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Abstract: A novel high C high Si carbide free bainitic steel was developed for the production of cold
work tools, knives, and rolls, requiring high hardness, toughness, as well as abrasive/adhesive wear
resistance and resistance to galling at low costs. The steel was tribologically tested in dry sliding
conditions under abrasive and adhesive wear mode, facilitated by using alumina and bearing steel
ball as a counter-material, respectively. It was determined that carbide dissolution occurs under high
contact pressures, thereby enriching the surrounding matrix with carbon and locally increasing the
retained austenite content. The high retained austenite at the sliding interface increases the steels
work hardening capacity and promotes superior wear resistance when compared to much more
alloyed cold work tool steel, such as AISI D2. The steel has a high resistance to galling as determined
by sliding against a soft steel bar due to its chemical composition.
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1. Introduction

The wear resistance of tool steels depends upon the microstructure, including the spacing, size,
and type of hard particles, as well as the ability of the matrix to absorb energy, all defining steel
hardness and toughness [1].

Carbide-free bainitic microstructures are known to exhibit superior combination of mechanical
and wear resistant properties. This is provided by the very fine scale of bainitic ferrite plates that
are embedded within a matrix of retained austenite and a stress/strain induced transformation of
the retained austenite phase into very hard untempered martensite. Phase transformation gives rise
to work hardening, which is known as the transformation-induced plasticity effect [2]. However,
low transformation temperatures between 200 and 300 ◦C are required in order to obtain fine bainitic
ferrite subunits [3]. These steels contain high concentrations of carbon (close to 0.8%) and silicon
(~1.5%) to ensure low transformation temperatures and a carbide-free bainitic microstructure [4].
Rapid bainite transformation kinetics at temperatures, even below 200 ◦C, can be achieved by the
introduction of nano-scale precipitates, which deplete the adjacent matrix of carbon and lead to the
bainitic ferrite subunits nucleation [3].

The increase in surface hardness due to stress/strain induced transformation under conditions of
dry rolling and sliding in extremely fine pearlite steel, has been evaluated while using nano-indentation
and can reach values of up to 750 HV [5]. This also led to improved wear resistance, which was
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enhanced by reducing the distance between ferrite and cementite lamellas. Refined pearlite has a greater
flow stress and work hardening rate, while finer cementite is able to accommodate more deformation
prior to fracture [6]. In this sense it is not important how the retained austenite was stabilized, due to
the effect of Si or Al [7], thermally [8] or mechanically, provided the resulting toughness is sufficient to
prevent the initiation and propagation of cracks from the surface. This was well illustrated in a study
where the wear resistance of carbide free lower bainite, martensite, and pearlite in the same super
bainite steel was practically the same [9]. During abrasive wear, the retained austenite content of the
austempered steel was reduced from an initial 44% to a final value of 12%, which is even lower than
present after conventional quenching to martensite. On this example it was shown that a hard but
brittle microstructure does not perform much better under abrasive conditions than a softer, but more
ductile, one. Of course, depending on the hardness the wear mechanism will change accordingly.
Therefore, it is important that the toughness of the material is sufficient for arresting crack propagation
from the contact surface toward the bulk of the tool.

At the same hardness, the wear resistance of medium carbon steels has been reported to be up
to 25% higher when treated into a carbide free bainitic microstructure as opposed to quenching and
tempering into martensite. Furthermore, for carbide free bainitic medium carbon steels the surface
hardness increased much more due to their higher work hardening capacity [10]. In some cases,
very high abrasive wear resistance is reported for low temperature carbide free bainitic steels, with their
wear rate being as low as 1% of that exhibit by 100Cr6 steel, when heat treated to a needle-like lower
bainite with hardness of about 60 HRC and the strength level of 2.3 GPa [11]. This high abrasive
wear resistance is largely attributed to the retained austenite content. However, while the retained
austenite contributes to the steel wear resistance, its effect on toughness has been shown to be strongly
deteriorating, when present in amounts that are close to or above 10% [12]. Therefore, theoretically, it
would be advantageous to locally introduce the retained austenite into the surface layer, while not
compromising the toughness of the bulk material.

A method by which this could be accomplished is by the well-known phenomena of carbide
dissolution under pressure. This effect has been documented in the field of bearing steels [13].
During operation under heavy loads, the bearing steels undergo several microstructural changes,
one of which is dislocation accumulation, particularly in heavily deformed regions. The accumulated
dislocations shear carbide particles, which size is then reduced via dissolution, controlled by the
migration of carbon from cementite towards dislocations. This requires a constant supply of
carbon-unsaturated dislocations in the neighborhood of dissolving carbide particles. The dissolution
tendency and rate are proportional to alloying elements content and dislocations density. Furthermore,
smaller particles tend to dissolve much faster when compared to coarser ones, which can be intuitively
explained in terms of a higher surface energy. However, there is also a threshold driving force value
(12–15 kJ/mol), below which precipitates coarsening will occur rather than the dissolution [13].

The aim of this research work was to investigate whether the effect of carbides dissolution under
high pressure can be exploited under severe wear conditions, with the retained austenite only being
generated in the vicinity of the hard abrading particles, such as oxide scale and hard wear particles,
or more generally within regions of high contact pressure. Thus, increasing the wear resistance at the
interface without compromising the toughness of the bulk material. Within a novel group of steel
alloys termed kinetically activated bainite (KAB) steels, which have been introduced previously [14],
this concept enables the obtainment of very fine bainitic microstructures with a low retained austenite
content. A KAB steel, which fulfils the above description, has been developed and its resistance
to abrasive and adhesive wear evaluated and compared to conventional D2-type tool steel in the
current work.
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2. Materials and Methods

The material used in this work is new custom made high Si carbide-free bainitic cold work tool
steel with the nominal chemical composition that is given in Table 1. As a reference, commercial AISI
D2 cold work tool steel has been used.

Table 1. Nominal compositions of characterized steels (in wt.%).

Steel/Composition C Si Mn Mo Cr V Ti Nb B

High C-Si/SIHARD S250 1 2.8 0.5 0.6 2 0.2 0.04 0.04 0.005
D2/Wr. Nr: 1.2379 1.49 0.26 0.23 0.75 11.9 1.05 0.005 / /

SIHARD S250 was cast in the form of 1 ton ingots, diffusion annealed at 1220 ◦C for 24 h, followed
by hot rolling to the final shape of 62 mm × 32 mm flat profiles. Additionally, AISI D2 tool steel was
cast in 1 ton ingot and then rolled to the same final dimension of 62 mm × 32 mm. Both of the steels
were then soft annealed and test specimens machined from each steel.

As can be seen from the tempering diagram that is shown in Figure 1, the hardness of SIHARD S250
steel (measured with Instron B2000 machine (Instron, Norwood, MA, USA), using Rockwell C method
according to ASTM E18 standard [15]) is continuously decreasing with increased tempering temperature,
while a relatively high impact toughness (un-notched impact specimens; 7 mm × 10 mm × 55 mm)
is obtainable within the desired working hardness range of 61–64 HRC, reached at low tempering
temperatures. Furthermore, the tempering stability of SIHARD S250 is higher than for commercial
AISI D2 steel, which can be explained by its high Si content.
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Figure 1. Tempering diagram of SIHARD S250 and commercial AISI D2 tool steels; Heat treatment
conditions applied prior to testing are indicated with boxed X.

The heat treatment conditions of the two investigated steels applied prior to testing are indicated
with boxed X. The SIHARD S250 tool steel was quenched from 980 ◦C in oil and tempered once at
200 ◦C for 2 h to a hardness of 63 HRC and impact toughness of 50 J. On the other hand, AISI D2 was
tempered twice at 520 ◦C, resulting in a similar hardness of about 62 HRC, but much lower toughness
of only 15 J.

Compression tests were performed on standard short cylindrical test samples with a diameter of
Φ13 mm and a length of 25 mm, according to the ASTM E9 standard [16]. Testing was done with a
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force of 320 kN corresponding to a compressive stress of 2.4 GPa, which did not exceed the elastic limit
of the steel.

The wear testing of the investigated tool steels in the final heat treated condition was performed
under reciprocating dry sliding conditions at room temperature while using the ball-on-disc contact
configuration. The abrasive wear mode was simulated by performing tests with Al2O3 ball (20 mm)
sliding against polished tool steel disc (Ra = 0.10 µm) at a nominal contact pressure of 1.5 GPa
(FN = 102 N) and an average sliding speeds of 0.01 (f = 1 Hz, stoke of 4 mm) and 0.12 m/s (f = 15 Hz,
stroke of 4 mm), respectively. The wear volume of the removed tool steel material has been determined
by three-dimensional (3D) profilometric analysis. On the other hand, adhesive wear determined as the
volume of the counter-ball material adhered to the contact surface of the tool steel disc was simulated
by performing sliding tests with a hardened 100Cr6 steel ball (20 mm, 58 HRC). In this case, tests were
performed at a nominal contact pressure of 1 GPa (FN = 40 N) and sliding speed of 0.12 m/s. For all
wear tests (abrasive and adhesive), the total sliding distance was 100 m.

The resulting abrasive wear volume and wear rate calculated as wear volume divided by normal
load and sliding distance are the average of 10 sliding tests performed at two different sliding speeds
and the adhesive wear rate the average of five sliding tests performed at single sliding speed of 0.12 m/s.

The galling resistance was examined by a load-scanning test [17], where investigated tool steels
were sliding against soft annealed S235J2 low carbon steel at a gradually increasing load. The tests
were performed under dry sliding conditions and room temperature, sliding speed of 0.1 m/s, and load
range of 100–1000 N. After the test critical loads for the beginning of low carbon steel transfer to the
tool steel surface (LC1) and transfer layer build-up (LC2) were determined by microscopic analysis of
the wear track.

3. Results and Discussion

3.1. Microstructure

The microstructure of SIHARD S250 steel after heat treatment (Figure 2) has been revealed by
preparing metallographic samples and etching with Vilella and 7% aqueous Na2S2O5 for light and
FESEM microscopy, respectively. It was determined to be predominantly lower bainite with numerous
carbides, some martensite, and a small amount of retained austenite (Figure 2a,b). FESEM/EDS
observation of the microstructure shows the fine bainitic matrix and numerous fine carbides that are
based on Cr-Mo-Fe and NbTiC, as also confirmed by XRD analysis (Figure 2d). The very fine bainitic
ferrite structure can be seen in the HRTEM micrograph in Figure 2c. The individual bainitic ferrite
plates are very thin and locally separated by films of retained austenite (dark phase). A low retained
austenite content is also determine using X-ray diffraction, whereby the corresponding graph and
Rietveld analysis can be seen in Figure 2d.
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Figure 2. Initial microstructure and corresponding rentnogram of heat treated SIHARD S250 STEEL;
(a) OM micrograph, (b) FESEM micrograph, (c) HRTEM micrograph, and (d) X-ray diffraction spectrum.

The phase fractions of ferrite and retained austenite were determined using X-ray diffraction
(Figure 2d) and the Rietveld Refinement method. X-ray diffraction spectrums were obtained on a
Bruker D8 Advance (Bruker, Billerica, MA, USA), operating using an Cu anode at 40 kV/40 mA and a
secondary graphite monochromator within a 2theta range between 40◦ and 90◦ for a total measuring
time of 3 h. Prior to measurements, the samples were deep-etched in order to remove any deformed
surface layer. Prior deformation microstructure of SIHARD S250 tool steel contains about 4.4% Cr-Mo
rich M23C6-type carbides and about 3.5% of retained austenite, as shown in Table 2. On the other hand,
AISI D2 has much higher fraction of carbides, of about 18.5%, predominantly of the M7C3 type [18].

Table 2. Phase fractions of SIHARD S250 and AISI D2 steel in the hardened condition.

Steel/Phase α γ Carbides

SIHARD S250 92. 3.5 4.4 (M23C6)
D2/Wr. Nr: 1.2379 81.5 0 18.5 (M7C3)

Standard compression samples were subjected to a stress level of 2.4 GPa and then the
microstructure and phase fractions were analysed by preparing metallographic specimens and
X-ray diffraction analysis in order to assess the influence of compressive stress on the carbide fraction.
Table 3 and Figure 3 present the results.

The coarser Cr-Mo rich carbides (M23C6) are no longer present in the microstructure, and we
observe an additional peak in the X-ray diffraction spectrum (Figure 3b) corresponding to austenite
(γ111 at 43◦), with its content being increased to about 36% (Table 3), as can be seen form Figure 3a.
Increased austenite content is further indicated by the increased intensity of γ peaks, as shown in
Figure 3b. Therefore, the microstructural observations of the specimens exposed to compression test
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suggest that the Cr-Mo rich carbides essentially dissoluted, whereas the smaller and also more stable
Nb-Ti rich carbides remained unaffected by the compressive stress (Figure 3).
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Table 3. Phase fractions in SIHARD S250 steel after applied compression load.

Steel/Phase α γ M23C6

SIHARD S250 61.1 35.9 /

3.2. Wear Resistance

Although the hardness of both steels is comparable the wear failure mode is different since
SIHARD S250 does not contain any coarse carbides that contribute to its wear resistance. This steel
resists the penetration of abrading hard particles by work hardening as well as the dissipation of energy
via phase transformation and due to its higher toughness. It was observed that, in the case of abrasive
wear tests the surface hardness, as measured with Instron Tukon 2100B microhardness tester (Instron,
Norwood, MA, USA) according to ASTM E384 standard [19], increased from an initial 740 HV0.01
to about 920 HV0.01 within the wear scar, which is shown in Figure 4. This is close to the measured
hardness of martensite in 1% C steels [20]. When considering that retained austenite comprised
only about 35% of the microstructure the actual hardness of the stress/strain induced martensite
can be expected to be substantially higher, but would require higher resolution measurements (i.e.,
nano-indentation) to be confirmed. The grey particles were characterized by microchemical (EDS)
analysis and have shown to be wear debris from the alumina ball (Al2O3). In contrast, the surface
hardness on the sample of AISI D2 tool steel only increased marginally from 740 HV0.01 to 780 HV0.01.
The wear is accompanied by breaking and falling out of carbides, as indicated in Figure 5.

Adhesive wear causes a redistribution of elements present in the base material towards the sliding
interface (Figure 6), unlike abrasive wear with typical scratches and grooves being present within the
wear scar (Figure 4). In this manner, a Si rich surface layer is formed on the contact surface, seen as a dark
grey area in Figure 6. In addition to Si, the surface is also enriched in O and C, whereby concentrations
of other alloying elements changed negligibly. The Si rich regions correspond to areas with low oxygen
content, whereas C is redistributed without a discernible pattern. The enrichment of carbon can be
explained by process of carbide dissolution under pressure discussed earlier, whereby the carbon from
the dissolved carbides was pushed further into the steel, thus enriching the surface layer. A possible
explanation is the difference in dislocation density between the bearing steel ball made from 100Cr6
and the investigated steel. Carbon could be trapped at this defects and pushed inward during the
wear test. The exact depth of C-rich layer was not measured, but, based on Vickers microhardness
measurements and EDS depth analysis, we can estimate that the C-rich layer thickness is at least 10 µm.
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The current steel has a comparable carbon content to the 100 Cr6 bearing ball, so that the measurement
error due to local adhesion of the bearing ball to the surface can be considered to be negligible.
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Galling is a form of wear that is highly dependent on the chemical compatibility of the materials
in contact. Alloying elements addition to tool steels can reduce strength of the chemical bonds with
the softer work material and, therefore, improve the tools resistance to galling wear mode, as has
been shown for a Cu alloyed cold work tool steel [21]. This effect is confirmed in the current study,
where the high C high Si grade tool steel performed especially well when in sliding contact with soft
low-C steel. The critical loads for the onset of galling as well as transfer layer build-up (Figure 7) is
more than twice as high as compared to commercial AISI D2 tool steel (Table 4). Increased galling
resistance of tool steels is also promoted by high matrix hardness [22], which is very prominent in the
current alloy where secondary carbides are no longer present at the wear surface.
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The results of wear and galling tests are summarized in Table 4 and graphically presented in Figure 8,
where they are compared to the commonly used cold work toll steel AISI D2 as a reference. Under dry
reciprocating sliding abrasive wear against Al2O3 ball AISI D2 tool steel shows an average wear rate of
1.094 × 10−5 mm3/Nm, with about three times larger wear rate (~2.00 × 10−5 mm3/Nm) being observed
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under low sliding speed conditions than for high sliding speed conditions (~0.6 × 10−5 mm3/Nm).
Additionally, the average coefficient of friction follows the same trend, being 0.74 and 0.62, respectively.
In the case of high C high Si S250 tool steel, the average abrasive wear rate has decreased for 7.5%,
down to 1.017 × 10−5 mm3/Nm. However, the main improvement has been observed for low sliding
speed conditions, as shown in Figure 8a. Additionally, in the case of S250 steel wear rate and average
coefficient of friction under low sliding speed conditions are lower (k = 1.74 × 10−5 mm3/Nm, µ = 0.73)
than for high sliding speed conditions (k = 0.65 × 10−5 mm3/Nm, µ = 58). For adhesive wear against
100Cr6 ball high C high Si S250 tool steel gives even higher improvement of 55%, although showing
slightly higher friction (0.71 vs. 0.74). The much better adhesive wear resistance of S250 tool steel
is also confirmed by the galling test results and higher critical loads for galling initiation (LC1) and
transfer laxer build-up (LC2), Figure 8b.

Table 4. Wear resistance of SIHARD S250 in comparison to AISI D2 tool steel at a hardness level of
~62 HRC.

Steel Average Abrasive Wear
Rate

Average Adhesive Wear
Rate

Galling Resistance
LC1 LC2

AISI D2/W.Nr. 1.2379 1.094 × 10−5 mm3/Nm 3.140 × 10−6 mm3/Nm 200 N 490 N
High C-Si/SIHARD S250 1.017 × 10−5 mm3/Nm 2.020 × 10−6 mm3/Nm 660 N 910 N

Improvement 7.5% 55.5% 330% 85.7%
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4. Conclusions

Superior wear resistance properties were obtained in the current high C high Si bainitic steel.
The current steel combines good impact properties due to its low retained austenite content, the latter,
however, increases remarkably as the secondary Cr-rich carbides dissolve under pressure, which is
indicated during the adhesive wear resistance test by sliding against a hardened bearing steel ball,
as the surface of the wear track was substantially enriched with C.

A similar effect can be accounted for the high abrasive wear resistance, which exceeds even that
of highly alloyed cold work tool steel AISI D2, as well. However, during abrasive wear test carbon
enrichment was not observed, which is likely due to the more intense surface scratching and C-rich
layer removal in the form of wear debris by the alumina ball during sliding.

SIHARD S250 carbide free bainitic steel also shows greatly improved galling resistance.
Carbides are commonly found as the galling initiation spots and by their elimination and dissolution
combined with increased surface hardness galling resistance can be substantially improved.

This steel is deemed particularly suitable for cold forming of all kinds of sheet steels, including high
strength and stainless grades, due to the good combination of mechanical and anti-wear properties.
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5. Patents

Part of the work reported herein has been filed for a patent at the Slovenian patent office under
nr. P-201900181.
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