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Abstract: Recent studies have suggested that high-entropy alloys (HEAs) possess high fracture
toughness, good wear resistance, and excellent high-temperature mechanical properties. In order
to further improve their properties, a batch of TiC-reinforced FeCoNiCuAl HEA composites were
fabricated by mechanical alloying and spark plasma sintering. X-ray diffractometry analysis of the
TiC-reinforced HEA composites, combined with scanning electron microscopy imaging, indicated
that TiC particles were uniformly distributed in the face-centered cubic and body-centered cubic
phases. The room temperature hardness of the FeCoNiCuAl HEA was increased from 467 to 768 HV
with the addition of TiC, owing to precipitation strengthening and fine grain strengthening effects.
As the TiC content increased, the friction coefficient of the FeCoNiCuAl HEA first increased and then
decreased at room temperature, due to the transition of the wear mechanism from adhesive to abrasive
behavior. At higher temperature, the friction coefficient of the FeCoNiCuAl HEA monotonously
reduced, corresponding well with the transition from adhesive wear to oxidative wear.
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1. Introduction

In recent years, a novel class of solid-solution metallic alloys, named high-entropy alloys (HEAs)
or multi-primary element alloys (MPEAs), has attracted widespread attention [1]. They usually contain
five components ranging from 5% to 35% (atomic percentage, at%). Compared to traditional alloys,
the HEAs exhibit various excellent properties in their strength, wear resistance, thermally-stable
microstructure, oxidation, and corrosion resistance [2–4], indicating large potential applications at high
temperature in engineering fields.

The microstructures and properties of the FeCoNiCuAl HEA have been widely studied over the
past decade [5–7]. The addition of the aluminum (Al) element can not only increase lattice distortion
and elastic energy, but also promote the formation of the body-centered cubic (BCC) phase. Therefore,
it is helpful to increase the strength and hardness of HEAs. Simultaneously, the density of HEAs is
significantly reduced by adding lightweight aluminum. Moreover, the addition of the copper (Cu)
element can stabilize the face-centered cubic (FCC) phase and improve the hardness, ductility, and
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wear resistance of HEAs [8,9]. Recently, it was reported that the addition of Cu can reduce the wear
rate of CoCrFeNiCux HEAs at both room temperature and elevated temperatures, and wear resistance
at elevated temperatures is promoted more significantly than that at room temperature due to their
self-lubricating mechanism [10].

However, the major challenge for practical applications of the FeCoNiCuAl HEA is its insufficient
strength. Recent studies have indicated that the precipitation of reinforcing phases in various
materials, such as HEAs and ceramics, can further increase the yield strength of the alloy while
maintaining relatively high ductility [11–13]. For instance, the precipitation of SiC nanoparticles in
FeCoCrNiMn enhanced the compressive yield strength from 1180 to 1480 MPa at room temperature [14].
The precipitation of WC in the FeCoCrNi HEA leads to an improved hardness up to 768HV, which
corresponds well with the transition of the wear mechanism [13]. The alloy may also be strengthened
by dispersion strengthening, which can significantly improve the strength and hardness of the alloy,
and reduce the plasticity and toughness slightly [15]. TiC is considered a good candidate as the
strengthening phase due to its high melting point, high hardness, low density, good metal matrix
wettability, good chemical stability, and excellent wear resistance [16]. The optimized yield strength of
the (FeCrNiCo)Al0.75Cu0.25 HEA reinforced by TiC particles can reach 1637 MPa, which is increased
by 90.6% compared to the (FeCrNiCo)Al0.75Cu0.25 HEA [17]. However, the precipitation of ceramic
nanoparticles in the metal matrix tends to be unevenly distributed, which is probably originated from
the instability of the interfaces between the ceramic particles and the metal matrix [18–20]. In order to
make the second phase uniformly distributed in the matrix, in situ methods are widely used to fabricate
composites with a nanosized ceramic strengthening phase [21,22]. In general, a composite material is
fabricated by an in-situ reaction of additives and carbon-based abrasives via the method of powder
metallurgy [23]. Particularly, spark plasma sintering (SPS), a powder metallurgy process, provides fast
processing of the feedstock, the suppression of grain coarsening and the production of specimens with
a low porosity [24,25]. The combination of the ultra-fine grain and nanosized reinforcing particles can
enhance the strength of the composite material through the Hall–Petch effect and the strengthening of
dislocations [26,27]. At the same time, the in-situ method can make the interfaces between the ceramic
and the metal substrate cleaner, showing stronger bonding forces between materials that strengthen
the mechanical properties of the composite material [28].

As demonstrated above, the precipitation strengthening effects in HEAs have been extensively
investigated [13,14,29–33]. However, the high-temperature tribological properties of ceramic-reinforced
HEAs have rarely been reported. In the present study, FeCoNiCuAl HEA composites reinforced by in
situ-generated TiC ceramic particles were fabricated by mechanical alloying (MA) followed by SPS.
The microstructures, phase compositions, and hardness of the FeCoNiCuAl-TiC composites were
characterized, respectively. The effect of strengthening phases on the high-temperature tribological
properties of the HEA was studied, and the related mechanism was discussed.

2. Experimental

The pre-alloyed powder of the FeCoNiCuAl HEA was prepared using gas atomization in a
high-purity argon atmosphere to avoid oxidation. The particle size of the HEA powder was measured
by a laser particle size analyzer (MASTERSIZER3000, Malvern, Worcestershire, UK). The average
particle size of the HEA powder was approximately 9.2 µm. The equiatomic-ratio FeCoNiCuAl HEA
was mixed with varying compositions (0 wt%, 10 wt%, 20 wt%, 30 wt%) of Ti powder and graphite
nanoparticles (around 100 nm) in a high-energy planetary ball milling machine (MITR YXQM-4L,
MITR, Changsha, China) for 5 h. The milling speed was 250 rpm, and the ball-to-powder weight
ratio was 10:1. Ethanol was used as a processing control agent to avoid cold welding. The as-milled
powders were then consolidated by spark plasma sintering (SPS; FCT D25/3) in a 40 mm graphite die
at a sintering temperature of 1000 ◦C under 30 MPa pressure for 10 min. Graphite foils with applied
BN coating were placed between the powders and the die walls to avoid possible contamination.
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The as-SPSed bulk specimens were polished using standard metallographic silicon carbide papers
supplemented with colloidal silica powders (Struers OPS).

The phase composition of the HEA-TiC composite was analyzed using a D/max 2500pc X-ray
diffractometer (XRD) (Advance D8, Bruker, Karlsruhe, Germany) with Cu–Ka radiation (k = 0.154 nm).
The microstructure observation was conducted by a scanning electron microscope (SEM) equipped with
energy dispersive spectrometer (EDS) and electron backscatter diffraction (EBSD) (FEI Nova Nano230).
The hardness of the specimens was measured by a micro-Vickers hardness tester at a load of 5 kg for
15 s (HVS-5). The micro-hardness of each phase was determined by an Ultra Nanoindenter (UNHTL
+MCT, CSM, Switzerland) under the load of 30 mN for 10 s. The wear tests were performed using a
HT-1000 ball-on-disk tribometer (HT-1000, Lanzhou ZhongKeKaiHua Technology Development Co.
Ltd, Lanzhou, China) under constant applied normal load of 10 N at a line speed of 0.5 m/s for 30 min
and at the testing temperatures of 20 and 600 ◦C, respectively. Commercial Si3N4 balls were used as the
counterface. The diameter of the Si3N4 balls was 6 mm. The volumetric loss of the alloy was measured
using a contact surface profilometer (Keyence VHX-5000). The volume wear rate was calculated by the
formula W = V/SL, where W is the volume wear rate, V is the volumetric wear loss, S is the sliding
distance, and L is the normal load. To ensure reproducibility, the wear tests were performed at least
three times at both room and high temperature. The mean value of the wear rates was calculated.
The worn surfaces of the specimens were examined by SEM.

3. Results

3.1. Microstructures

Figure 1a shows XRD patterns of the HEA composite powders after ball milling. The HEA
powders consisted mainly of FCC and BCC phases. As for the as-milled HEA-TiC powders, diffraction
peaks of Ti and graphite were distinctly observed. The peak intensity of Ti and graphite increased with
the increase in Ti and graphite contents. The XRD patterns of SPSed specimens are shown in Figure 1b.
Likewise, the SPSed HEA still comprised FCC and BCC phases. In the HEA-TiC composites, the peaks
of Ti and graphite disappeared instead of TiC peaks, which indicate the formation of TiC during the
sintering process. Table 1 presents the mixed enthalpy between carbon and several metal elements.
Considering the lowest value of mixed enthalpy between Ti and C, the formation of TiC is reasonable
and consistent with that reported by Yim [17]. According to the XRD data, the equilibrium lattic e
constants of the FCC and BCC phases in the HEA were calculated as 3.521 and 2.881 Å, respectively,
while the lattice constants of FCC and BCC phases in the composites were 3.53 and 2.884 Å, respectively.
This discrepancy is probably due to the solid solution effect of the C atoms in the matrix [21,22].
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Table 1. The mixing enthalpy of different atomic pairs [34].

∆Hmix, kJ/mol Fe Co Ni Cu Al Ti

C −50 −42 −39 −33 −36 −109

During the MA process, oxidation inevitably occurs and oxides are commonly included in the
alloys [35]. Figure 2 presents the microstructures of the sintered HEAs. In addition to the alloy matrix,
there are two types of impurities, i.e., white particles attached on the surface (Figure 2a) and black
spots dispersed in the matrix (Figure 2b). The white particles are presumed to be silica powders in
oxide polishing solution (OPS) owing to their similar size (0.04 µm), while the black spots correspond
to oxides [17,36]. The impurities are generally introduced by the milling medium and/or the process
controlling agent (PCA) during the MA process [37,38].
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As shown in Figure 2b, the HEA consists mainly of a gray phase and a white phase, corresponding
to the FCC and BCC phases, respectively, which is in accord with the results reported by Beyramali
Kivy et al. [8]. It was reported that Ni and Al show high concentrations in the BCC phase, while Cu
was abundant in the FCC phase [39]. The EDS analysis results of the bright and dark areas in Figure 2b
are listed in Table 2. According to this result, the crystal structure of the bright area was FCC phase
and the gray area was BCC phase. The microstructures of HEA-TiC composites with different TiC
contents are presented in Figure 3. A number of black dots with a diameter of 0.3 µm were uniformly
distributed in the FCC and BCC phases. The composition of the black phase is exhibited in Figure 4,
indicating the formation of TiC particles in the HEA. The distribution of TiC particles in the HEA was
uneven; it is easier to precipitate in the FCC phase due to the FCC structure of TiC [29]. In the HEA-TiC
composites, with increasing Ti and graphite contents, the content of TiC increased.

Table 2. Chemical compositions of the FCC phase, BCC phase, and TiC phase.

Chemical
Composition Fe Co Ni Cu Al Ti C

FCC 26.7 21.4 17.0 27.0 7.3 - -
BCC 23.2 24.0 25.0 7.8 19.7 - -
TiC 5.1 5.3 5.3 2.2 3.3 53.3 25.6
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Figure 5 exhibits the EBSD inverse pole figure (IPF) maps of the HEA and the 10 wt% HEA-TiC
composite. TiC particles were observed in the XRD patterns (Figure 1) and SEM images (Figure 3).
However, they were not detected in EBSD maps due to the limited particle size of TiC. It is apparent that
the average grain size of the 10 wt% HEA-TiC composite is smaller than that of the HEA. The addition
of TiC can suppress the growth of grains during sintering, leading to the refinement of the grains in the
HEA matrix. Figure 5c,d present the phase compositions of the HEA and the HEA-10TiC composite,
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respectively. The FeCoNiCuAl HEA is mainly composed of the BCC phase and a small amount of the
FCC phase. With the addition of Ti and graphite, the content of FCC increases from 11.9% in the HEA
to 19.2% in the HEA-10TiC composite.
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3.2. Hardness

The hardness of the HEA-TiC composites is shown in Figure 6a. As the content of TiC increases,
the hardness of the composites remarkably increases from 467 to 768 HV. The micro-hardness of
the matrix phase, TiC particles, and the interface between TiC particles is illustrated in Figure 6b.
The result indicated that the agglomerated TiC exhibited the highest micro-hardness (1489 HV) among
all phases. The micro-hardness of the interface was about 916 HV, and the matrix phase showed
the lowest micro-hardness of only 570 HV. The high hardness of the TiC particles may contribute
to the improvement of the wear resistance of the HEA-TiC composites. Figure 6c presents typical
loading–unloading curves for indentations with a 50 mN load. The TiC particle showed a higher elastic
modulus than that of the matrix phase.
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3.3. Friction and Wear Properties, Worn Surface, and Debris

The friction and wear properties of the HEA-TiC composites are shown in Figure 7. The friction
coefficients of all specimens sharply increased at the beginning of the wear tests and reached a
steady state corresponding to the breaking-in stage. Subsequently, all of the friction coefficient curves
remained relatively stable and exhibited periodic waves, which may be owing to periodic accumulation,
elimination of debris and the periodic localized fracture of the surface layer [40]. The increase in the
friction coefficient was caused by the accumulation of abrasive debris on the wear surface, and the
separation of the wear debris from the surface or the filling of the wear cracks caused the reduction of
the friction coefficient. As shown in Figure 7b, the average friction coefficient increased at first and
then decreased with further addition of Ti and graphite to 30 wt%. The volumetric wear rate curves of
the composites at room temperature are shown in Figure 7c. With the increase in the Ti and graphite
contents, the hardness of the composite increased and the wear rate decreased.

Figure 8 shows the worn surface morphologies as well as the debris of HEA-TiC composites.
The typical morphologies of both adhesive wear and abrasive wear were observed in the HEAs. When
the stress arising from the grinding ball on the worn surface was higher than the yield strength of
the HEAs, the deformation process was triggered. Under alternating stress, debris was torn off from
the surface and deformed as flakes, as shown in Figure 8e. The EDS results of the worn surface are
summarized in Table 3. The oxygen contents of the worn surface increased slightly with the addition of
Ti and graphite, indicating that no considerable oxidation occurred. Figure 8c, d show comparatively
rough surface generated by the micro-cutting and micro-plowing of abrasive particles. The furrow-like
wear scar along the sliding direction in HEA-TiC composites implied an abrasive wear dominated
process. The grinding chips were either particle-like or flake-shaped. With the increase of TiC content,
the amount of flaky wear debris decreased, while the particle-like debris increased (Figure 8e–h).
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Table 3. Chemical compositions of the surface wear-tested at room temperature, in atomic percentage.

Chemical
Composition Fe Co Ni Cu Al Ti C O

TiC00 21.3 22.0 21.2 11.0 19.6 - - 4.9
TiC10 16.1 13.5 12.3 17.9 12.5 8.5 12.7 6.6
TiC20 15.5 15.3 14.8 8.8 13.7 14.4 10.7 7.0
TiC30 10.7 10.3 9.8 9.2 8.6 24.0 15.9 11.4
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The friction and wear properties of the HEA-TiC composites at high temperature are shown
in Figure 9. As shown in Figure 9a, the friction coefficient of the HEA was unstable and exhibited
drastic fluctuation, which may be related to the aggregation of large debris. In contrast, the friction
coefficients of the HEA-TiC composites remained comparatively stable after the run-in period. With
the addition of Ti and graphite, the average friction coefficient dropped considerably (Figure 9b).
As plotted in Figure 9c, the wear rate of the HEA was significantly higher than that of the HEAs-TiC
composites. However, it clearly presented only small wear scatters among the HEA-TiC composites,
which is mainly ascribed to the transition of the wear mechanism. This will be further clarified in the
Discussion section. Recent work by Moravcikova-Gouvea et al. [41] reported that a HEA produced by
MA and SPS exhibited better wear resistance than traditional AISI 52,100 and Inconel 713 alloys, and
suggested that powder metallurgy provides a good approach to fabricating HEAs with fine-grained
microstructures and enhanced wear resistance. Similarly, in the present study, the wear rates of the
HEA-TiC composites have the same order of magnitude (10−5 mm3/Nm) at room temperature, while
the high-temperature wear rates of the TiC-containing specimens are dramatically lower than that of
the TiC-free specimen, and even other HEAs, by at least one order of magnitude [42,43].Metals 2019, 9, x FOR PEER REVIEW 11 of 16 
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Figure 10 exhibits the worn surface and debris of the HEA-TiC composites at high temperature
(600 ◦C). The worn surface of the HEA was smooth (Figure 10a), and large pieces of flake-like debris
were peeled off from the wear surface (Figure 10e). These indicated the occurrence of severe adhesive
wear. In contrast, the high-temperature worn surfaces of the HEA-TiC composites were relatively
smoother, and smearing of the wear scars occurred (Figure 10b–d). The material of interface contact
points was soft, and a metal-like film on the friction surface was formed. The metal-like film can act
as a lubricating agent, and result in a considerably reduced friction coefficient. The grinding chips
generated by wear tests performed at high temperature were primarily particle-like (Figure 10f–h).
With the increase of TiC content, the amount of wear debris decreased and the size reduced.
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4. Discussion

4.1. Microstructures

It is well accepted that the microstructure plays a significant role in the wear resistance of materials.
In the present study, the microstructure of the FeCoNiCuAl HEA was mainly composed of the FCC
and BCC phases. The EDS results indicated that Co was almost uniformly distributed in both phases
compared to other elements. Ni and Al showed relatively higher concentrations in the BCC phase,
while Cu and Fe were abundant in the FCC phase. These are consistent with other reports [8,9,44].
The precipitation mechanism for the ordered Al–Ni-rich matrix phase is spinodal decomposition due
to the large mixing enthalpy between Al and Ni [29,45]. With the addition of Ti and graphite, the grain
size reduced. As shown in Figure 3, the segregation of the TiC ceramic particles in the HEA matrix
may be attributed to the dual-phase structure [29]. The volume fraction of TiC increased accompanied
by the increasing incorporation of Ti and graphite. Large clusters were observed in the HEA-30TiC
composites (Figure 3F,I).

4.2. Wear Behavior

During the sliding processes, the HEA-TiC composites exhibited excellent wear resistance.
The reason for this may be explained as follows. First, TiC, acting as a strengthening phase, can
effectively reduce the plastic deformation of the matrix during sliding, thus improving the wear
resistance of the composites [46]. Second, the grain sizes of the HEA-TiC composites were lower than
that of the HEA. The TiC particles can inhibit the growth of grains to obtain finer grains, thereby
enhancing the strength and hardness. According to Archard’s law, assuming that it is under the
condition of adhesive wear and sliding spherical asperities deform fully plastically in contact, the wear
resistance of the material is proportional to its hardness, and thus it will be promoted as well [47,48].
Thus, the wear resistance of the HEA-TiC composites was better than that of the HEA due to their
high hardness [40]. Further, the excellent antioxidation properties in the composites are proposed
to improve the wear resistance [49]. The EDS results of the HEA-TiC composites indicated that the
existence of oxidized layers can effectively prevent direct metal–metal contact and impede adhesive
wear. Therefore, the wear rate of the HEA-TiC composites was further reduced with the increase in Ti
and graphite.

The EDS results exhibit that the contents of Cu and O are remarkably high (Table 4), which
indicates the presence of an oxide layer, thus improving the wear properties [10,40]. During wear tests
conducted at high temperature, the formation of an oxidation layer, acting as a lubricating film, is
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easier than the tests performed at room temperature. This implied that oxidative wear was dominated.
Two competitive processes may coexist. The debris peels off from the composites, and oxidation layers
are formed by cold welding. Meanwhile, the fragmentation of the oxidation layer continually occurs
to produce new debris [50]. In the HEA, the debris are not well compacted, which makes them easy to
remove and gives rise to the enhancement of wear rate. In the HEA-TiC composites, in contrast, the
oxidation layers are strengthened by the TiC particles to produce glazed layers, which may efficiently
prevent metal–metal contact and reduce friction between the HEA-TiC composites and the counterface.
Consequently, the friction and wear properties of the HEA-TiC composites are substantially improved
at high temperature [29].

Table 4. Chemical compositions of the surface wear-tested at high temperature, in atomic percentage.

Chemical
Composition Fe Co Ni Cu Al Ti C O

TiC00 9.9 10.9 11.4 14.6 25.2 - - 28.0
TiC10 2.6 3.5 4.1 15.5 5.4 3.4 4.8 60.6
TiC20 1.5 3.7 3.4 13.0 3.9 6.8 3.0 64.7
TiC30 1.0 2.2 3.0 15.8 3.8 9.8 4.1 60.6

5. Conclusions

(1) The FeCoNiCuAl-TiC composites mainly consist of FCC, BCC, and TiC phases. The TiC
particles are dispersed in the matrix with a diameter of 0.3 µm.

(2) The micro-hardness of FeCoNiCuAl-TiC composites increases from 467 to 768 HV with the
increase in TiC content, which is primarily attributed to the strengthening of the hard TiC phases and
the refined microstructures.

(3) The main wear mechanism for the FeCoNiCuAl HEA at room temperature is adhesive wear.
The wear mechanisms for the FeCoNiCuAl-TiC composites at room temperature are adhesive wear
and abrasive wear. With the increase in TiC, the friction coefficient increases first and then decreases,
while the wear loss continually decreases.

(4) The wear mechanism of the FeCoNiCuAl HEA at high temperature is severe adhesive
wear. With the addition of TiC, both the friction coefficient and the wear rate reduce considerably.
The dominant wear mechanism of HEA-TiC composites at high temperature is oxidative wear.
Benefiting from the formation of oxidation layers, the HEA-TiC composite exhibits excellent
wear resistance.
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