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Abstract: Surface velocity in the continuous-casting mold needs to be studied to better control the
quality of steel products. In this paper, the measurement of surface velocity in a 150 mm × 1270 mm
slab continuous-casting mold was investigated. Taking the slag layer into consideration, a numerical
simulation was performed which was validated by a particle image velocimetry test. A nail-board
experiment was also conducted to measure surface velocity in the continuous-casting mold. The effect
of nail diameter used in nail-board experiment on the measurement of the surface velocity was also
discussed to improve the precision of nail-board experiment result. The results showed that the
maximum surface velocity was 0.739 m/s around the mid-section of the free surface, and the results of
nail-board experiments were more accurate when the steel nail diameter was 10 mm.
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1. Introduction

The continuous-casting mold plays an important role in the production of high-quality defect-free
steel materials [1,2]. The fluctuation of the liquid level in the mold directly affects the quality of the
steel product. This liquid level fluctuation, especially at a high casting speed, readily leads to problems
such as slag entrapment whereupon the slag is further captured by the solidification front, resulting in
slab defects [3–6]. Therefore, in reducing the secondary oxidation and slag entrapment behavior of
molten steel, it is important to measure surface velocity in the mold and control the flow field in the
mold [7,8]. Controlling fluctuations of the free surface can improve the quality of the steel product and
is a crucial aspect of continuous-casting production [9–13].

The development of numerical simulation technology has made it possible to evaluate liquid level
characteristics in a continuous-casting mold under working conditions and to judge slag entrapment.
Thomas et al. [14] conducted a nail-board experiment to test the velocity field, pressure field, and liquid
surface shape, using a fluid dynamics analysis program (FIDAP) to simulate the nail experiment, but
only one nail was used and no plant experiment was conducted to validate the results. Liu et al. [15]
found that the optimal duration of insertion of the steel nails decreased with decreasing nail diameter,
and the immersion time of steel nails should be controlled at 3–5 s. The accuracy of the measurement
results depends on the latter requirement because the steel slag on the nail re-melts if the immersion
time is too long. However, the effect of nail diameter in industrial experiments has not been investigated
until now.

In this paper, a nail-board experiment was used to measure the surface velocity in a 150 mm ×
1270 mm slab continuous-casting mold at the Tang Steel Company (Tangshan, China). The effect of
the steel nails’ diameter in the nail-board experiment was also discussed to improve the precision
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of measurement results. Surface velocity in the mold was studied using the large eddy simulation
coupling volume-of-fluid method, which was validated by a particle image velocimetry (PIV) test.
The plant experiment (the nail-board experiment) was carried out to further validate the results
of numerical simulation and discuss the effect of the steel nail diameter on the measurement of
surface velocity.

2. Experimental Section

2.1. Governing Equations

A volume-of-fluid model was used to track the interface between phases. The continuity and
momentum conservation equations for the fluid are

∂αqρq
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where αslag is the volume fraction of slag; ρsteel is the density of molten steel (kg/m3); ρslag is the density
of slag (kg/m3); uq is the fluid velocity vector of phase q (m/s); and t is time (s). We have
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where µ is the dynamic viscosity (Pa·s) and µt is the sub-grid-scale eddy-viscosity coefficient.
A sub-grid-scale stress is generated in the process of analyzing large eddies and modeling small

eddies:
τi j =

1
3
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where τkk is ignored owing to the low-Mach-number flow and δij is the Kronecker constant. Sij is the
strain rate tensor, expressed as
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2.2. Boundary Conditions and Computational Details

Table 1 gives the mold dimensions. The symmetry condition at the mold center was taken
into consideration to save computational resources. The fluid region in the mold during the
continuous-casting process was solved with 500,000 hexahedral structured cells as shown in Figure 1.

Table 1. Mold dimensions.

Mold Height, m Mold Length, m Mold Width, m Submerged Depth, m Inlet Diameter, m

1.10 1.27 0.15 0.07 0.074
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Figure 1. Mesh used in numerical simulation: (a) side view and (b) submerged entrance nozzle. 
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Figure 1. Mesh used in numerical simulation: (a) side view and (b) submerged entrance nozzle.

According to the mass conservation law, the inlet velocity is

vinlet =
4ucastingLoutletWoutlet

πDinlet
2 (8)

where ucasting is the casting speed; Loutlet is the length of the outlet; Woutlet is the width of the outlet;
and Dinlet is the diameter of the round opening. For a casting speed of 1.6 m/min, an inlet velocity of
1.329 m/s was calculated using Equation (8). It was assumed that the initial slag layer was stationary.
The outlet was set as open, with zero relative pressure at the surface. Table 2 gives the physical
properties of the slag and molten steel used in mathematical simulations [16].

Table 2. Physical properties of the steel and slag in mathematical simulations.

Molten Steel
Viscosity, Pa·s

Slag Viscosity,
Pa·s

Molten Steel
Density, kg/m3

Slag Density,
kg/m3

Interface Tension
(σsteel/slag), N/m

0.0055 0.4 7020 2500 1.2

The commercial software FLUENT (17.0, FLUENT, Pittsburgh, PA, US) was used for large eddy
simulation modeling using a DELL eight-core personal computer (DELL, Xiamen, China) with 64.0 GB
of random-access memory and a 3.40-GHz Intel® Xeon processor (Intel, Beijing, China) for parallel
computing. The submerged depth was 90 mm, and the modeled time was about 15 s with a time step
of 0.001 s.

2.3. Experimental Set-Up

A 0.5 scale water modeling experiment apparatus, consisting of mold with a submerged nozzle,
water tank, electronic flowmeter, and pump, was set up. The bottom of the mold was connected to the
water tank on the top through water pipes. After flowing out of the outlet, water was pumped back to
the top tank. The velocity field in the water modeling was measured by particle image velocimetry
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(PIV). The laser from the side of the mold was produced by a laser transmitter. Two CCD cameras
placed in front of the wide face of the mold were used to record the tracer particle movement.

Plant experiments were carried out using a continuous-casting mold having dimensions of
150 mm × 1270 mm. In the first experiment, the nail board had nails with a diameter of 5 mm. The nails
were numbered 1–10 from right to left, as shown in Figure 2. In the second experiment, the nails had a
diameter of 10 mm and were again numbered 1, 2, . . . 10 from right to left. The spacing of nails was
50 mm.
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There are two strands of swirling flow in the mold during continuous casting, namely an upper part 
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important. When flow rushes out of the nozzle port, it moves forward along the nozzle angle and 
then impacts the narrow face, producing two streams. The upward flow disturbs the molten steel at 
the free surface, sometimes resulting in surface fluctuation and even slag entrapment.  

Figure 2. Schematic diagram of the nail board.

3. Results and Discussion

3.1. Surface Velocity

Figure 3 shows velocity vectors at the wide face of the mold obtained by computational fluid
dynamics modeling and PIV testing.
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Figure 3. Velocity vectors at the wide face of the mold. (a) Results of particle image velocimetry (PIV)
testing; (b) results of numerical simulation.

It can be seen that the results of PIV testing agree with the results of numerical simulation,
demonstrating the accuracy of the computational fluid dynamics modeling. Compared with the results
of the PIV test, the results of numerical simulation are more precise and present smaller vortices.
However, the velocity distributions obtained by the two methods are basically the same. There are two
strands of swirling flow in the mold during continuous casting, namely an upper part and lower part.
For the upper part, the effect of the velocity magnitude on surface fluctuation is important. When flow
rushes out of the nozzle port, it moves forward along the nozzle angle and then impacts the narrow
face, producing two streams. The upward flow disturbs the molten steel at the free surface, sometimes
resulting in surface fluctuation and even slag entrapment.
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Figure 4 is the contour of velocity magnitude at free surface by numerical simulation. It shows
that the velocity was highest (0.739 m/s) around the mid-section of the surface and lowest on both
sides. The higher the surface velocity, the more easily the liquid level fluctuated or slag entrapment
occurred. The velocity distributions of the free surface along the central line of the nozzle obtained
using the two methods are compared in Figure 5 (for the same line measured in the plant experiments).
The results of PIV testing show the same trend in that the velocity was highest (0.682 m/s) around the
mid-section of the surface and lowest at the two sides. In the range of 0.3 m to 0.5 m from the nozzle
center, the velocity distributions of the two methods were slightly different and the maximum relative
error of the free-surface velocity was 8%. It is suggested that the two methods validate each other and
both numerical results and PIV results are reliable.
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In summary, the results of numerical simulation are in good agreement with the PIV data and the
maximum surface velocity was 0.739 m/s around the mid-section of the free surface.

3.2. Effects of Nail Diameter Used in the Nail-Board Experiment

To further validate the results of surface velocity calculated by numerical simulation, the surface
velocity Vm of plant experiment results could be obtained as [17,18]

Vm = 0.624∆hlump
0.567ϕlump

−0.696 (9)

where ∆hlump is the difference between the heights on the two sides of the steel nail and ∆hin and ∆hout,
ϕlump is the difference between Din and Dout, as shown in Figure 6.
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The periphery of the block solidified on the nail was approximately circular, and the outer diameter
is expressed as

Dout =
CLump

π
(10)

where Clump is the circumference.
Figure 7 presents the results of numerical simulation and industrial experiments given in

Tables 1 and 2. Compared with the results obtained using the 5-mm-diameter nails, the results
obtained using the 10-mm-diameter nails were closer to the numerical simulation results. The velocity
curves obtained in numerical simulation had two peaks, and the velocity was highest around the
mid-section (0.35 m away from the nozzle center). Even considering the error bars, the results obtained
using the 10-mm-diameter nails were closer to the numerical simulation results. This shows that the
diameter of steel nails being too small (5 mm here) leads to instability of the solidified lump remaining
on a steel nail and increases inaccuracies in the results.Metals 2019, 9, x FOR PEER REVIEW 7 of 9 
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Error analysis needs to be discussed, as there were no repetitions in the plant experiment. In this
paper, the diameter of a block solidified on a steel nail is in the range of 10–16 mm. According to the
error evaluation of nail dipping conducted by Ji et al. [19], error is included in the form of error bars in
Figure 7. The error in the surface velocity decreased as the nail diameter increased. The maximum
error for the 5-mm-diameter steel nails was 0.205 m/s (in the mid-section 0.35 m from the nozzle center),
while the minimum error was 0 m/s. The maximum error for the 10-mm-diameter steel nails was
0.1 m/s (at 0.4 m from the nozzle center) while the minimum error was 0.01 m/s. Generally, the error
for a 10-mm-diameter nail was smaller than that for a 5-mm-diameter nail. Additionally, high errors
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were seen in the region between the mid-section and narrow face of the mold, which indicates that the
measurement error was higher for a higher flow velocity. Steel nails with a diameter of 10 mm should
therefore be chosen to measure the surface velocity.

3.3. Interface Shape

Figure 8 shows the interface shapes obtained by numerical simulation and industrial experiments.
In the industrial experiments, the average height of left and right sides of the solidified lump around
the nail was taken as the liquid level.
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Figure 8. Fluctuations of the liquid level in the results of the numerical simulation and
industrial experiment.

There are two troughs in the curve obtained by numerical simulation. Near the top of the nozzle
port, there was a slight fluctuation of the liquid level due to the backflow of the upper circular stream
after impinging on the narrow face of the mold. The fluctuation of the liquid level was affected by
the impingement of the upper stream on the narrow side of the mold, such that there was an obvious
bulge in the interface shape near the narrow face of the mold. Overall, the fluctuation of the interface
shape was consistent with the velocity field.

A comparison of the results obtained in the nail-board experiment using nails having a diameter
of 5 mm with the results of numerical simulation shows that the curve of the liquid level measured
in the industrial experiment fluctuated greatly. There was no slight disturbance of the liquid level
at the top of the nozzle port. There was a sharp uplift 0.35 m from the nozzle center. The interface
shape measured using steel nails with a diameter of 10 mm also had two troughs, but the overall
change in the interface shape was relatively stable. At the same position (i.e., 0.35 m from the nozzle
center), the liquid level dropped slightly and then rose slowly. In terms of fluctuation of the liquid
level, the results obtained using the steel nails with a diameter of 10 mm were more similar to the
numerical results.

4. Conclusions

To measure the surface velocity in a 150 mm × 1270 mm slab continuous-casting mold, numerical
simulation was used in this paper. Then, the results of numerical simulation were validated in a PIV
test. A nail-board experiment was also conducted in a 150 mm × 1270 mm continuous-casting mold.
The effect of nail diameter in the nail-board experiment on the measurement of the surface velocity was
also discussed to improve the precision of the nail-board experiment results. The following conclusions
are drawn from the results of this work.
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(1) The results of numerical simulation show that the surface velocity around the mid-section,
0.739 m/s, is higher than the velocity at either side. The results of numerical simulation are in good
agreement with the PIV results.

(2) When the diameter of a steel nail is 10 mm, the measured surface velocity is closer to the value
predicted in numerical simulation. Additionally, the error is less than that in results obtained using
5-mm-diameter steel nails.

(3) Results of the fluctuation of the liquid level obtained using 10-mm-diameter steel nails are
more similar to the numerical results in that there are two troughs overall, but the overall change in the
interface shape is relatively stable.

(4) Greater surface velocities induce violent impacts on the steel nails. Correspondingly,
measurement errors tend to be larger for a high surface velocity.
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