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Abstract: We review the mechanical theory of dislocation and disclination density fields and its
application to grain boundary modeling. The theory accounts for the incompatibility of the elastic
strain and curvature tensors due to the presence of dislocations and disclinations. The free energy
density is assumed to be quadratic in elastic strain and curvature and has nonlocal character.
The balance of loads in the body is described by higher-order equations using the work-conjugates of
the strain and curvature tensors, i.e., the stress and couple-stress tensors. Conservation statements
for the translational and rotational discontinuities provide a dynamic framework for dislocation and
disclination motion in terms of transport relationships. Plasticity of the body is therefore viewed as
being mediated by both dislocation and disclination motion. The driving forces for these motions are
identified from the mechanical dissipation, which provides guidelines for the admissible constitutive
relations. On this basis, the theory is expressed as a set of partial differential equations where
the unknowns are the material displacement and the dislocation and disclination density fields.
The theory is applied in cases where rotational defects matter in the structure and deformation of the
body, such as grain boundaries in polycrystals and grain boundary-mediated plasticity. Characteristic
examples are provided for the grain boundary structure in terms of periodic arrays of disclination
dipoles and for grain boundary migration under applied shear.

Keywords: plasticity; disclination; dislocation; grain boundary

1. Introduction

Disclinations and dislocations were simultaneously introduced by Volterra, more than a century
ago [1]. Dislocations are crystal defects arising from translational lattice incompatibility, as measured
by the Burgers vector. Disclinations are defects originating in the rotational incompatibility of the
lattice characterized by the Frank vector [2]. Disclinations have long been neglected in the field theory
of crystal defects, due to their diverging elastic energy, which precludes their occurrence as single
defects [3]. However self-screened configurations, such as disclination dipoles, involve bounded
elastic energy and may appear frequently [4,5]. Indeed, they have been proposed for describing grain
boundaries in various polycrystals, by deriving the disclination density field from crystal orientation
maps, as obtained by electron backscattered diffraction [6,7]. Disclination dipoles were also exhibited
in planar configurations formed by C60 molecular layers on WO2/W(110) substrates [8]. Generally,
disclinations are liable for complementing dislocations in the description of the lattice structure when
single-valued elastic rotation fields do not exist, as in polycrystals. Disclination dipoles were shown to
provide a good description of grain boundaries [9–12].

In addition to obstacles to plastic deformation by dislocation glide and twinning, grain boundaries
can also contribute to plastic deformation. In ultra-fine-grained metals or in materials lacking
dislocation slip systems, they can become plasticity mediators, not only by supplying dislocation
sources, but also via migration mechanisms. For example, when a shear stress is applied to a bicrystal,
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one crystal can grow at the expense of the other by the normal motion of the boundary, inducing
plastic shear in the crystal traversed by the boundary. Such shear/migration coupling is characterized
by the ratio β of the displacements parallel and normal to the boundary. Surface-dislocation-based
models [13,14] captured well the variations of this coupling factor as a function of the misorientation
from the Burgers vector’s content of the interface. Molecular dynamics methods [14–16] provided
elementary mechanisms for boundary migration under stress. As considered here, field models
involving dislocation and disclination densities are also candidates for the modeling of grain
boundaries and their plasticity. The size of the investigated microstructures can be of the order
of (but can be larger than) the dimensions typically considered in atomistic simulations. The field
models allow analyzing the fine structure of the grain boundaries and the distribution of elastic energy
at an atomic resolution length scale. It is also possible to model boundary migration by the motion of
arrays of disclination dipoles, and to model dissipative and diffusive phenomena using disclination
and dislocation transport equations [17].

In the present paper, we provide a review of the mechanical theory of dislocation and disclination
fields [18] and show its interest in dealing with crystalline bodies subject to grain boundary-mediated
plasticity. We limit the presentation to infinitesimal transformations. A more complete presentation of
the model may be found in the framework of generalized disclinations [19]. By a field theory, we mean
a theory of continuously distributed crystal defect densities using the tools of the mathematical
theory of partial differential equations and boundary problem solving. As such, we capitalize on the
earlier elasto-static theories of dislocation fields [20,21] and of dislocation and disclination fields [2].
Both theories are strongly connected: the latter reduces to the former when the disclination density
field vanishes. We also benefit from the mechanical theory of dislocation fields [22], which additionally
deals with dislocation-mediated plasticity. In the latter, the material displacement and dislocation
density fields are derived from a set of partial differential equations complemented with initial and
boundary conditions, provided constitutive information for the elastic behavior and dislocation
motion is supplied [23]. This theory was shown to capture well complex features of elasto-plastic
deformation such as size effects [24,25], directional hardening [24,26], plastic strain localization [27],
dislocation cores [28,29] and patterning of dislocation ensembles [30,31].

When the dislocation velocity vanishes, the mechanical theory of dislocation fields [22] reduces to
the elasto-static theory of dislocations [20,21]. The present framework of disclination and dislocation
fields reduces to the mechanics of dislocation fields when the disclination density is ignored. It also
reduces to the elasto-static crystal theory of dislocations and disclinations [2] when the velocities
of dislocations and disclinations are ignored. A previous theory of plasticity accounting for both
the translational and rotational aspects of lattice incompatibility was proposed by Kossecka and
deWit [32,33]. Driving forces for disclination motion were discussed in [34]. The theory offered
kinematic guidelines, but it was not used to solve realistic boundary value problems. In the present
work, we try to use the field disclination and dislocation mechanics model in situations where the
dynamic interplay between dislocations and disclinations is essential to the understanding of the
plastic deformation of the material.

The outline of the paper is the following. Mathematical notations are provided in Section 2.
A review of the incompatible elastic dislocation and disclination model [2] is given in Section 3.
Static coupling between dislocations and disclinations occurs at this level, due to the continuity
condition for dislocation densities. The equations of balance of momentum and moment of momentum
are given in Section 4, which further includes the presentation of nonlinear nonlocal elastic constitutive
laws that can be of interest for core problems. Section 5 is devoted to the transport properties of
dislocations and disclinations. Dynamic coupling occurs at this stage, because disclination mobility
yields a source/sink term for dislocations. In Section 6, guidance of the Clausius–Duhem inequality
allows defining the driving forces for dislocation and disclination motion, and helps providing
appropriate constitutive relations between the driving forces and defects velocities. Section 7 shows
possible algorithms used for the solution of the model equations. A plane “edge-wedge” model is
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detailed in Section 8, and used in Sections 9 and 10 to investigate the structure and mobility of grain
boundaries seen as periodic arrays of disclination dipoles.

2. Mathematical Notations

A bold symbol is used for a tensor, as in: A. To avoid possible ambiguities, an upper arrow can be
used for a vector: ~V. The transpose of a tensor A is At. Tensor subscript indices are expressed with
respect to a basis (ei , i = 1, 2, 3) of a rectangular Cartesian coordinate system. Arrays of one/two dots
denote contraction of the respective number of “adjacent” indices on two immediately neighboring
tensors. For instance, the tensor A.B with components AikBkj comes from the dot product of tensors A
and B, and A : B = AijBij is the inner product. The cross product of a second-order tensor A and a
vector V, the div and curl operators acting on second-order tensors are defined by:

(A×V)ij = ejkl AikVl (1)

(div A)i = Aij,j (2)

(curl A)ij = ejkl Ail,k . (3)

where ejkl = ej · (ek × el) is a component of the Levi–Civita tensor X. It is 1 if the jkl permutation
is even, −1 if it is odd, 0 otherwise. The comma followed by a component index denotes a spatial
derivative with respect to the Cartesian coordinate. A vector ~A is associated with tensor A through the
inner product of A with the tensor X:

(~A)k = −1
2

(X : A)k = −1
2

ekij Aij (4)

(A)ij = −(X · ~A)ij = −eijk(~A)k . (5)

The trace of the second-order tensor A is tr(A) = Aii. The symmetric/skew-symmetric parts are
Asym and Askew. The hydrostatic part is Ahyd = 1

3 tr(A)I, where I is the identity tensor, and its deviatoric
part: Adev = A−Ahyd. An upper dot represents a material time derivative.

3. Review of the Incompatible Elasto-Static Defect Theory

3.1. Incompatibility in the Dislocation Model

In the proposed framework, continuity of the displacement vector field u, along with continuity
of its derivatives, is assumed at any point, including between atoms, in a simply connected body that
is elasto-plastically deformed, except perhaps along interfaces where continuity of the derivatives may
not hold. The rotation vector

~ω =
1
2

curl u (6)

is also defined at any point. These statements assume in a dual way that the material is capable of
transmitting stresses and couple stresses, possibly below inter-atomic length scales. Such continuity
was very early proposed [35,36] when defining pressure and stresses in quantum systems. It was later
used by [37] when defining the stress tensor in quantum mechanics. By definition, couple stresses
(moments of stress) at a point come from mechanical stresses existing at distant material points. As such,
couple stresses introduce nonlocality in the mechanical description of the material. The distortion
tensor is the gradient of the displacement U = grad u. It is curl-free:

curl U = 0. (7)

If dislocations are present, the elastic Ue and plastic Up components of U contain incompatible
parts, which are not curl-free, but are div-free. Indeed, if dislocations thread a patch S in the body,
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a constant discontinuity b in the elastic displacement exists across S, which manifests itself as a closure
defect along the circuit C surrounding S:

b = JueK =
∫

C
Ue · dl. (8)

b is referred to as the resulting Burgers vector of this dislocation ensemble. Applying Stoke’s
theorem yields:

b =
∫

C
Ue · dl =

∫
S

curl Ue · ndS, (9)

where n is the unit normal to S. The discontinuity b is also characterized in a pointwise continuous
manner by introducing Nye’s dislocation density tensor α:

curl Ue = α (10)

such that
b =

∫
S

α · ndS. (11)

Thus, dislocation lines threading S and having a non-zero resulting Burgers vector induce the
existence of an incompatible part U⊥e of the elastic distortion tensor. Applying the Stokes-Helmholtz
decomposition of square-integrable tensor fields with square-integrable first order derivatives [38],
we can uniquely define the square-integrable tensor and vector χ and z such that the elastic distortion
Ue reads:

Ue = curl χ + grad z. (12)

The curl of Ue extracts curl χ and removes grad z while, conversely, taking the divergence extracts
grad z and removes curl χ. Thus, Equation (10) involves only curl χ, and

curl U⊥e = curl curl χ = α. (13)

The term grad z is the compatible (curl-free) part U‖e of the elastic distortion Ue, and z is the
compatible elastic displacement u‖e , up to a constant. However, Equation (13) is insufficient to identify
U⊥e from a given dislocation field α. To ensure completeness of the identification, U⊥e must vanish if
α = 0. Following [38,39], we thus augment Equation (13) with the supplementary condition div U⊥e = 0
together with U⊥e · n = 0 on the external boundary with unit normal n. This allows ensuring that the
solution does not contain any gradient part. Applying the curl operator to Equation (13), we have:

curl curl U⊥e = grad div U⊥e − div grad U⊥e = curl α. (14)

Then, using the side condition div U⊥e = 0, we get:

div grad U⊥e = −curl α. (15)

Equation (15) is a Poisson-type equation for the unique determination of the unknown tensor
U⊥e . We could have demonstrated in a similar way the existence of an incompatible part of the
plastic distortion, U⊥p , which is opposite to the incompatible elastic distortion U⊥e to ensure the
compatibility of the distortion U and the continuity of the displacement u. An additional compatible
component U‖p may also exist, together with a compatible plastic displacement u‖p. We can then write
the following equations:
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U = Ue + Up (16)

Ue = U⊥e + U‖e (17)

Up = U⊥p + U‖p (18)

0 = U⊥e + U⊥p . (19)

From the above, we see that:
α = −curl U⊥p (20)

similarly to Equation (13). The continuity condition:

div α = 0 (21)

derives naturally from Equations (10) and (13). The divergence-free character of α reflects the fact that
dislocation lines cannot end within the material. They should either exit the material, or be closed
lines. As will be shown later in Section 3.2, dislocation lines may possibly end on disclination lines.
Now, in view of defining disclinations in the next section, we introduce curvatures and examine how
they appear in the present dislocation model. The strain tensor ε is the symmetric part of U, the rotation
tensor ω its skew-symmetric part, corresponding to the rotation vector ~ω through the relation:

ω = −X · ~ω, ~ω = −1
2

ω : X. (22)

With this, Equation (7) yields:

curl ε + div(~ω)I− gradt~ω = 0 (23)

where grad~ω is the curvature tensor κ:
κ = grad ~ω. (24)

The trace of Equation (23) yields:
div(~ω) = 0, (25)

and implies that tr(κ) = 0, meaning that the curvature tensor is deviatoric. Please note that transposing
Equation (23) and then taking the curl yields:

curl curlt ε = 0. (26)

This is the Saint-Venant compatibility condition. Applying the above procedure to Equation (10),
we find:

curl εe + div(~ωe)I− gradt~ωe = α (27)

and:

η = curl curltεe = curl (αt − 1
2

tr(α)I). (28)

The incompatibility tensor η is a possible measure of the incompatibility due to the presence of
dislocations. To terminate this section, we introduce the elastic curvature tensor κe as the gradient of
the elastic rotation ~ωe:

κe = grad ~ωe, (29)
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which reflects both the continuity of the rotation vector and the curl-free character of the tensor κe:

curl κe = 0. (30)

Using κe, Equation (27) can be expressed as:

curl εe + tr(κe)I− κt
e = α. (31)

It is important to note for what follows that the above equation holds even if κe is not a gradient.
Finally, relations similar to Equations (29) and (31) can be obtained by using Equation (19) for the
plastic strain εp, rotation ~ωp and curvature κp:

κp = grad ~ωp (32)

−curl εp − tr(κp)I + κt
p = α. (33)

3.2. Incompatibility in the Dislocation and Disclination Model

We now assume that elastic rotation discontinuities J~ωeK exist in addition to the displacement
discontinuities JueK = b reflected by the dislocation densities. Thus, the elastic curvature tensor κe is
not a gradient anymore. This is the situation met along grain boundaries in polycrystals. Integrating
κe along closed circuits in the manner of Equation (9) leads to the angular closure defect φ known as
the Frank vector:

φ = J~ωeK =
∮

C
κe · dr =

∫
S

curl κe · ndS. (34)

We introduce a tensor field θ such that:

curl κe = θ (35)

and
φ =

∫
S

θ · ndS. (36)

θ is the disclination density tensor [2]. In the presence of disclinations, the elastic displacement
discontinuity reads:

JueK =
∮

C
[εe − (κt

e × r)t] · dr + φ× r0 = b + φ× r0. (37)

Thus, the discontinuity JueK derives from the motion of a rigid body with translation b and
rotation φ, in agreement with Weingarten’s theorem [40]. The Burgers vector can also be expressed as
a function of dislocation and disclination density tensors:

b =
∫

S
(α− (θt × r)t) · ndS. (38)

When both dislocations and disclinations exist, the incompatibility tensor η is:

η = curl curlt εe = curl (αt − 1
2

tr(α)I) + θ. (39)

As similarly detailed above for U⊥e , we must ensure that the incompatible part κ⊥e of the curvature
tensor is null if θ = 0. In this aim, Equation (35) must be replaced with:

curl κe
⊥ = θ, (40)

together with the side condition div κ⊥e = 0 and boundary condition κ⊥e · n = 0 on external boundaries.
These conditions provide a unique solution κ⊥e of the Poisson equation:
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div grad κ⊥e = −curl θ. (41)

A compatible part κ
‖
e can also exist, but it is not involved in Equations (40) and (41). Therefore,

one has the following equations:

κe = κ⊥e + κ
‖
e (42)

κp = κ⊥p + κ
‖
p (43)

κ = κ
‖
e + κ

‖
p (44)

0 = κ⊥e + κ⊥p . (45)

The incompatible plastic curvature is opposed to the incompatible elastic curvature to ensure that
the total curvature is compatible and the material continuous. Then:

curl κp
⊥ = −θ (46)

div grad κ⊥p = curl θ. (47)

The continuity equation for disclinations:

div θ = 0 (48)

derives from Equations (35) and (40). It mathematically expresses that disclination lines should not end
within the body and form closed loops. The continuity equation for dislocations Equation (21) becomes:

div α = θ : X. (49)

It means that dislocations may now terminate on twist-disclination lines. Please note that if the
disclination density is null, Equations (31), (35), (38) and (49) reduce to Equations (11), (21), (27) and (30),
and the elasto-static model of dislocations and disclinations reduces to the above dislocation model.

4. Elasticity in Incompatible Media Containing Dislocations and Disclinations

4.1. Field Equations

We consider describing the mechanical equilibrium of a simply connected body of volume V
and external surface S containing dislocations and disclinations, and submitted to external loading.
Since the disclination densities are associated with the incompatibility of the elastic curvatures, we are
interested in a framework involving, in addition to stresses, the work-conjugates of the curvatures,
i.e., the couple stresses. We therefore follow the footsteps of [41] to derive the mechanical balance
equations. Let n be the outward unit normal to S, t be the traction vector (force per unit area)
and m the moment vector (couple per unit area) acting on S. As they are non-essential for the
present purposes, body forces and couples are neglected for the sake of simplicity, as well as inertia
forces. The conservation of momentum and moment of momentum of the body therefore imposes the
following conditions: ∫

S
tdS = 0 (50)∫

S
(m + r× t) = 0. (51)

Assuming that the tractions and moments at boundaries can be written as t = T · n and m = M · n,
where T and M are respectively the stress and couple-stress tensors, we find by substituting in
Equations (50) and (51) and applying the divergence theorem:
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∫
V

div Tdv = 0 (52)∫
V

(div M− X : T)dv = 0. (53)

Assuming sufficient continuity, the pointwise local equations are:

div T = 0 (54)

div M− X : T = 0. (55)

Equations (54) and (55) are balance of momentum and moment of momentum equations where
the stress tensor T is not necessarily symmetric. These two equations can be combined to form
a higher-order balance equation coupling the symmetrical part of the stress tensor Tsym and the
deviatoric part of the couple-stress tensor Mdev [41]:

div Tsym +
1
2

curl div Mdev = 0, (56)

but involving neither the skew-symmetric part Tskew of the stress tensor nor the hydrostatic part Mhyd of
the couple-stress tensor. Tskew may be obtained from Equation (55), but Mhyd is altogether absent from
the mechanical balance equations and is therefore indeterminate in such a couple-stress theory [41–43].
A more general presentation of the theory involving not only curvatures and couple stresses but also
strain gradients and their work-conjugates (“hyper-stresses” or “double-stresses”) allows avoiding
such indeterminacy. It features crystal defects more general than disclinations, and referred to as
generalized disclinations. The differences between a couple-stress disclination theory involving only
curvatures and a hyper-stress generalized disclination theory involving both curvatures and strain
gradients are discussed in [44].

The mechanical dissipation in the material is the difference between the power of the applied
forces and the rate of change of the stored energy:

D =
∫

S
(v · T + ~̇ω ·M) · ndS−

∫
V

ψ̇dv =
∫

S
(viTij + ω̇i Mij)njdS−

∫
V

ψ̇dv. (57)

Here, v is the material velocity and ψ the specific free energy density. Using the balance
Equations (54) and (55) together with the divergence theorem, we can write:

D =
∫

D
[(viTij + ω̇i Mij),j − viTij,j − ω̇i(Mij,j − eiklTkl)− ψ̇]dv. (58)

Then we use ωi = −eimnωmn/2 to substitute the rotation vector for the rotation tensor through
Equation (22), and progressively derive:

D =
∫

D
(Tijvi,j + Mijω̇i,j −

1
2

eikleimnω̇mnTkl − ψ̇)dv (59)

D =
∫

D
(Tijvi,j + Mijω̇i,j −

1
2

(δkmδln − δknδlm)ω̇mnTkl − ψ̇)dv (60)

D =
∫

D
(Tijvi,j + Mijω̇i,j − Tijω̇ij − ψ̇)dv (61)

D =
∫

D
(Tij ε̇ij + Mijω̇i,j − ψ̇)dv (62)

D =
∫

D
(Tsym : ε̇ + Mdev : κ̇− ψ̇)dv. (63)

The Clausius–Duhem inequality imposes that the dissipation be positive, or zero for reversible
processes: D ≥ 0. In Equation (63) the inner product between symmetric and skew-symmetric tensors
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is null. Hence the strain rate tensor ε̇ extracts the symmetric part of the stress tensor T, and the
deviatoric curvature rate tensor κ̇ extracts the deviatoric part of the couple-stress tensor. A free energy
density function ψ is taken as:

ψ = ψ(εe, κe), (64)

with contributions from the elastic strain εe and curvature κe. A more detailed description of this free
energy will be given below in Section 4.3. For the time being, it is sufficient to note that, differentiating
Equation (64) on the one hand, and considering elastic reversible processes such that D = 0 in
Equation (63) on the other hand, leads to identifying the symmetric part of the stress tensor Tsym and
deviatoric part of the couple-stress tensor Mdev with the partial derivatives of the free energy density
with respect to the elastic strain and curvature:

ψ̇ =
∂ψ

∂εe
: ε̇e +

∂ψ

∂κe
: κ̇e (65)

ψ̇ = Tsym : ε̇e + Mdev : κ̇e (66)

Tsym =
∂ψ

∂εe
(67)

Mdev =
∂ψ

∂κe
. (68)

Equations (67) and (68) will be the constitutive relationships describing the elastic behavior of
the material.

4.2. Solving the Incompatible Elasticity Problem

Consider again a simply connected body of volume V containing dislocations and disclinations,
submitted to tractions and moments on its external surface S with outward unit normal n. Tractions are
imposed on a part St of S and rotations/displacements on a part Su:

T · n = td on St (69)

ue = ud on Su (70)

ωe = ωd on Su. (71)

We are interested in describing the state of stress and couple-stress in the body in the presence of
dislocation and disclination density fields (α, θ). The incompatible elastic strain and curvature (ε⊥e , κ⊥e )
are assumed to be known from the solution of the Poisson Equations (15) and (41). They usually do
not allow satisfying the balance Equation (56). Recalling the decomposition of the elastic strain and
curvature in the sum of incompatible, (ε⊥e , κ⊥e ), and compatible, (ε‖e , κ

‖
e ), components, Equation (56)

can be written as:

0 = div Tsym(ε‖e , κ
‖
e ) +

1
2

curl divMdev(ε‖e , κ
‖
e ) + f⊥, (72)

f⊥ = div Tsym(ε⊥e , κ⊥e ) +
1
2

curl divMdev(ε⊥e , κ⊥e ). (73)

f⊥ is to be seen as a volumetric density of body forces associated with dislocations and
disclinations. In Equations (72) and (73), the symmetric part of the stress tensor and the deviatoric
part of the couple-stress tensor are obtained from the constitutive relations Equations (67) and (68).
The solution of Equation (72) is the compatible elastic displacement field.

4.3. Elasticity in Dislocation/Disclination Cores

Elastic constitutive laws usually relate the elastic strain tensor to the stress tensor, both taken at
the same material point. As such, they are referred to as “local” constitutive laws. They are valid in
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a statistical sense if the characteristic size of the volume element actually envisioned at the material
point is large enough to include a large number of atoms in a perfectly ordered crystal. Local laws
may fail at describing correctly elasticity if this characteristic size reduces to the order of a few atomic
lattice spacings, particularly if the volume element involves crystal defects such as dislocations and
disclinations. Since the mechanical behavior of a particular atom depends on its interactions with all
neighboring atoms, whose location is strongly disturbed by the presence of these defects, defining
the stress tensor in such a local manner may then become impossible. Nonlocal elastic laws are
then needed. Nonlocal elastic laws are relationships using convolution integrals, where the stresses
at a given material point depend on the deformation state in some neighborhood, whose extent is
controlled by a nonlinear kernel function [45–49]. Such nonlocal elastic laws have been successful
in retrieving phonon dispersion curves and regularizing elastic fields in the core region of crystal
defects. Convolution integrals can be coupled with higher-order elastic laws to derive nonlocal elastic
constitutive laws that are of interest in the core regions of dislocations and disclinations, while local
laws may be sufficient in the non-defected regions. The occurrence of different elastic behavior
in non-defected and defected regions was already assumed in grain and phase boundaries [50–53].
Following [54] and relying on Eringen-type convolution integrals applied to strains and curvatures,
we propose below nonlocal laws describing the elastic behavior in the core region of dislocations and
disclinations, and reducing to local laws in the perfectly ordered parts of the crystal.

Nonlocal Convolution Integrals

We introduce a free energy density functional at a point r in a body V in the form:

ψ(r) =
1
2

Cijkl(r)εe
ij(r)εe

kl(r) +
1
2

Aijkl(r)κe
ij(r)κe

kl(r) + ... (74)

... +
1
2

εe
ij(r)

∫
V
K(R′)Dijkl(r, r′)εe

kl(r
′)dV′ + ...

... +
1
2

κe
ij(r)

∫
V
K(R′)Bijkl(r, r′)κe

kl(r
′)dV′.

The first two pointwise terms on the r.h.s. include symmetric positive-definite quadratic forms
with A and C given at point r. This leads to the linear elastic laws used and discussed in [2,18,54]
in the framework of models for dislocations and disclinations. Nonlocal contributions are added in
the form of Eringen-type convolutions, which are the last two terms of the r.h.s. [55]. In such terms,
the location vectors r′ are points distinct from point r. The difference vectors R′ = (r′ − r) and their
norms R′: = (R′.R′)1/2 are also defined. The spatial range of nonlocality is controlled by the nonlocal
kernel K(R′), while the elasticity tensors B and D depend on (r, r′) and the elastic curvatures/strains
are taken at points r′. The proposed nonlocality is motivated by the strong coupling existing in the
core region of defects between displacement/strain and rotation/curvature at distant locations r and
r′ (see Figure 1). One can express the strain induced at point r′ by the curvature at point r:

εe
kl(r
′) = −ekmnκe

ml(r)R′n, εe(r′) = −(κt
e(r)×R′)t. (75)

Note the presence of the above nonlocal term in the definition of the Burgers vector in Equation (37)
above. Similarly, we can express the curvature at point r′ due to the strain at point r:

κe
kl(r
′) = −ekmnεe

ml(r)
R′n
R′2

, κe(r′) = − 1
R′2

(εe(r)×R′)t. (76)
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Figure 1. Nonlocal strains and curvatures. (A) Nonlocal shear strain at location r′ induced by the
rotation dωe arising from a curvature tensor at location r; (B) Nonlocal rotation and curvature at
location r′ from the displacement du induced by a shear strain tensor at location r.

The above nonlocal relations between strains and curvatures can be used to substitute curvatures
and strains at points r for strains and curvatures at points r′, respectively. This allows greatly
simplifying the convolutions in the free energy functional Equation (74), in such a way that nonlocality
applies only to elasticity tensors while all strains and curvatures are defined at point r (the reader is
referred to ref [55] for more details):

ψ =
1
2

Cijklε
e
ijε

e
kl +

1
2

Aijklκ
e
ijκ

e
kl +

1
2

Dijklε
e
ijκ

e
kl +

1
2

Bijklκ
e
ijε

e
kl , (77)

D(r) =
∫

V
K(R′)(Dt ×R′)tdV′, (78)

B(r) =
∫

V
K(R′)(B× R′

R′2
)tdV′. (79)

By differentiating Equation (77) with respect to the elastic strain and curvature tensors, we find
the stress and couple-stress tensors:

Tsym
ij =

∂ψ

∂εe
ij

= Cijklε
e
kl +

1
2

(Dijkl + Bklij)κ
e
kl (80)

Mdev
ij =

∂ψ

∂κe
ij

= Aijklκ
e
kl +

1
2

(Bijkl + Dklij)ε
e
kl . (81)

Using finally Eijkl = 1
2 (Dijkl + Bklij), we can write:

Tsym
ij =

∂ψ

∂εe
ij

= Cijklε
e
kl + Eijklκ

e
kl (82)

Mdev
ij =

∂ψ

∂κe
ij

= Aijklκ
e
kl + Eklijε

e
kl . (83)

We end up with relationships similar to those proposed in [54], except that the present elastic
tensors (B, D, E) involve nonlocal integrals. As proposed by Eringen [47,48], we assume D = C.
We also impose Bijkl = Dklij, which allows ensuring that the free energy functional is symmetric
positive-definite and that the elastic solution is stable. Interestingly, stability of the elastic strain and
curvature fields is expected at the convoluted level from the nonlocal character of the formulation,
whereas instability would occur in the limit of a purely local formulation [55].
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5. Transport of Dislocations and Disclinations

In this Section, we are interested in the kinematics of dislocations and disclinations in the context
of the continuous setting set forth in Section 3 for their representation by smooth density fields. In this
aim, we take advantage of the transport framework for the spatio-temporal evolution of the defects
density fields that derives from the conservation of the Burgers and Frank vectors during their motion.
Being unquestionable from a kinematic point of view, this framework, referred to as transport of
dislocation and disclination densities, provides a natural basis for the dynamic description of plasticity
through dislocation and disclination motion. Since disclinations are mainly distributed along grain
boundaries in polycrystals, it provides in particular a basis for describing the contribution to plasticity
of grain boundary motion.

Consider a material surface S delimited by a closed circuit C. Let f be the disclination flux used to
measure the rate of inflow into S of disclination lines, carrying along with them their corresponding
Frank vectors φ, through a line element dx of curve C. Let Vθ be the velocity of the disclinations with
respect to the material, and l the unit vector along the disclination lines. Then the disclination tensor is:
θ = φ⊗ l. In the absence of a disclination source term, the conservation of the Frank’s vector content
demands that the rate of change of the Frank’s vector of all disclination lines threading S be equal to
the total disclination flux across C:

d
dt

∫
S

θ · ndS =
∫

C
f · dx. (84)

For small transformations, the pointwise statement corresponding to Equation (84) is:

θ̇ = curl f (85)

where θ̇ represents the time derivative of the disclination density tensor. The rate of inflow of Frank
vectors across the surface l× dx is:

f.dx = φ(Vθ .(l× dx)). (86)

Indeed, suppose first that the disclination velocity Vθ is in the plane (l, dx). Then, the disclination
does not enter (or exit) surface S, and it is clear from Equation (86) that the flux f is zero as it should
be. Conversely, f is always non-zero when Vθ has a non-zero component normal to the plane (l, dx),
i.e., when the disclination enters or exits surface S, and it changes sign according to whether the
disclination enters or exits S. We can then obtain from Equation (86):

f = −φ⊗ l×Vθ = −θ×Vθ . (87)

Consequently, the local statement of balance Equation (85) becomes:

θ̇ + curl (θ×Vθ) = 0. (88)

Equation (88) is a transport law for the disclination density tensor θ. It can be understood
as an evolution equation for θ, provided the disclination velocity Vθ is known as a function of
the stress/couple-stress state from constitutive statements. Its meaning is that through the curl
term, the incompatible part of the disclination flux incrementally feeds the disclination density.
Comparing Equations (46) and (88) it follows, after time differentiation of Equation (46) that the
cross product θ×Vθ can be identified with the plastic curvature rate tensor κ̇p, up to a gradient:

κ̇p = θ×Vθ + grad ω̇∗p. (89)

At mesoscale, the term κ̇∗p = grad ω̇∗p can be given the significance of a statistical plastic curvature
rate, meaning that a non-vanishing plastic curvature rate may be obtained even when the disclination
density θ vanishes at this scale [56]. Indeed, using space-time running averages of the disclination
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density tensor, disclination velocity Vθ and plastic curvature rate tensor κ̇p over a domain of mesoscopic
size, allows writing the mesoscopic plastic curvature rate κ̇p as:

κ̇p = θ×Vθ = θ×Vθ + κ̇∗p, (90)

where overbars indicate averaged variables. It is seen that κ̇p may be non-zero when the net disclination
density vanishes at mesoscale (θ = 0), in which case it becomes:

κ̇p = κ̇∗p . (91)

Dropping the overbars for convenience, the plastic curvature rate may be generally written as:

κ̇p = θ×Vθ + κ̇∗p. (92)

As we shall discuss below, the compatible part κ̇
‖
p of κ̇p increments the history-dependent

compatible plastic curvature produced by the motion of dislocations and disclinations. Equation (92)
accounts for plasticity processes in relation to the mobility of grain boundaries that cannot be described
by a pure dislocation-based model.

In the theory of dislocations, the dislocation density tensor α satisfies a transport equation similar
to Equation (88), in the absence of a source term [22,57]:

α̇ + curl (α×Vα) = 0. (93)

Here, Vα denotes the dislocation velocity, and the cross product α×Vα can be identified with
the plastic distortion rate U̇p, up to a gradient. However, U̇p is undefined in a theory of disclinations,
because its skew-symmetric part ω̇p has discontinuities. Hence, the dislocation transport Equation (93)
does not account for curvature incompatibility and has to be modified in a disclination theory. For small
transformations, a version correctly accounting for curvature incompatibility is readily obtained from
the time derivative of Equation (33):

α̇ = −curl ε̇p + κ̇t
p − tr(κ̇p)I = −curl ε̇p + sθ . (94)

Here the plastic strain rate ε̇p is

ε̇p = (α×Vα)sym + ε̇∗p, (95)

where ε̇∗p is a gradient tensor acquiring significance at mesoscale, as discussed above for the mesoscopic

plastic curvature rate tensor κ̇∗p. The compatible part of the plastic strain rate, ε̇
‖
p, is not involved in

Equation (94) but it nevertheless increments the compatible plastic strain produced by the motion of
dislocations through the lattice. Note importantly in Equation (94) the presence of a dislocation
source/sink term, sθ = κ̇t

p − tr(κ̇p)I, due to the mobility of disclinations. Such a term offers
supplementary relaxation mechanisms [4,58], and will be shown to be useful later on in the prediction
of shear-coupled boundary migration. When the dislocation/disclination velocities and mesoscopic
contributions to plasticity (κ̇∗p, ε̇∗p) are known from the stress/couple-stress state through constitutive
relations, Equations (88), (92), (94) and (95) can be used as evolution equations for the disclination and
dislocation densities. Please note that Equations (88) and (94) are first order hyperbolic equations,
which implies that their solutions have propagative character, as experimentally verified in [31].
Furthermore, hyperbolicity of these equations as a strong impact on the algorithms devoted to their
numerical solution from finite elements or spectral approximations [59–61], as detailed below in
Section 7.3.
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6. Constitutive Relations for Dislocation and Disclination Mobility

In this Section, we account for thermodynamic requirements on positiveness of the mechanical
dissipation to formulate constitutive relations for the mobility of dislocations and disclinations by
following a procedure proposed in [62]. Substituting Equations (65) and (66) in Equation (63),
and using the additivity of elastic and plastic strain rates and curvature rates tensors, we find the
dissipation to be:

D =
∫

D
(Tsym : ε̇p + Mdev : κ̇p)dv ≥ 0. (96)

To identify driving forces associated with dislocation and disclination velocities, we write down
the plastic strain and curvature rate tensors (ε̇p, κ̇p) in terms of dislocation and disclination fluxes as in
Equations (92) and (95) and substitute in Equation (96):

D =
∫

D
(Tsym : (α×Vα)sym + Tsym : ε̇∗p + Mdev : (θ×Vθ) + Mdev : κ̇∗p)dv, (97)

which reads in component form:

D =
∫

D
(
1
2

Tsym
ij (ejklαikVα

l + eiklαjkVα
l ) + Tsym

ij ε̇
p,∗
ij + Mdev

ij ejklθikVθ
l + Mdev

ij κ̇
p,∗
ij )dv, (98)

or also:

D =
∫

D
(ejklT

sym
ij αikVα

l + Tsym
ij ε̇

p,∗
ij + ejkl Mdev

ij θikVθ
l + Mdev

ij κ̇
p,∗
ij )dv. (99)

Equivalently, Equation (99) is in intrinsic form:

D =
∫

D
(Fα ·Vα + Tsym : ε̇∗p + Fθ ·Vθ + Mdev : κ̇∗p)dv, (100)

where we wrote:

Fα = Tsym · α : X; Fα
l = ejklT

sym
ij αik (101)

Fθ = Mdev,t · θ : X; Fθ
l = ejkl Mdev

ij θik . (102)

Fα and Fθ are the driving forces for dislocation and disclination motion. Using the dyadic notation
α = b⊗ t for the dislocation density (b is the Burgers vector, t the line vector), Fα can be expressed
as: Fα = Tsym · b× t, a form similar to the Peach-Köhler force for discrete dislocations. Similarly for
the disclination density tensor, θ = φ⊗ l (φ is Frank’s vector, l the line vector), and Fθ = Mdev,t ·φ× l.
This is a Peach-Köhler-type relationship for disclinations. Thus, Fθ drives grain boundary motion in
the present disclination theory. It is produced by the couple stresses, the stresses being not directly
involved, and is normal to the disclination line. Positiveness of the mechanical dissipation rate
Equation (99) can be satisfied by choosing the simple constitutive relations:

Fα = BαVα; Bα ≥ 0 (103)

Fθ = BθVθ ; Bθ ≥ 0 (104)

ε̇∗p = λεTsym; λε ≥ 0 (105)

κ̇∗p = λκMdev; λκ ≥ 0, (106)

where (Bα, Bθ , λε, λκ) are positive material parameters. Equations (103)–(106) have the form of
Newtonian viscous drag relationships, but (Bα, Bθ , λε, λκ) are generally not simple constants. They may
involve non-linearity, or/and hardening laws reflecting for example thermally assisted obstacle
overcoming through adequate constitutive statements. Please note that both the glide and climb
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components of the Peach-Köhler force are included in Equation (103). λε describes plasticity through
both dislocation glide and climb at mesoscale. Similarly, λκ describes plasticity induced by grain
boundary motion at mesoscale and driven by Mdev in Equation (106). Possible expressions for λκ were
proposed in [56] by averaging Equation (104).

7. Solution Algorithms

In the present Section, we propose two algorithms for the numerical solution of the model.
The first version solves for the incompatible plastic strains and curvatures at each time step. The second
version is a reduced, rate form of the latter, numerically faster, but where incompatible fields are not
determined at each step.

7.1. Complete Algorithm

The complete model involves the following equations, gathered from the above sections:

curl κ⊥p = −θ (107)

curl ε⊥p = −α + κt
p − tr(κp)I (108)

T = C : (ε− εp) + D : (κ− κp) (109)

Mdev = A : (κ− κp) + B : (ε− εp) (110)

0 = div Tsym +
1
2

curl div Mdev (111)

κ̇p = θ×Vθ + κ̇∗p (112)

ε̇p = (α×Vα)sym + ε̇∗p (113)

θ̇ = −curl κ̇p (114)

α̇ = −curl ε̇p + κ̇t
p − tr(κ̇p)I (115)

Vα =
1

Bα
Tsym · α : X (116)

Vθ =
1
Bθ

Mdev,t · θ : X (117)

ε̇∗p = λεTsym (118)

κ̇∗p = λκMdev, (119)

with the boundary conditions:

T · n = td on St (120)

u = ud on Su (121)

ω = ωd on Su. (122)

The unknowns are the displacement field u and the dislocation/disclination density fields (α, θ).
They are known at the initial time. The incompatible component κ⊥p of κp is solution of Equation (107),
with the side conditions mentioned in Equation (40). ε⊥p can be determined from Equation (108),

with the side conditions div ε⊥p = 0, ε⊥p · n = 0 on S. Being history-dependent, κ
‖
p and ε

‖
p are initially set

to zero without loss of generality. Furthermore, using the constitutive laws Equations (109) and (110),
the balance of momentum and moment of momentum problem Equation (111) can be solved
for the compatible displacement, as shown in Section 4.2. Then, the plastic strain rate and
curvature rate (ε̇p, κ̇p) are found from Equations (112) and (113), where Equations (116)–(119) have
been used to evaluate the dislocation/disclination velocities and the mesoscopic terms. Only the
compatible parts (ε̇‖p, κ̇

‖
p) are employed for updating the plastic strain and curvature tensors. Finally,
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the dislocation/disclination densities are updated using Equations (114) and (115) and the procedure
is iterated at the next time step.

7.2. Reduced Algorithm

Using the rate form of the model equations leads to a simpler and faster incremental algorithm.
The main reason and difference is that the decomposition of plastic strains and curvatures into
incompatible and compatible parts is possibly accounted for at the initial time, but not later. By taking
the time derivative of Equations (109)–(111) and ignoring Equations (107) and (108), the algorithm uses
the following equations:

0 = div Ṫsym +
1
2

curl div Ṁdev (123)

Ṫ = C : (ε̇− ε̇p) + D : (κ̇− κ̇p) (124)

Ṁdev = A : (κ̇− κ̇p) + B : (ε̇− ε̇p) (125)

κ̇p = θ×Vθ + κ̇∗p (126)

ε̇p = (α×Vα)sym + ε̇∗p (127)

θ̇ = −curl κ̇p (128)

α̇ = −curl ε̇p + κ̇t
p − tr(κ̇p)I (129)

Vα =
1

Bα
Tsym · α : X (130)

Vθ =
1
Bθ

Mdev,t · θ : X (131)

ε̇∗p = λεTsym (132)

κ̇∗p = λκMdev, (133)

with the boundary conditions:

Ṫ · n = ṫd on St (134)

u̇ = u̇d on Su (135)

ω̇ = ω̇d on Su. (136)

All fields (u, α, θ) are given at the initial time, as well as the plastic strain and curvature (εp, κp)
arbitrarily set to zero without inconvenience. All fields can then be updated using the above rate
equations. Clearly, the solutions obtained from these two algorithms may differ substantially because
their continuity and differentiability properties are different.

7.3. Numerical Implementation

The finite element implementation couples a conventional Galerkin scheme for the solution
of the equilibrium problem with a mixed Galerkin-Least Squares (GLS) scheme for the numerical
approximation of the dislocation/disclination transport equations. Applying a standard Galerkin
method to the convective transport equations leads to high frequency, propagating, numerical
instabilities arising at sharp gradients. The Least-Squares (LS) finite element method, based on
minimizing the norm of the residual, has the potential for eliminating such drawbacks, because it
damps high frequency oscillations. Explicit LS methods have been considered so far [60,61]. However,
damping is also a drawback of LS methods, because it leads to undue solution relaxation in the
long-term. Therefore, an explicit Galerkin-Least-Squares (GLS) method involving convenient linear
combinations of the Galerkin and LS algorithms has been proposed [60,61].

A constant drawback of finite element methods is that three-dimensional simulations are
exceedingly demanding on computational resources. Spectral methods based on Fast Fourier
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Transform (FFT) algorithms were shown to be efficient at solving three-dimensional problems in
periodic media and therefore appear as attractive alternatives to finite elements. However, the Gibbs
oscillations they inherently produce in regions of strong spatial gradients reinforce the numerical
instability of the solutions to the transport equations with respect to high frequency perturbations.
Spectral low-pass filters in the Fourier space were shown to be efficient at damping these perturbations,
and consequently at providing accurate and stable solutions to the transport problem [59].
FFT algorithms for the solution of the equilibrium problems are also available [55,63].

8. A Plane Edge-Wedge Model

As an illustration of the model and a basis for the next two Sections, we consider a
bi-dimensional model with a distribution of wedge disclinations first discussed in [18]. In the
orthonormal frame (e1, e2, e3), we take the disclination tensor to be: θ = θ33e3 ⊗ e3. The continuity
Equation (48) then implies that the disclination density θ33 only depends on the coordinates (x1, x2).
Thus, the incompatibility Equation (46) reduces to:

θ33 = κ
p,⊥
31,2 − κ

p,⊥
32,1, (137)

and the Poisson Equation (47) is:

κ
p,⊥
31,11 + κ

p,⊥
31,22 = +θ33,2 (138)

κ
p,⊥
32,11 + κ

p,⊥
32,22 = −θ33,1. (139)

The involved plastic curvatures are only (κp
31, κ

p
32) and the disclination transport

Equation (88) reads:
θ̇33 = κ̇

p
31,2 − κ̇

p
32,1. (140)

We ignore the mesoscopic plastic curvature rate κ̇∗p in Equation (92) as we want to deal with
nanoscale problems. Therefore, the plastic curvature rates are:

κ̇
p
31 = −θ33Vθ

2 (141)

κ̇
p
32 = +θ33Vθ

1 . (142)

The constitutive relation Equation (104) for the disclination velocities then yields:

Vθ
1 = +

1
Bθ

Mdev
32 θ33 (143)

Vθ
2 = − 1

Bθ
Mdev

31 θ33, (144)

and the plastic curvature rates read:

κ̇
p
31 =

1
Bθ

Mdev
31 θ2

33 (145)

κ̇
p
32 =

1
Bθ

Mdev
32 θ2

33, (146)

while the transport equation becomes:

θ̇33 =
1
Bθ

(Mdev
31 θ2

33),2 −
1
Bθ

(Mdev
32 θ2

33),1. (147)
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In the dislocation transport Equation (94), the source/sink term sθ generates only edge dislocations
(α13, α23). Ignoring also the mesoscopic plastic strain rate ε̇∗p in Equation (95), the motion of these edge
dislocations produces the plastic strain rates:

ε̇
p
11 = −α13Vα

2 (148)

ε̇
p
12 = ε̇

p
21 =

1
2

(α13Vα
1 − α23Vα

2 ) (149)

ε̇
p
22 = +α23Vα

1 , (150)

and the plastic rotation rate:

ω̇
p
3 = −1

2
(α13Vα

1 + α23Vα
2 ). (151)

The above relations Equations (148) and (150) show that climb of edge dislocations (α13, α23)
produces the extension rates (ε̇p

11, ε̇
p
22), while their glide produces the shear ε̇

p
12 in Equation (149).

The dislocation transport Equation (94) therefore yields:

α̇13 = ε̇
p
11,2 − ε̇

p
12,1 + κ̇

p
31 (152)

α̇23 = ε̇
p
21,2 − ε̇

p
22,1 + κ̇

p
32. (153)

Using Equations (141), (142), (148), (149) and (150), these edge dislocation generation rates read:

α̇13 = −(α13Vα
2 ),2 −

1
2

(α13Vα
1 − α23Vα

2 ),1 − θ33Vθ
2 (154)

α̇23 = −(α23Vα
1 ),1 +

1
2

(α13Vα
1 − α23Vα

2 ),2 + θ33Vθ
1 . (155)

If all other dislocation densities are initially absent, the model therefore involves only α13 and
α23 densities. The continuity condition Equation (49) then implies a planar distribution of these
dislocations. The relation Equation (103) provides the dislocation velocities for climb:

Vα
1 = +

1
Bα

Tsym
22 α23 (156)

Vα
2 = − 1

Bα
Tsym

11 α13, (157)

and glide:

Vα
1 = +

1
Bα

Tsym
12 α13 (158)

Vα
2 = − 1

Bα
Tsym

12 α23. (159)

The corresponding plastic strain rates are:

ε̇
p
11 =

1
Bα

Tsym
11 α2

13 (160)

ε̇
p
12 = ε̇

p
21 =

1
Bα

Tsym
12 (α2

13 + α2
23) (161)

ε̇
p
22 =

1
Bα

Tsym
22 α2

23, (162)

while the transport equation can be reformulated as:
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α̇13 = +
1

Bα
(Tsym

11 α2
13),2 −

1
2Bα

(Tsym
12 (α2

13 + α2
23)),1 +

1
Bθ

Mdev
31 θ2

33 (163)

α̇23 = − 1
Bα

(Tsym
22 α2

23),1 +
1

2Bα
(Tsym

12 (α2
13 + α2

23)),2 +
1
Bθ

Mdev
32 θ2

33. (164)

The relevant stress and deviatoric couple-stress components in the model are (T11, T12, T21, T22)
and (Mdev

31 , Mdev
32 ). The balance of momentum Equation (56) read here:

Tsym
11,1 + Tsym

12,2 +
1
2

(Mdev
31,12 + Mdev

32,22) = 0 (165)

Tsym
21,1 + Tsym

22,2 −
1
2

(Mdev
31,11 + Mdev

32,21) = 0. (166)

Thus, the loading applied at the boundaries of the domain may include shear/tension/
compression in the directions (e1, e2). Couple stresses and rotations along e3 can also be prescribed.
The elastic constitutive laws Equations (82) and (83) yield:

Tsym
ij =

∂ψ

∂εe
ij

= Cijklε
e
kl + Dijklκ

e
kl (167)

Mdev
ij =

∂ψ

∂κe
ij

= Aijklκ
e
kl + Bijklε

e
kl . (168)

Substituting (εij − ε
p
ij, ωi,j − κ

p
ij) for (εe

ij, κe
ij) in the constitutive Equations (167) and (168),

and introducing the resultant stresses and couple stresses in the balance Equations (165) and (166),
one obtains two fourth-order partial differential equations for the material displacements (u1, u2).
As already mentioned, the boundary conditions comprise the prescription of tractions and moments,
or/and displacements and rotations on the surface of the body. Please note that no boundary condition
is specified on the disclination and dislocation densities.

9. Structure and Elastic Energy of Symmetric Tilt Boundaries

Copper bi-crystals with ∑ 37(610) and ∑ 5(310) symmetrical tilt boundaries of misorientation 18.9◦

and 36.9◦ were simulated in [64]. The bi-crystals are free of loads and periodic boundary conditions
are imposed on the vertical boundaries in Figure 2. The characteristic size of the finite element mesh is
0.5Å. The wedge disclination density fields are shown in Figure 2, where they are superimposed on
the relaxed atomic structure as predicted by atomistic calculations [14]. They consist of periodic arrays
of wedge-disclination dipoles located at the edges of the structural units. Dilatations/contractions
regions are associated with negative/positive disclinations. The local occurrence of large elastic strains
suggests that a finite strain setting could be in order. Nevertheless, the predicted elastic fields are in
good agreement with atomistic simulations and experiment. The elastic energy is essentially located in
the dilatation/contraction areas in the core region of defects. In agreement with atomistic simulations,
the energy is contained in the first atomic rows forming the grain boundary, essentially at structural
units. Comparing the elastic fields of the ∑ 37(610) boundary and of the ∑ 5(310) boundary in Figure 2
shows that energy is more localized near the interface when the structural units are close to each
other, due to elastic screening effects. Furthermore, the continuous description predicts features such
as the shear deformation and curvature across/along the grain boundaries. As shown in Figure 3,
there is a good agreement between quantitative estimates of the excess energy of grain boundaries
using our model, and measurements from atomistic simulations and experiment [65–67]. Satisfactory
agreement is obtained for all misorientations. Notably, the energy cusps predicted for the ∑ 5(310)
and ∑ 5(210) grain boundaries originate in the self-screening of the elastic fields when the separation
distance between structural units becomes small.
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Figure 2. Disclination model for a ∑ 37(610) symmetrical <001> tilt boundary of misorientation
18.9◦ (left column) and of a ∑ 5(310) symmetrical <001> tilt boundary of misorientation 36.9◦

(right column). The wedge-disclination density θ33 (rad/m2) is shown on top of the relaxed atomic
structure (a,f); Elastic dilatations/contractions (b,g); Shear stress field T12 (Pa) (c,h); Elastic curvature
κ32 (rad/m) (d,i); Elastic energy density (J/m3) (e,j). Atomic structures are taken from reference [14].
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Figure 3. Excess energy of <001> tilt grain boundaries in copper bi-crystals. Black diamonds: present
work; Gray triangles/squares: experimental measurements/molecular statics predictions [65]; Gray
circles: molecular statics predictions [66].

10. Shear-Coupled Migration of Symmetric Tilt Boundaries

As already suggested above, shear-induced normal grain boundary migration is a fascinating
example of grain boundary-mediated plasticity. It was experimentally observed at moderate
temperature in Al [68,69]. Following [17], we illustrate this mechanism by submitting the
copper bicrystal featuring the ∑ 5(310) symmetric <001> tilt boundary studied above to shear
parallel to the boundary. In Figure 4, the wedge-disclination dipoles array is observed to move
downward. This motion generates edge dislocation dipoles α13 (line direction normal to the figure,
Burgers vector along the boundary). Due to the shear stress T12 these edge dipoles glide along the
boundary, generate the plastic shear strain field ε

p
12 seen in Figure 4c and annihilate at mid-distance,

as Figure 4a,b show. Meanwhile, the downward migration of the disclination dipoles produces a plastic
tilt rotation ω

p
3 shown in Figure 4d. Striking similitude is observed between the heterogeneity of the

plastic shear/rotation fields presented in Figure 4 and those obtained by post-processing atomistic
simulations [16,70,71]. Because the boundary moves downward while positive shear is produced,
the shear-coupling factor β, which corresponds to the ratio between the parallel translation of the two
crystals and the normal migration of the boundary, is negative. The value β ≈ −0.94 measured in
Figure 4b is in reasonable agreement with atomistic simulations and experiments [14,68]. The predicted
variations of the shear-coupling factor in the full range of misorientations are presented in Figure 3e.
The model retrieves the two <001> and <110> branches found in experiments [68] and obtained by
molecular dynamics simulations and surface-dislocation-based models [13,14].



Metals 2020, 10, 1517 22 of 27

Figure 4. Disclination model for shear-coupled boundary migration. (a,b): Wedge-disclination
density θ33 (rad/m2) (color coded) and edge dislocation density α13 (m−1) (black/white contours),
during migration of a ∑ 5(310) symmetric <001> tilt grain boundary of misorientation 36.87◦.
Two snapshots are shown at 1 ms (a) and 10 ms (b); (c,d): Plastic shear strain ε

p
12 (c) and plastic rotation

ω
p
3 (◦) (d) generated during the migration. In (a–d), the black dashed-line shows the initial position

of the grain boundary. (e): Shear-coupling factor as a function of grain boundary misorientation.
The circles show values obtained with the disclination model while the solid lines show the <001> and
<110> shear deformation modes proposed in [14].

To further analyze the role of disclinations in plasticity, the model was used for simulating
shear-coupled migration in forsterite. More specifically, we have used a periodic wedge-disclination
array in the particular case of a (011)/<100> tilt boundary with misorientation 60◦. This boundary
was previously modeled at the atomic scale [72]. Figure 5 presents the disclination density field used
to model the grain boundary structure [73]. Wedge-disclination densities are placed on the edges of
structural units identified in [72]. The disclination arrangements result in a self-screening quadrupolar
configuration, such that most of the energy is contained within the quadrupoles (see Figure 5b).
The predicted excess energy of 1.3 J/m2 is in good quantitative agreement with the value 1.28 J/m2

measured from atomistic calculations [72]. When a shear stress is applied, the disclination array moves
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normal to the boundary, as shown in Figure 5. As detailed above for copper bi-crystals, the migration
generates dislocation dipoles whose glide parallel to the boundary generates plastic shear within the
region swept by the boundary. A more comprehensive study of the disclination structure, energy and
mobility of grain boundaries as a function of their misorientation is clearly needed to eventually reach
an accurate description of the rheology of olivine aggregates. EBSD-based disclination field imaging,
as introduced in [6,7], applied to naturally deformed olivine aggregates should also be helpful in firmly
establishing such models.

Figure 5. Disclination model for a (011)/<100>, 60◦ tilt boundary in forsterite. (a) Initial
wedge-disclination density (rad·m−2) superimposed on top of the atomic structure. Triangles
show the structural units; (b) Elastic energy (J/m3); (c) Migration of the (011)/<100> tilt boundary.
The wedge-disclination density θ33 (rad·m−2) is shown in color. The plastic shear generated by
migration is shown with gray contours.

11. Concluding Remarks

The elasto-plastic model of dislocations and disclinations essentially consists of a set of partial
differential equations, where the unknowns are the material displacement and dislocation/disclination
density fields resolved at an atomic resolution length scale, and evolving at the time scale of the
elementary dissipative mechanisms [18]. It is nonlocal in space and time in the conventional
variables of compatible continuum mechanics and it provides a nonlocal incompatible generalization
of the latter leading to well-posed problems in dislocation and disclination dynamics. It extends
the elasto-plastic model of dislocations [22] by dealing, in addition to translational discontinuities
and dislocations, with rotational discontinuities and disclinations. which allows grain boundary
modeling in polycrystals. It also extends the elasto-static model of dislocations and disclinations [2],
by dealing with plasticity mediated by transport of dislocations/disclinations within a consistent
thermomechanical framework.

It has been sometimes believed that the assumption of continuity of the field variables is no
longer valid at nanoscale and below, when the discrete atomistic nature of matter becomes apparent,
and that continuum mechanics consequently fails to capture the physical phenomena at the scale of
a few lattice spacings. In our opinion, the present results demonstrate instead that an incompatible,
nonlocal continuum description involving fields of displacement and crystal defect densities that are
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smooth at this scale can be adequate for the purpose of describing such phenomena, in complement
to atomistic representations. Indeed, the continuous disclination and dislocation theory proposed
here was satisfactorily used to model the core structure of grain boundaries as well as the resulting
elastic fields and excess energies. It was also shown to predict the complex interactions between
disclinations/dislocations at work in the generation of plastic rotations/strains during shear-coupled
boundary migration.

A continuous description of lattice defects may be more attractive than discrete approaches for
various reasons. First, smoothness is desirable from the point of view of mathematical analysis and
numerical computation, and because it allows dealing with defects’ core properties. When viewed
at a small scale, lattice defects and the corresponding distributions of elastic strain and energy are
certainly better described by smooth density fields than by singularities. Building on this point of view,
recent work [16,70,71,74–76] has been devoted to the construction of field representations of the lattice
deformation from the atomic displacements resulting from molecular dynamics simulations.

Secondly, such descriptions do not have to resolve atomic vibrations in the manner of atomistic
simulations. The kinetic energy of atomic vibrations is time-averaged over periods of microseconds
and rendered as dissipation, which results in higher computational efficiency. As a practical result,
finite element or spectral FFT numerical approximations may allow considering the dynamics of
crystal defect ensembles over time scales in the µs or more, under realistic loading rates and stresses.

Finally, continuous approaches of crystal defects at nanoscale offer a convenient basis for
seamless coarse-graining by using appropriate averaging techniques, which allows building mesoscale
continuous theories of grain boundary-mediated plasticity in grain aggregates [56]. This ability could
allow investigating alternative disclination-based mechanisms for plasticity, e.g., triple junction motion
or emission/absorption of dislocations at grain boundaries, in media where dislocation-based plasticity
is limited, either by scarcity of the slip systems, as in olivine, or because dislocation glide is restricted,
as in polynanocrystals.
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