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Abstract: Globally, copper, silver, and gold orebody grades have been dropping, and the mineralogy
surrounding them has become more diversified and complex. The cyanidation process for gold
production has remained dominant for over 130 years because of its selectivity and feasibility in the
mining industry. For this reason, the industry has been adjusting its methods for the extraction of
gold, by utilizing more efficient processes and technologies. Often, gold may be found in conjunction
with copper and silver in ores and concentrates. Hence, the application of cyanide to these types of
ores can present some difficulty, as the diversity of minerals found within these ores can cause the
application of cyanidation to become more complicated. This paper outlines the practices, processes,
and reagents proposed for the effective treatment of these ores. The primary purpose of this review
paper is to present the hydrometallurgical processes that currently exist in the mining industry
for the treatment of silver, copper, and gold ores, as well as concentrate treatments. In addition,
this paper aims to present the most important challenges that the industry currently faces, so that
future processes that are both more efficient and feasible may be established.

Keywords: gold cyanide leaching; sulfide minerals; SART process; cyanidation; activated carbon;
metal–cyanide complex; copper ore; carbon in pulp (CIP), agitated tank; cyanide complexes

1. Introduction

The history of modern hydrometallurgy started with the discovery of how to obtain gold and
silver from ores, on 19 October 1887, by John Steward MacArthur, who was recognized for having
established the application of the cyanidation process. Gold production around the world readily
doubled as a consequence of cyanidation’s initial application within the mining industry. Following the
first application of cyanidation in the recovery of gold, the hydrometallurgical industry has developed
and grown according to the needs of the process and the mineral complexity of the ore deposits.

Hydrometallurgical processes can be defined as the leaching of a desired metal into a solution,
followed by the concentration and purification of the pregnant solution, and finally, the recovery of the
metal or its compounds. The processing of gold and silver ore by leaching is one of the most prominent
examples of early hydrometallurgy-based processes.

Most of the gold extraction from ore is accomplished by the implementation of an alkaline cyanide
leaching process. The chemical recovery of gold can be defined by two different operations: the oxidative
dissolution of gold and the reductive precipitation of metallic gold from the solution. Cyanide is one of
the most attractive lixiviants in the current industrial gold leaching process. During gold cyanidation,
silver and copper are commonly present within the solution, which causes their metal ions to react
with the cyanide (CN−), thus forming complexes [1].

Cyanide is considered to be a hazardous compound because of its toxicity; there is currently
environmental pressure by different groups around the world to ban the industrial use of cyanide.
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Research on replacing cyanide as a lixiviant has been ongoing over the years, and has found that
there are other potentially workable compounds, such as thiosulfate, thiourea, halides, various sulfide
systems, ammonia, bacteria, natural acids, thiocyanate, nitriles, and combinations of cyanide with
other compounds [1]. Many of these alternative gold processes are still in the early development stages.
A key factor for the commercial success of these alternative lixiviants relates to the overall stability of
the lixiviant and the gold complex in solution.

Currently, the mining industry faces the problem of separating these complex valuable minerals
from the ore in which they reside. This paper outlines various options that hydrometallurgical processes
offer for the treatment of these complex minerals, containing precious metals such as Cu, Ag, and Au.

2. Copper Mineral Complexity

The fact that the majority of copper ore deposits are complex has resulted in the better development
of technologies able to extract precious metals more efficiently. Table 1 shows some of the sulfide
minerals that can be found during the treatment of ores containing Cu, Ag, and Au ores.

Table 1. Main sulfide minerals for copper ores [2].

Sulfide Mineral Element Formula

Chalcopyrite

Copper

CuFeS2
Chalcocite Cu2S
Covellite CuS
Bornite Cu5FeS4

Pyrite
Iron

FeS2
Pyrholite FeS

Argentite Silver Ag2S

Copper sulfide deposits around the world are commonly associated with copper oxide minerals.
Generally, copper oxide minerals do not respond to standard sulfide copper collectors and require the
application of different flotation techniques [3]. The treatment of copper sulfide minerals containing a
high percentage of oxide copper causes problems in the concentration process, decreasing the copper
content. In order to increase the efficiency of the concentration process, it is necessary to treat the
copper oxide component by leaching the grinded ore prior to the flotation, or by leaching the flotation
tailings coming out from the concentrator [4,5].

3. Cyanidation of Complex Gold Ores and Concentrates

The cyanidation process has become one of the most used methods for the recovery of gold
from ores. The use of cyanide leaching for gold recovery is based on gold’s properties, whereby gold
does not become oxidized at ordinary temperatures. Additionally, gold is not soluble in sulphuric,
hydrochloric, or nitric acids, but can be dissolved in aqua regia (a mixture of nitric and hydrochloric
acid). On the other hand, the most crucial fact about gold, in this case, is that it is soluble in dilute
cyanide solutions. For this reason, cyanide is used as a lixiviant during the leaching process in order to
perform the gold extraction through the use of this hydrometallurgical process [6]

Figure 1 shows that the hydrometallurgical process starts with the leaching agitators, where the
slurry comes into contact with cyanide, oxygen, water, and lime, thereby enacting the leaching process.
During the leaching process, other cyanide complexes, such as copper and silver sulfide minerals,
are formed. The following cyanide complexes are formed during this stage of the cyanidation:

• Gold cyanide reaction:

4Au+ 8NaCN+ 2H2O+O2→ 4NaAu(CN)2 + 4NaOH (1)

• Silver cyanide reaction:
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4Ag + 8NaCN + 2H2O + O2→ 4NaAg(CN)2 + 4NaOH (2)

In this case, the copper sulfide minerals can form complexes with cyanide, such as Cu (CN)2,
as the following reaction shows:

• Copper cyanide reaction:

4Cu + 8NaCN + 2H2O + O2→ 4NaCu(CN)2 + 4NaOH (3)

The formation of copper and silver cyanide complexes affects the gold recovery in both the cyanide
leaching process as well as the purification and refining stages [7]. These effects mainly interfere with
the gold cyanide reaction and the carbon adsorption. Most of the copper minerals react rapidly with
cyanide, forming multiple cyanide complexes. Table 2 shows the solubility of copper minerals in a
cyanide solution. As can be shown, chalcopyrite is the copper mineral with the lowest percentage of
copper dissolved and extracted, when compared to the other minerals [8].

Table 2. Solubility of copper minerals in 0.1% NaCN solutions. Reproduced and adapted from [8],
with permission from Elsevier B.V., 2005.

Mineral Formula Percent Total Copper Dissolved a g NaCN/ g Cu b Extraction (% Cu) b

23 C 45 C

Azurite 2Cu(CO)3 · Cu(OH)2 94.5 100 3.62 91.8
Malachite 2CuCO3(OH)2 90.2 100 4.48 99.7
Chalcocite Cu2S 90.2 100 2.76 92.6
Covellite CuS − − 5.15 95.6

Native Copper Cu 90 100 − −

Cuprite Cu2O 85.5 100 4.94 96.6
Bornite FeS·2Cu2·CuS 70 100 5.13 96
Enargite Cu3AsS4 65.8 75.1 − −

Tetrahedrite (Cu,Fe,Ag,Zn)12 Sb4 S13 21.9 43.7 − −

Chrysocolla CuSiO3·nH2O 11.8 15.7 − −

Chalcopyrite CuFeS2 5.6 8.2 2.79 5.8
a Data after Hedley and Tabachnick (1958).b Data after Lower and Booth (1965). Cyanide consumption is expressed
as g. NaCN/g of contained copper, data being generateed by leaching at room temperature for 6 h.
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range of the cyano complexes depends on conditions such as the cyanide concentration and pH, as 
shown in Figure 2, where at an operational pH range of 10–11 there is a greater concentration of the 
complex Cu(CN)43− [8].  

Figure 1. Diagram of gold cyanide leaching using activated carbon recovery. Reproduced and adapted
from [9], with permission from PERGAMON, 1987.

There are high carbon-management and bullion-refining costs related to the interference of these
cyanide complexes. The pH in the cyanide solution during the leaching plays an important role.
The range of the cyano complexes depends on conditions such as the cyanide concentration and pH,
as shown in Figure 2, where at an operational pH range of 10–11 there is a greater concentration of the
complex Cu(CN)4

3− [8].
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4. Cyanide Consumption

The formation of copper and silver cyanide complexes during the first stage of the leaching
process affects the cyanide consumption for gold recovery. Consequently, the operational costs for
cyanidation have increased significantly. As an approximation for cyanide, for every $3600/t delivered
to a mine site, it takes only 0.28 kg/t-ore of consumption to equate to $1/t-ore or 1% of gold recovery [9].
Cyanide consumption remains one of the main economic considerations.

The behavior of a specific ore or concentrate in testing can be determined by performing
rolled-bottle testing, or, alternatively, by testing in stirred vessels to measure the quantity of cyanide
consumption per unit weight of ore. This value can be scaled up for engineering design purposes.
The following factors affect cyanide consumption during the leaching process: The functions of ore
mineralogy; Cyanide concentration; and Reaction kinetics [10].

A key factor to consider is the effects of the residence time and the pulp density during the cyanide
leaching. The residence time determines and controls the reaction rate of the cyanide and oxygen at
the surface of the free particles. The optimum time of the reaction for forming gold–cyanide complexes
is reached within the first hours of the reaction [7].

The second important aspect to consider is the pulp density during the cyanide reaction. NaCN
consumption decreases as the percentage of solids increases with different cyanide concentrations,
meaning that if there is not an appropriate level of gold extraction from within the slurry, the cyanide
consumption will be higher, as shown in Figure 3.
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5. Gold Cyanidation in Copper Flotation Tailings

The production of copper concentrates from copper-gold sulfide minerals by froth flotation
generally results in tailings with copper, silver, and gold values. The cyanidation of copper flotation
tailings containing sulfides for gold recovery is an example of the formation of cyanide complexes with
copper and silver during the leaching process [11,12]. Figure 4 shows the MLA Automated Minerology
image of an ore sample from a copper mine in Mexico, containing chalcopyrite and bornite as copper
sulfide minerals.

Metals 2020, 10, 897 5 of 11 

 

5. Gold Cyanidation in Copper Flotation Tailings  

The production of copper concentrates from copper-gold sulfide minerals by froth flotation 
generally results in tailings with copper, silver, and gold values. The cyanidation of copper flotation 
tailings containing sulfides for gold recovery is an example of the formation of cyanide complexes 
with copper and silver during the leaching process [11,12]. Figure 4 shows the MLA Automated 
Minerology image of an ore sample from a copper mine in Mexico, containing chalcopyrite and 
bornite as copper sulfide minerals.  

 

Figure 4. Image containing copper sulfide minerals. Reproduced and adapted from [13], with 
permission from the authors, 2020. 

Studies were performed to analyze the gold recovery by cyanide leaching in the flotation tailings 
from this ore. There were considerable quantities of copper and silver in the tested tailings that could 
form cyanide complexes during the cyanide leaching. The beneficiation plant at this particular mine 
in Mexico produces a copper concentrate, however their flotation circuit only recovers around 75% 
of the gold; the rest is lost in the tailings [14,15].  

Table 3 shows the results of the cyanide leaching performed on the flotation tailings of this 
Mexican beneficiation plant using a NaCN concentration of 0.5 mg/L. The copper and silver recovery 
percentage values were 33% and 35%, respectively, which means that most of the copper and silver 
values were lost in the leaching tailings, as shown in Table 4. The oxygen concentration was measured 
during the test to control the oxygen supply as it is needed for the gold leaching. [16]. These copper 
and silver values may represent a problem relating to the recirculation of the cyanide during leaching; 
for this reason, the implementation of a cyanide-cleaning detox process is advised [17]. 

The copper and silver that form cyanide complexes during the gold cyanidation can cause issues 
during the activated carbon adsorption, for example, by competing with the gold to be adsorbed, 
therefore requiring a higher free cyanide concentration [18]. In addition, the mineralogy consists of 
copper sulfide minerals, as previously mentioned. It is expected that the cyanide-barren solution 
retains a high sulfide content, which can be removed using the SART process discussed in this paper 
[19].  

As mentioned, the process of treating large amounts of cyanide-contaminated effluents remains 
a challenge in the cyanidation process. The effluents contain free cyanide and metal–cyanide 
complexes that, in this specific case, would present as copper and silver complexes [20,21].  

Table 3. Cyanide leaching results of copper-gold minerals. Reproduced from [13], with the 
permission from the authors. 

Conditions  Assay (mg/kg)   Distribution % 

Figure 4. Image containing copper sulfide minerals. Reproduced and adapted from [13],
with permission from the authors, 2020.

Studies were performed to analyze the gold recovery by cyanide leaching in the flotation tailings
from this ore. There were considerable quantities of copper and silver in the tested tailings that could
form cyanide complexes during the cyanide leaching. The beneficiation plant at this particular mine in
Mexico produces a copper concentrate, however their flotation circuit only recovers around 75% of the
gold; the rest is lost in the tailings [14,15].

Table 3 shows the results of the cyanide leaching performed on the flotation tailings of this Mexican
beneficiation plant using a NaCN concentration of 0.5 mg/L. The copper and silver recovery percentage
values were 33% and 35%, respectively, which means that most of the copper and silver values were
lost in the leaching tailings, as shown in Table 4. The oxygen concentration was measured during the
test to control the oxygen supply as it is needed for the gold leaching. [16]. These copper and silver
values may represent a problem relating to the recirculation of the cyanide during leaching; for this
reason, the implementation of a cyanide-cleaning detox process is advised [17].

The copper and silver that form cyanide complexes during the gold cyanidation can cause issues
during the activated carbon adsorption, for example, by competing with the gold to be adsorbed,
therefore requiring a higher free cyanide concentration [18]. In addition, the mineralogy consists of
copper sulfide minerals, as previously mentioned. It is expected that the cyanide-barren solution retains
a high sulfide content, which can be removed using the SART process discussed in this paper [19].

As mentioned, the process of treating large amounts of cyanide-contaminated effluents remains a
challenge in the cyanidation process. The effluents contain free cyanide and metal–cyanide complexes
that, in this specific case, would present as copper and silver complexes [20,21].
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Table 3. Cyanide leaching results of copper-gold minerals. Reproduced from [13], with the permission
from the authors.

Conditions Assay (mg/kg) Distribution %

NaCN concentration (mg/L) Time (h) Dissolved Oxygen (mg/L) pH Au Ag Cu Au Ag Cu

0.5

0.00 5.55 11.61 0.00 0.00 0.00 0.00 0.00 0.00
2.00 4.87 11.60 0.11 0.45 85.31 12.00 7.20 10.73
6.00 4.75 11.75 0.18 0.76 135.00 18.53 12.16 16.98

17.00 4.34 11.62 0.21 1.24 186.80 22.11 19.84 23.49
24.00 4.29 11.70 0.22 1.70 190.00 23.16 27.20 23.90
32.00 3.80 11.71 0.23 2.10 198.00 24.21 33.60 24.90

Recovery % 81.79 33.33 35.59 Head (Calc) 100.00 100.00 100.00

Table 4. Leaching tailings elemental analysis. Reproduced from [13], with the permission from the
authors, 2020.

Sample Au(mg/kg) Ag(mg/kg) Cu(%)

A 0.10 2.00 0.04
B 0.08 6.04 0.072

6. Alternatives Lixiviants to Cyanide

As mentioned in Section 1 there are alternative gold processes that utilize alternative lixiviants from
cyanide. Table 5 shows the stability constants and standard reduction potentials for gold complexes.
Clearly, the cyanide complex is more stable and inherently more selective than any other alternative
reagent. For example, thiosulfate, thiourea, and bisulfide are several orders of magnitude less stable.

Table 5. Constants and standard reduction potentials for Au complexes at 25 ◦C. Reproduced and
adapted from [4], with permission from Elsevier B.V., 2016.

Ligand Au(I)or Au (II) Complex Eo (V vs SHEa) Stability Constants ß2 or ß4 pH Range

CN− Au(CN)2− −0.57 38.3 >9
S2O3

2− Au(S2O3)2
3− 0.17 28.7 8 to 10

CS(NH2)2 Au(NH2CSNH2)2
+ 0.38 23.3 <3

Cl− AuCl2−, AuCl4− 1.11,1 9.1, 25.3 <3
Br− AuBr2

−, AuBr4
− 0.98,0.97 12,32.8 5 to 8

I− AuI2
−, AuI4

− 0.58,0.69 18.6, 47.7 5 to 9
HS− Au(HS)2

−
−0.25 29.9 <9

NH3 Au(NH3)2
+ 0.57 26.5 >9

Glycinate Au(NH2CH2COO)2
− 0.632 18 9

SCN− Au(SCN)2
−, Au SCN)4

− 0.66,0.66 17.1,43.9 <3
SO3

2− Au(SO3)2
3− 0.77 15.4 >4

The wide range of values of the stability constants for the gold complexes indicates that the
standard reduction for the different gold ligand species varies by almost 2 V. Most reagents have a small
operating window for effectively dissolving cyanide compared with cyanide, as shown in Figure 5.
The high oxidizing potentials involved with some lixiviants lead to high reagent consumptions due to
reaction with sulfide minerals contained in the ore and the oxidation of the reagent itself. A point to
consider is that the adsorption of reagents and/or precipitation of gold onto some gangue minerals that
can affect the overall gold recovery.
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7. Carbon Adsorption

The formation of copper and silver cyanide complexes also affects the adsorption of gold during
the CIP stage during the leaching. The metal-cyanide species adsorption occurs in a selective form,
depending on the ionic diameters of the metal-cyanide complexes. The adsorption of metal-cyanides
on activated carbon is selective, and the most potent adsorbed complex is Au(CN)2−. On the other
hand, silver-cyanide complex Ag(CN) 2− adsorbs strongly but not as strongly as the gold–cyanide
complex [23].

The copper-cyanide complexes Cu(CN)2− and Cu(CN)3
2− show different adsorption features,

with the Cu(CN)2− complex adsorbing more strongly than the Cu(CN)3
2− complex [24]. The hydration

is an essential aspect of carbon adsorption because it causes metal-cyanide complexes to increase their
molecule diameter due to the fact that the metal ion is likely to have had a predetermined hydration
that can affect the metal-cyanide carbon adsorption. The classification of those that are most strongly
adsorbed to those that are the least absorbed is: Au > Ag > Cu, where the Ag and Cu have an effect on
the gold recovery during the leaching process [23].

Maintaining a high free-cyanide concentration reduces the concentration of more adsorbed copper
complexes. The increase of copper cyanide adsorption at low cyanide concentrations results in
problems for gold adsorption, as previously mentioned [25].

8. Processing Options

Different options have been developed for the treatment of copper-gold ores. Approximately 20%
of all gold deposits have significant copper mineralization associated with chalcopyrite, tetrahedrite,
tennantite, bornite, and chalcocite. Most of the copper minerals, including copper oxides, carbonates,
sulfides (with the exception of chalcopyrite), and native copper are highly soluble in cyanide solutions.
As mentioned previously, the minerals that contain copper are problematic because during the gold
cyanidation process, the copper also forms cyanide complexes, thereby consuming the cyanide [6,25].

The presence of copper-cyanide complexes creates competition with the gold during the activated
adsorption; it also affects the electrowinning efficiency. Research has been undertaken relating to the
treatment of copper-gold ores, as well as to the lowering of the effects of copper-cyanide complexes.
Some of the processing options include [25,26]:

(1) Ore Segregation Technologies
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Separating high-copper-containing ores selectively prior to the leaching process is an option in
order to reduce the impact of the copper content. For example, the Red Dome Mine in Australia
selectively mines and leaches ores containing less than 0.5% copper [25].

(2) Selective Leaching Technologies

Another processing option is to selectively leach the copper contained in the ores containing gold
prior to the gold leaching. These processes are often associated to high reagent consumption and
also to recovery issues of the leached copper. Studies have been undertaken on the application of
copper/ammonia/cyanide processes for the treatment of copper-containing ores. These studies have
shown that the addition of ammonia to the cyanide solution results in a lower cyanide consumption
and a higher selectivity of gold leaching over copper. However, the rate of gold leaching is slower
in this system when ammonia is used; in addition, it also represents an occupational health and
environmental concern [24].

(3) Copper-Cyanide Destruction Technologies

This type of process uses SO2 combined with air to produce cyanide oxidation to cyanite,
whereby the copper is precipitated at the end of the reaction as copper hydroxide [27]. There are
alternative processes for cyanide destruction such as alkaline chlorination, the use of hydrogen
peroxide (Degussa process), the use of Caro’s acid, electrochemical oxidation, biodegradation, the use
of ultrasonic technology, or photolysis [5].

9. Sulfidization, Acidification, Recycling and Thickening (SART) Technology

Recently, new processes have been developed to treat the main issues previously mentioned
about processing complex copper ores for gold recovery. One of these processes is the SART process.
SGS Lakefield Group and Teck Corporation developed the SART process in the 1990s [26]. The benefit
of having a SART process in the cyanidation process is that it breaks the base metal cyanide complexes,
precipitates the metals as high-grade sulfide concentrates, and frees the cyanide for recirculation to the
leaching process [28]. The SART process is described by the following sequence of unit operations:

Sulfidization and Acidification: During this stage, the cyanide solution is mixed with sodium
hydrosulfide NaSH and H2SO4 to decrease the pH between 4–5 to form Cu2S, using a precipitator
reactor and thickener to form a Cu2S precipitate as a co-product. Equations (4) and (5) show the
reactions during this process [29]:

2NaCN + H2SO4→2HCN (aq) + Na2SO4 (4)

4Na2Cu (CN)3 + 2NaSH + 5H2SO4→ 2Cu2S(s) + 12HCN(aq) + 5Na2SO4 (5)

Equation (4) shows the solution acidification, which promotes the dissociation of weak
metal–cyanide complexes (WAD complexes), such as Cu and Ag metals. Equation (5) involves
the precipitation of soluble metal ions formatting metallic sulfides such as Cu2S. The Cu precipitation
efficiency under standard process conditions is between 80% and 90%. [29].

Recycling: The remaining solution containing HCN is neutralized using CaO to reach a pH between
10 and 11 to form CaSO4 (Gypsum) and to recycle the cyanide, respectively. The formed solid gypsum is
then removed from the process by thickening and filtration, as shown on in Equations (6) and (7) [29]:

2HCN(aq) + Ca (OH)2→ Ca(CN)2 + 2H2O (6)

H2SO4 + Ca(OH)2→ CaSO4·2H2O (s) (7)

Thickening: The gypsum is precipitated using a settler and a flocculent to separate the solution
Ca(CN)2 and the gypsum. The cyanide is recycled in the process, and the gypsum is precipitated for
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disposal. The overflow solution from the gypsum thickener is filtered and represents the final solution.
This solution has a cyanide content, represented as Ca (CN)2, that is equivalent to the free cyanide that
is recycled in the cyanidation process [29].

These unit operations of the SART process describe the treatment of the cyanide solution after the
stripping of the activated carbon. Figure 6 shows the general flowsheet of the SART process:

Metals 2020, 10, 897 9 of 11 

 

These unit operations of the SART process describe the treatment of the cyanide solution after 
the stripping of the activated carbon. Figure 6 shows the general flowsheet of the SART process: 

 

Figure 6. SART process flowsheet. Reproduced and adapted from [16], with permission from 
PERGAMON, 2020. 

The SART process reduces the issues caused by the copper-cyanide complexes during the 
cyanide leaching process. It recycles the cyanide to diminish the cyanide consumption and provides 
operational cost savings. It avoids having free cyanide disposal, which can be a hazard for the 
environment [30]. Additionally, the formation of Cu2S as a saleable product is one of the essential 
advantages of the SART process within cyanide leaching, because of the way it economically takes 
advantage of the copper content. The ideal performance of the SART process and thickening 
operation would be to produce a clean solution and to separate the solids from the treated solution 
in the thickener [31]. 

10. Conclusions 

The challenges of treating ores and concentrates with copper, silver, and gold have increased 
significantly as mineralogies have become more complex. Hence, the technology for such treatment 
has been forced to become more efficient and innovative in order to face these current challenges. 
The application of the cyanidation process in conjunction with the SART process represents an 
innovative way to diminish the problems of having deleterious cyanide complexes involved in the 
process, by recovering marketable copper and silver sulfides. As a result, the carbon circuit can be 
made smaller and designed primarily for gold recovery. There are also environmental advantages in 
the application of these processes, including the reduction of dangerous chemical exposure to the 
environment.  

Author Contributions: Conceptualization, D.M. and C.G.A.; methodology, D.M. and C.G.A.; D.M. and C.G.A.; 
validation, D.M. and C.G.A.; formal analysis, D.M. and C.G.A.; investigation, D.M. and C.G.A; resources, D.M. 
and C.G.A.; data curation, D.M. and C.G.A.; writing—original draft preparation, D.M.; writing—review and 
editing, D.M..; visualization, D.M.; supervision, C.G.A.; project administration, C.G.A.; funding acquisition, 
C.G.A. All authors have read and agreed to the published version of the manuscript.  

Funding: Research was funded by NEMISA, 470120 

Conflicts of Interest: The authors declare no conflict of interest.  

References 

1. Adams, M.D. Advantages in Gold Ore Processing, 1st ed.; Elsevier B.V.: Perth, Australia, 2005. 
2. Twidwell, L.G. Montana College of Mineral Science and Technology Unit Processes in Extractive Metallurgy: 

Hydrometallurgy. 1970, pp. 16. Available online: https://files.eric.ed.gov/fulltext/ED218136.pdf (Accessed on 
6th January 2020).  

Figure 6. SART process flowsheet. Reproduced and adapted from [16], with permission from
PERGAMON, 2020.

The SART process reduces the issues caused by the copper-cyanide complexes during the cyanide
leaching process. It recycles the cyanide to diminish the cyanide consumption and provides operational
cost savings. It avoids having free cyanide disposal, which can be a hazard for the environment [30].
Additionally, the formation of Cu2S as a saleable product is one of the essential advantages of the SART
process within cyanide leaching, because of the way it economically takes advantage of the copper
content. The ideal performance of the SART process and thickening operation would be to produce a
clean solution and to separate the solids from the treated solution in the thickener [31].

10. Conclusions

The challenges of treating ores and concentrates with copper, silver, and gold have increased
significantly as mineralogies have become more complex. Hence, the technology for such treatment
has been forced to become more efficient and innovative in order to face these current challenges.
The application of the cyanidation process in conjunction with the SART process represents an
innovative way to diminish the problems of having deleterious cyanide complexes involved in the
process, by recovering marketable copper and silver sulfides. As a result, the carbon circuit can be
made smaller and designed primarily for gold recovery. There are also environmental advantages
in the application of these processes, including the reduction of dangerous chemical exposure to
the environment.

Author Contributions: Conceptualization, D.M. and C.G.A.; methodology, D.M. and C.G.A.; D.M. and C.G.A.;
validation, D.M. and C.G.A.; formal analysis, D.M. and C.G.A.; investigation, D.M. and C.G.A.; resources, D.M.
and C.G.A.; data curation, D.M. and C.G.A.; writing—original draft preparation, D.M.; writing—review and
editing, D.M.; visualization, D.M.; supervision, C.G.A.; project administration, C.G.A.; funding acquisition, C.G.A.
All authors have read and agreed to the published version of the manuscript.

Funding: Research was funded by NEMISA, 470120.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Adams, M.D. Advantages in Gold Ore Processing, 1st ed.; Elsevier B.V.: Perth, Australia, 2005.



Metals 2020, 10, 897 10 of 11

2. Twidwell, L.G. Montana College of Mineral Science and Technology Unit Processes in Extractive
Metallurgy: Hydrometallurgy. 1970; p. 16. Available online: https://files.eric.ed.gov/fulltext/ED218136.pdf
(accessed on 6 January 2020).

3. Lee, K.; Archibald, D.; McLean, J.; Reuter, M.A. Flotation of mixed copper oxide and sulphide minerals with
xanthate and hydroxamate collectors. Miner. Eng. 2008, 22, 1–7. [CrossRef]

4. Sokic, M.D.; Milosevic, V.D.; Stankovic, V.D.; Matkovic, L.V.; Markovic, B.R. Acid leaching of oxide-sulfide
copper ore prior the flotation—A way for an increased metal recovery. Hemijska Industrija 2015, 69, 454–458.
[CrossRef]

5. McClelland, G.E.; McPartland, J.S. Metallurgical Comparisons from Testing to Production. Adv. Gold
Silver Process. 1990, 1, 49–57.

6. Deschenes, G. Advances in the cyanidation of gold. Dev. Miner. Process. 2005, 15, 479–500.
7. Brittan, M.; Plenge, G. Estimating Process Design Gold Extraction, Leach Residence Time and Cyanide

Consumption for High Cyanide-Consuming Gold Ore. Miner. Metall. Process 2015, 32, 111–120. [CrossRef]
8. Sceresini, B. Gold-copper ores. In Advantages in Gold Ore Processing, 1st ed.; Adams, M.D., Ed.; Elsevier B.V:

Perth, Australia, 2005; pp. 789–821.
9. Hill Stephen, D. The carbon-in-pulp process. In Precious Metals Recovery from Low-Grade Resources; Bureau of

Mines: Washington, DC, USA, 1986; pp. 40–43.
10. Breuer, P.L.; Rumball, J.A. Cyanide Measurement and Control for Complex Ores and Concentrates.

In Proceedings of the Ninth Mill Operators Conference, Fremantle, WA, Australia, 19–21 March 2007;
AusIMM: Victoria, Australia, 2007; pp. 249–253.

11. Estay, H. Designing the SART process—A review. Hydrometallurgy 2018, 176, 147–165. [CrossRef]
12. Thompson, P.; Runge, K.; Dunne, R. Sulfide Flotation testing. In Mineral Processing and Extractive Metallurgy

Handbook, 1st ed.; Society for Mining, SME: Englewood, CO, USA, 2019; pp. 1029–1031.
13. Medina, D.; Anderson, C. Tailings Gold Recovery by Cyanide Leaching from Future Ores. Master’ Thesis,

Colorado School of Mines, Golden, CO, USA, 2020, (unpublished).
14. Xie, F.; Dreisinger, D.; Doyle, F. A review on recovery of copper and cyanide from waste cyanide solutions.

Miner. Process. Extr. Metall. Rev. 2013, 34, 387–411. [CrossRef]
15. Markovic, Z.; Vusovic, N.; Milanovic, D. Old Copper Flotation Tailings Water Reprocessing. In Proceedings

of the XXV International Mineral Processing Congress (IMPC) Proceedings, Brisbane, QLD, Australia,
6–10 September 2010; Australian Institute of Mining and Metallurgy: Brisbane, Australia, 2010;
pp. 3825–3829.

16. Haque, K.E. The Role of Oxygen in Cyanide Leaching of Gold Ore. CIM Bull. 1992, 85, 31–38.
17. Anderson, C.G. Alkaline Sulfide Gold Leaching Kinetics. Miner. Eng. 2016, 92, 248–256. [CrossRef]
18. Barsky, G.; Swainson, S.J. Dissolution of Gold and Silver in Cyanide Solutions. Trans. AIME 1943, 112,

660–667.
19. Estay, H.; Minghai, G.K.; Gabriel, S.; Quilaqueo, M.; Barros, L.; Figueroa, R.; Troncoso, E. Optimizing the

SART process: A critical assessment of its design criteria. Miner. Process. 2020, 146, 1–11. [CrossRef]
20. Zarate, G.E. Gold Tailings Processing by Heap Leaching. In Small Mines Development in Precious Metals;

Society of Mining Engineers: Santiago, Chile, 1987; pp. 152–155.
21. Prasad, M.S.; Mensah, B.R.; Pizarro, R.S. Modern Trends in Gold Processing—Overview. Miner. Eng. 1991, 4,

1257–1277. [CrossRef]
22. Aylmore, M.G. Alternative Lixiviant to Cyanide for Leaching Gold Ores. In Gold Ore Processing: Project

Development and Operations, 2nd ed.; Adams, M.D., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2016;
pp. 447–460.

23. Sayiner, B.; Acarkan, N. Effect of Silver, Nickel and Copper Cyanides on Gold Adsorption on Activated
Carbon. Physicochemical Prob. Miner. Process. 2013, 50, 277–287.

24. Muir, D.M.; La Brooy, S.R.; Fenton, K. Processing copper-gold ores with ammonia or ammonia cyanide
solutions. World Gold 1991, 91, 145–150.

25. Dai, X.; Simons, A.; Breuer, P. A review of copper cyanide recovery technologies for the cyanidation of copper
containing gold ores. Miner. Eng. 2012, 25, 1–13. [CrossRef]

26. Littlejohn, P.; Kratochvil, D.; Hall, A. Sulfidisation-Acidification-Recycling-thickening for Complex Ores.
In Proceedings of the World Gold, Brisbane, Australia, 26–29 September 2013; pp. 149–155.

https://files.eric.ed.gov/fulltext/ED218136.pdf
http://dx.doi.org/10.1016/j.mineng.2008.11.005
http://dx.doi.org/10.2298/HEMIND140509061S
http://dx.doi.org/10.1007/BF03402428
http://dx.doi.org/10.1016/j.hydromet.2018.01.011
http://dx.doi.org/10.1080/08827508.2012.695303
http://dx.doi.org/10.1016/j.mineng.2016.01.009
http://dx.doi.org/10.1016/j.mineng.2019.106116
http://dx.doi.org/10.1016/0892-6875(91)90171-Q
http://dx.doi.org/10.1016/j.mineng.2011.10.002


Metals 2020, 10, 897 11 of 11

27. Nicol, M.J.; Fleming, C.A.; Paul, R.L. The Chemistry of the Extraction of Gold. In The Chemistry of Gold
Extraction; Marsden, J., House, I., Eds.; SME: Littleton, CO, USA, 2006; pp. 831–905.

28. Kratochvil, D.; Salari, D.; Avilez, T. SART Implementation at Heap Leach Operations in Mexico. In Proceedings
of the 50th Annual Canadian Mineral Processors Operators Conference, Ottawa, ON, Canada, 24 January 2018;
CIM: Ottawa, ON, Canada; pp. 1–13.

29. Estay, H.; Carvajal, P.; Hedjazi, F.; Zeller, T.V. The SART process experience in the Gedabel plant. In Proceedings
of the 4th International Workshop on Process Hydrometallurgy, Santiago, Chile, 12–13 July 2012; Gecamin:
Santiago, Chile; pp. 1–10.

30. Kevan, J.R.F.; Robert, D.H. Application of the SART Process to Heap Leaching. SGS Miner. Serv. Tech. Bull.
2008, 51, 1–12.

31. Estay, H.; Becker, J.; Carvajal, P.; Arriagada, F. Predicting HCN gas genertion in the SART process.
Hydrometallurgy 2012, 113, 131–142. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.hydromet.2011.12.019
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Copper Mineral Complexity 
	Cyanidation of Complex Gold Ores and Concentrates 
	Cyanide Consumption 
	Gold Cyanidation in Copper Flotation Tailings 
	Alternatives Lixiviants to Cyanide 
	Carbon Adsorption 
	Processing Options 
	Sulfidization, Acidification, Recycling and Thickening (SART) Technology 
	Conclusions 
	References

