (one for the anode and one for the cathode) sealed in
a cylindrical plastic tube using epoxy resin. The gap size was 0.5 mm in the parallel direction and
the working area was 0.1 cm2. The sealed tin electrodes for polarization curve measurements had a
working area of 0.5 cm2. Stranded copper wires were welded to the back of each electrode to ensure
electrical contact. All the test surfaces were successively polished with 400, 800, 1200 grit silicon carbide
papers, then sonicated continuously in de-ionized water and acetone each time before tests.

Na2HPO4 (Sigma, analytical grade) and NaCl (Sigma, analytical grade) solutions were prepared
with de-ionized water (Resistivity of 18.2 MΩ cm). A DDS-307A conductivity tester (Shanghai Rex
Instrument Factory, China) and a PHS-3C pH meter (Shanghai Rex Instrument Factory, China) were
used to record the variations in the conductivity and pH value of the solutions, respectively.

2.2. Setup of Water Drop Test With and Without Na2HPO4 and ECM Measurements

The water drop (WD) test has been considered as a realistic method to simulate the ECM process
in the case of droplets splashing on the surface of electronics. As shown in Figure 1, the setup of
the WD test mainly consists of a CS350 electrochemical workstation (Wuhan Corrtest, China) and
a digital microscopy (Betical XTL-6745J4, Nanjing, China). Prior to bias, a droplet of well-defined
electrolyte was placed on the surface of electrodes using a pipetting device. A direct current (DC)
bias voltage (3 V, 5 V, 8 V or 10 V) was applied between the twin electrodes. The current flowing was
recorded as a function of time by the electrochemical workstation. The change of morphology on the
electrode surface was in situ recorded by the digital microscope. Considering the vaporization process
of droplets, the longest time for ECM test was set as 3000 s. All the ECM tests were repeated at least
five times to check reproducibility.
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electrochemical workstation; (b) vertical view of electrode; (c) optical photo of waterdrop before 
electrochemical migration (ECM) test. 
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3.1. Effect of the Alert of Solution Chemistry on the Probability of the ECM of Sn 

Figure 2 shows the change of pH value and conductivity of solutions containing various 
concentrations of Na2HPO4. As shown in Reactions (1) and (2) [26], hydrolysis of Na2HPO4 in water 
gave rise to the increase in concentration of OH- and some other ions (such as Na, H2PO4−, etc.). The 
pH value and conductivity of solution increased with the increasing concentration of Na2HPO4. For 
example, as the concentration of Na2HPO4 increases from 0 mg/L to 1000 mg/L, pH value increases 
from 6.2 to 8.9 while conductivity changes from 0.07 to 142.4 μS/cm. 

HPO42− + H2O ⇌ H2PO4− + OH− (1) 

H2PO4− + H2O ⇌ H3PO4 + OH− (2) 

Normally, the rates of anodic and cathodic reactions process increase resulting from the decrease 
of solution resistance during ECM [27]. The rising of conductivity accelerates the growth of dendrite, 
but the relatively higher alkaline pH condition does not favor dendrite formation [28]. 

Figure 1. Schematic diagram of setup for electrochemical migration using the water drop test (WDT):
(a) (1) digital microscope; (2) cold light sources; (3) waterdrop; (4) electrodes; (5) horizontal stage;
(6) electrochemical workstation; (b) vertical view of electrode; (c) optical photo of waterdrop before
electrochemical migration (ECM) test.

2.3. Polarization Curves and Cyclic Voltammetry Measurements

A three-electrode single-compartment glass cell was employed for the electrochemical
measurements at ambient temperature (24 ± 0.5 ◦C), including a Pt foil (2 cm2) as a counter electrode
and a saturated calomel electrode (SCE) as a reference electrode. Polarization curves were performed
in solutions containing various concentrations of Na2HPO4 with a scan rate of 0.5 mV/s from −0.15 V
to 1.75 V versus the open-circuit potential.

2.4. Surface Characterization

The microstructure and composition of dendrite and precipitate obtained after ECM tests were
examined by scanning electron microscopy (SEM; JSM-6701F, Hitachi Ltd., Tokyo, Japan) quipped
energy-dispersive spectrometry (EDS; Oxford INCA energy 300, Oxford Instruments, Oxford, UK).

3. Results and Discussion

3.1. Effect of the Alert of Solution Chemistry on the Probability of the ECM of Sn

Figure 2 shows the change of pH value and conductivity of solutions containing various
concentrations of Na2HPO4. As shown in Reactions (1) and (2) [26], hydrolysis of Na2HPO4 in
water gave rise to the increase in concentration of OH− and some other ions (such as Na, H2PO4

−, etc.).
The pH value and conductivity of solution increased with the increasing concentration of Na2HPO4.
For example, as the concentration of Na2HPO4 increases from 0 mg/L to 1000 mg/L, pH value increases
from 6.2 to 8.9 while conductivity changes from 0.07 to 142.4 µS/cm.

HPO4
2− + H2O
 H2PO4

− + OH− (1)

H2PO4
− + H2O
 H3PO4 + OH− (2)

Normally, the rates of anodic and cathodic reactions process increase resulting from the decrease
of solution resistance during ECM [27]. The rising of conductivity accelerates the growth of dendrite,
but the relatively higher alkaline pH condition does not favor dendrite formation [28].
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Figure 2. Change of pH value and conductivity with the concentration of Na2HPO4.

3.2. Effect of Na2HPO4 Concentration on the Probability of the ECM of Sn at Different DC Bias Voltages

Figure 3 shows the influence of Na2HPO4 concentration on the current density during ECM under
a droplet of 15 µL at different DC bias voltages. During the ECM test, the dendrite grows from a
cathode and then bridges the anode causing a short circuit [29]. The short circuit results in a sudden
increase of current density up to one or two orders of magnitude. The time of short circuit can be
defined as the time to failure (TTF) caused by ECM [30]. As shown in Figure 3a, in the absence of
Na2HPO4, mean TTF of ECM for tin descended with the increase of DC bias voltage. For example,
mean TTF descended from 31.9 s to 1.7 s while DC bias voltage increased from 3 V to 10 V. At low
concentration levels of Na2HPO4 (such as 50 mg/L and 100 mg/L), results of mean TTF are similar
with that obtained without Na2HPO4, as shown in Figure 3b and c. For example, under the 3 V bias
condition, mean TTF is 32.23 s under a droplet without Na2HPO4 while mean TTF is 28.83 s in the
presence of 50 mg/L and mean TTF is 33.02 s in the presence of 100 mg/L. At high concentration
levels of Na2HPO4 (such as 500 mg/L and 1000 mg/L), the sudden increase of current density does not
occur after 3000 s at different DC bias voltages, indicating that Na2HPO4 can inhibit the growth of the
dendrite during ECM tests. As shown in Figure 3d,e, the significant fluctuation of current density can
mainly result from the strong disturbance caused by the gas evolution in droplets.

Figures 4–8 display the in-situ optical photos of tin electrodes during ECM tests under a droplet
of 15 µL containing different concentrations of Na2HPO4 at various DC bias voltages. As shown in
Figures 4a and 5a, prior to ECM, droplets of 15 µL on the surfaces of electrodes are in different shapes.
The contact area of the droplet on the electrode surface cannot be accurately controlled in the WD
test [31]. As shown in Figures 4–6, tree-like dendrites and white precipitates can be observed during
ECM in WD tests without and with low concentrations of Na2HPO4 (such as 50 mg/L and 100 mg/L).
Within the Na2HPO4 concentration range from 500 to 1000 mg/L, the dendrite cannot be observed while
some white and dark products can be found on the surface of the anode. As shown in Figure 7, a thick
layer of white precipitates can be observed on the surface of the anode at a concentration of 500 mg/L.
A thin dark product layer can be seen from Figure 8 at a concentration of 1000 mg/L. The number of
bubbles formed on the surface of the cathode was augmented with the increase of bias voltage.
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and P (At% 13.70) elements. The amount of P element of anodic products augments with the 
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Figure 9 shows the microstructures of dendrites obtained after ECM tests under a droplet of
15 µL containing different concentrations of Na2HPO4 at 3 V. Fractal-like dendrites formed in the
absence and presence of low concentrations of Na2HPO4 (for example, 50 mg/L and 100 mg/L) mainly
consisting of tin element. Dendrites formed are all covered with precipitates. Upon addition of low
concentrations of Na2HPO4, as shown in Figure 9c,e, branches of dendrites become more dense and
tiny. Figure 10 presents the morphologies and corresponding EDS results of products formed on the
anode after ECM tests under a droplet of 15 µL containing different concentrations of Na2HPO4 at
3 V. As shown in Figure 10a,b, some pits can be found on the surface of the anode, and the anodic
products mainly consist of Sn (At% 34.72), O (At% 59.96) and Cl (At% 5.32) elements (Figure 10c).
In the presence of 500 mg/L Na2HPO4, a thick layer of precipitate can be observed on the surface of the
anode (Figure 10d,e), which is composed of Sn (At% 13.13), O (At% 78.90) and P (At% 7.97) elements
(Figure 10f). Upon addition of 1000 mg/L Na2HPO4, a compact film can be observed from Figure 10g,h.
The results of EDS (Figure 10i) indicate that this film consists of Sn (At% 20.54), O (At% 65.76) and
P (At% 13.70) elements. The amount of P element of anodic products augments with the increasing
Na2HPO4 concentration.

As is reported [32,33], the main anodic and cathodic reactions during ECM of tin in neutral NaCl
solution are as follows:

Anodic reactions:
Sn→ Sn2+ + 2e− (3)

Sn2+
→ Sn4+ + 2e− (4)

Cathodic reactions:
2H2O + 2e−→ H2 + 2OH− (5)

Sn2+ + 2e−→ Sn (6)

Hydration, adsorption and complex formation of tin ions [34] can occur in the anodic stage and
HPO4

2− can determine the appearance of characteristic anodic regions [35]. In alkaline solution,
the anodic products can consist of Sn2+, Sn(OH)3+, Sn(OH)2, Sn(OH)4, SnHPO4, Sn(HPO4)3

4−,
Sn3(PO4)2, HSnO2

−, SnO3
2−, etc. (as shown in Reactions (8)–(12)) [36,37]. Polarization curves of tin in

the absence and presence of Na2HPO4 are used to study the effect of Na2HPO4 on anodic behavior
(Figure 11a). As shown in Figure 11b, the pitting potential (Epit) of tin increases with the increasing
concentration of Na2HPO4. For example, Epit of tin increases from −194 mV (vs. SCE) to 1364 mV
(vs. SCE) as concentration of Na2HPO4 increases from 0 mg/L to 1000 mg/L. Epit is closely related to
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metal dissolution processes, and a higher Epit means a lesser dissolution rate [38], indicating that the
addition of Na2HPO4 can decrease the rate of anodic dissolution.Metals 2020, 10, x FOR PEER REVIEW 8 of 12 
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Figure 9. SEM images and corresponding EDS results of dendrites formed after ECM tests of tin under
a droplet of 15 µL containing various concentrations of Na2HPO4 at 3 V: (a) 0 mg/L; (b) EDS-Mapping
results of image (a); (c) 50 mg/L; (d) EDS-Mapping results of image (c); (e) 100 mg/L; (f) EDS-Mapping
results of image (e).

As shown in Figure 10f,i, the anodic films formed after ECM mainly consist of Sn, O and P elements
within the Na2HPO4 concentration range from 500 to 1000 mg/L. Compounds of tin phosphate can be
formed during ECM. The following reactions are proposed to occur during the oxidation behavior of
tin in Na2HPO4 solution [36]:

Sn + HPO4
2−
 SnHPO4 + 2e− (7)

Sn2+ + HPO4
2−
 SnHPO4 (aq) (8)

Sn2+ + HPO4
2−
 SnHPO4 (s) (9)

Sn2+ + 3HPO4
2−
 Sn(HPO4)3

4− (10)

3Sn2+ + 2PO4
3−
 Sn3(PO4)2 (11)
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Hydration, adsorption and complex formation of tin ions [34] can occur in the anodic stage and 
HPO42− can determine the appearance of characteristic anodic regions [35]. In alkaline solution, the 
anodic products can consist of Sn2+, Sn(OH)3+, Sn(OH)2, Sn(OH)4, SnHPO4, Sn(HPO4)34−, Sn3(PO4)2, 
HSnO2-, SnO32−, etc. (as shown in Reactions (8)–(12)) [36,37]. Polarization curves of tin in the absence 
and presence of Na2HPO4 are used to study the effect of Na2HPO4 on anodic behavior (Figure 11a). 
As shown in Figure 11b, the pitting potential (Epit) of tin increases with the increasing concentration 
of Na2HPO4. For example, Epit of tin increases from −194 mV (vs. SCE) to 1364 mV (vs. SCE) as 
concentration of Na2HPO4 increases from 0 mg/L to 1000 mg/L. Epit is closely related to metal 
dissolution processes, and a higher Epit means a lesser dissolution rate [38], indicating that the 
addition of Na2HPO4 can decrease the rate of anodic dissolution. 

As shown in Figure 10f,i, the anodic films formed after ECM mainly consist of Sn, O and P 
elements within the Na2HPO4 concentration range from 500 to 1000 mg/L. Compounds of tin 
phosphate can be formed during ECM. The following reactions are proposed to occur during the 
oxidation behavior of tin in Na2HPO4 solution [36]: 

Figure 10. SEM images and corresponding EDS results of precipitates formed after ECM tests of tin
under a droplet of 15 µL containing various concentrations of Na2HPO4 at 3 V: (a) 0 mg/L; (b) enlarged
image of image (a); (c) EDS results of section A; (d) 500 mg/L; (e) enlarged image of image (d); (f) EDS
results of section B; (g) 1000 mg/L; (h) enlarged image of image (g); (i) EDS results of section C.
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3.3. Effect of Applied DC Bias Voltage on the ECM of Tin

As shown in Figure 3, higher applied DC bias voltages indicated larger current densities during
ECM tests. Mean TTF decreased with rising DC bias voltage, indicating that the increasing bias
voltage accelerated the growth of dendrite. As the precondition for ECM, rates of anodic dissolution,
metal migration and metal deposition (as shown in Reactions (3), (4) and (6)) largely depend on the DC
bias voltage. As shown in Figures 4–8, the number of bubbles that formed on the surface of cathode
increased at higher DC bias voltages, suggesting that the hydrogen evolution reaction (Reaction (5))
was also accelerated with the increasing bias voltage.
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4. Conclusions

The inhibition effect of Na2HPO4 on the ECM of tin was evaluated by electrochemical methods
and surface characterizations in this work. The following conclusions can be drawn:

(1) The growth rate of dendrite for tin increases with the increase of applied DC bias voltage.
Dendrites formed after ECM tests in the absence and presence of low concentrations of Na2HPO4

(0–100 mg/L) have clearly a fractal-type structure and mainly consist of tin element.
(2) Within the relative higher Na2HPO4 concentration range (such as 500–1000 mg/L), owing to

the formation of some insoluble compounds of tin phosphate on the surface of the anode, the rate of
anodic dissolution is slowed down. The pitting potential of tin increases with the rising concentration
of Na2HPO4 and the growth of the dendrite is retarded.
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