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Abstract: Based on a certain ratio of Zr and Ti atomic fractions according to Zr47Ti45Al5V3 (wt.%),
the lattice constants, lattice stability, and elastic properties of Zr-Ti-X alloys (X = Al, V) in body-centered
cubic (BCC) (β phase) and hexagonal close-packed (HCP) (α phase) crystal structures were studied
using first-principles calculations. It is shown that Al acts as an α stabilizer for Zr-Ti-Al alloys
and V can stabilize the β phase for Zr-Ti-V alloys. As the mass fraction of Al increases from
4 wt.% (Zr55Ti41Al4) to 6.8 wt.% (Zr53.2Ti40Al6.8), these alloys all have relatively good strength,
hardness, and rigidity, however, their ductility deteriorated with the increasing of Al mass fraction.
When the mass fraction of V in Zr-Ti-V alloys is 2.4 wt.%, Zr55.6Ti42V2.4 (wt.%) achieved the best
strength, hardness, and rigidity, when the mass fraction of V increases from 0 (Zr57Ti43) to 12 wt.%
(Zr50.2Ti37.8V12), their ductility improved. The changes of phase compositions and structure with
Al content or V content distinctly affect mechanical properties of ternary Zr-Ti-X alloys (X = Al, V),
the amount of Zr and Ti could be factors that impact the mechanical properties of the multiphase
Zr47Ti45Al5V3 from the point of view of ternary Zr-Ti-Al and Zr-Ti-V compositions.
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1. Introduction

In recent decades, with the increasing number of spacecraft launched by various countries,
the space environment has become increasingly complex, and the development of high-performance
structural materials suitable for the space environment has become an inevitable choice for the spacecraft
in the future [1–4]. For the critical components and structural parts of spacecraft, high-strength steel
with higher density is the main material commonly utilized in the past, but the application of traditional
steel is greatly restricted because of the demand for lightweight spacecraft. Therefore, there is an
urgent need to develop high-strength and lightweight materials suitable for spacecraft structural
parts. Many studies have shown that titanium alloys are expected to replace high-strength steel
as critical components and structural materials in spacecraft, all because of their low density, high
specific strength, good corrosion resistance, and low temperature performance [5–7]. Among hundreds
of titanium alloys, Ti90Al6V4 (wt.%) is widely used owing to its excellent mechanical performance.
However, the service life of Ti90Al6V4 (wt.%) will be greatly reduced because of poor impact resistance
in the face of space debris, narrow working parameter range, complex manufacturing processes,
as well as large deformation, and high strain rate at high temperature, if it is applied to spacecraft
structural parts [8–10]. As is known to all that adding different elements to the alloys can greatly
affect the lattice stabilities and mechanical properties of the alloys [11–14], therefore, it is expected to
enhance the applicability of Ti90Al6V4 (wt.%) in space by adding alloying elements. In 2012, from the
perspective of adding zirconium element to Ti90Al6V4 (wt.%), Jing et al. developed a new type of
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alloy—Zr47Ti45Al5V3 (wt.%) [15]. The chemical properties of Zr and Ti are similar because these
elements belong to the same primary group (IVB), have two kinds of crystal structure (α- and β-type),
and can form an infinitely miscible solid solution [16]. Compared with Ti90Al6V4 (wt.%), Zr47Ti45Al5V3

(wt.%) has great mechanical properties. The hardness of Zr47Ti45Al5V3 (wt.%) is above 400 HV, which is
nearly 30% higher than Ti90Al6V4 (wt.%). Its material strength after heat treatment is above 1400 MPa,
and its density is only about 2/3 of high-strength steel [17], thus, Zr47Ti45Al5V3 (wt.%) is a new type of
alloy with great potential.

Since the Zr47Ti45Al5V3 (wt.%) was proposed, there are research findings which reported the
relation of macroscopic rheological characteristic with microstructures of Zr47Ti45Al5V3 (wt.%) subjected
to hot tensile, compression, or torsion deformation. In 2012, Liang et al. [16] studied the structural and
mechanical properties of hot-rolled Zr-Ti-Al-V alloys based on X-ray diffraction and metallographic
analyses. Results showed that the microstructure of alloys went through a series of changes from the α
(α’)-phase to part or all of the β-phase, thus affecting the mechanical properties as Zr increased. In 2013,
Liang et al. [18] experimentally studied the effect of Al content on the microstructure and mechanical
properties of hot rolled Zr47Ti45Al5V3 (wt.%), results showed that the Zr-Ti-Al-V alloys with Al contents
between 3.3 wt.% and 5.6 wt.% have excellent mechanical properties. Zhang et al. [19] conducted impact
compression experiments on Zr47Ti45Al5V3 (wt.%), and results showed that no obvious evidence of
phase transition is found in the shock compression pressure range. In 2016, Tan et al. [20] studied the
hot deformation behavior of Zr47Ti45Al5V3 (wt.%) with an initial lamellar α-phase structure through a
compression test in the temperature range of 823 K to 1073 K, researches showed that the flow curves
exhibited a continuous flow softening in the α + β phase field. Liang et al. [21] investigated the effects
of V content (0–7 wt.%) on the structure and mechanical properties of Zr-Ti-Al-V alloys, and results
showed that the phase composition changes as α’→α’+ (α” + β)→α” + β→β+ (α”)→βwith increased
V content from 0 wt.% to 7 wt.%, and the elastic modulus and yield strength show an antiparabolic
trend with increased V content. In 2018, Tan et al. [22] studied the effect of thermal deformation on the
α→β phase transition of Zr47Ti45Al5V3 (wt.%), results showed that with decreasing strain rate and
increasing deformation temperature, the volume fraction and size of globular α phase increased.

At present, most of the research [23–25] on experimental methods discussed the influence of
alloy processing technology on structure and mechanical properties. For Zr-Ti-Al-V alloys, there is
a lack of in-depth research about the effect of element composition and phase structure on their
mechanical properties. However, mastering the relation between the element composition, phase
structure, and mechanical properties is an effective way to optimize the alloy properties [26–32], and it
is of great significance to study the lattice stabilities and elastic properties of Zr-Ti-Al-V alloy systems.
Marker et al. [33] studied the elastic properties of the Zr-Ti-X (X = Nb, Sn, Ta) alloys in the BCC structure,
and predicted the single crystal elastic stiffness coefficients and polycrystalline aggregate properties
using DFT-based first-principles calculations. Liao et al. [34] established the single-crystal elastic constant
model of the quaternary BCC Zr-Ti-Nb-V alloys across full composition space using first principles,
based on the research of Marker et al. [33], the accuracy of the model was confirmed by comparing with
previous calculations and experiments. Konopatsky et al. [35] carried out the multi-cycle mechanical
testing on ternary Ti68Zr18Nb14 (at.%), quaternary Ti68Zr18Nb13Ta1 (at.%), Ti68Zr18Nb12Ta2 (at.%),
and Ti68Zr18Nb11Ta3 (at.%) alloys, during multi-cycle mechanical testing, the following regularity
appeared for all the alloys tested: during 10–15 first loading-unloading cycles, the mechanisms of
plastic deformation and stress-induced martensite formation and stabilization prevail.

Many researchers have proved that phase composition of the Zr-Ti-Al-V alloys significantly
depends on the amount of Zr and Ti [16], and changes of phase compositions and structure with
alloying element distinctly affected mechanical properties of Zr-Ti-Al-V alloys [21]. It is of great
significance to study the alloying effects of Al and V to provide guidance for further optimizing the
lattice stabilities and mechanical properties regulation of quaternary Zr47Ti45Al5V3 (wt.%), in other
words, the research of alloying element content could provide direction and assistance in guiding the
research of quaternary alloys from the point of view of ternary alloys.
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In this paper, we performed first-principles studies of Zr-Ti-X (X = Al, V) alloys using the special
quasi-random structure (SQS) models to explore the relationship between element composition, phase
structure, lattice stabilities, and elastic properties based on previous studies [36]. This article starts
from the basic composition of Zr47Ti45Al5V3 (wt.%), the lattice constants, total energies, and elastic
constants of the Zr-Ti-X (X = Al, V) alloys are calculated. These calculations provide an effective guide
for further optimizing the composition of the Zr-Ti-X (X = Al, V) alloys, and provide guidance and
help in exploring the complex relationship between the ternary alloys and quaternary alloys.

2. Materials and Methods

Based on the ratio of the Zr atomic fraction and the Ti atomic fraction in the Zr47Ti45Al5V3 (wt.%),
in order to investigate the effect of alloying elements Al and V on the crystal structures and mechanical
properties of Zr47Ti45Al5V3 (wt.%) alloy, two types of ternary alloy systems were designed—Zr-Ti-Al
alloy systems and Zr-Ti-V alloy systems. For these two types of alloy systems, the hcp and bcc
structures were studied to model α and β phase because a mixture of two phases usually appears in
these alloys, which gives a better understanding of the phase properties of two competitive phases.
In this paper, the special quasi-random structure (SQS) method was used in the alloy systems with
hexagonal close-packed structure (HCP, α phase) and body-centered cubic structure (BCC, β phase).

To simplify the calculation, the atomic ratio of Zr and Ti is approximately 0.35:0.50. Figure 1 shows
the SQS model of the Zr35Ti50Al15 (at.%) alloys in HCP structure and BCC structure used in modeling
in this article; the SQS model of the Zr35Ti50V15 (at.%) alloys in HCP structure and BCC structure is
shown in Figure 2. Table 1 shows the ZryTizAl100−(y+z) (at.%) alloys (y:z = 0.35:0.50, and the atomic
fraction of Al goes from 0 to 15 at.% with a gradient of 3 at.%) in HCP and BCC structures. Table 2
shows the ZryTizV100−(y+z) alloys (at.%) (y:z = 0.35:0.50, and the atomic fraction of V goes from 0 to
15 at.% with a gradient of 3 at.%) in HCP and BCC structures. In this paper, the randomness of atomic
configuration was reproduced while considering the local relaxation in the supercell through modeling.
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Table 1. Zr-Ti-Al alloy systems in HCP structure and BCC structure with different atomic fraction of Al.

Structures System Composition (at.%)

HCP

Zr-Ti-Al

Zr41Ti59
Zr40Ti57Al3
Zr39Ti55Al6
Zr38Ti53Al9
Zr36Ti52Al12
Zr35Ti50Al15

BCC

Zr41Ti59
Zr40Ti57Al3
Zr39Ti55Al6
Zr38Ti53Al9
Zr36Ti52Al12
Zr35Ti50Al15

Table 2. Zr-Ti-V alloy systems in HCP structure and BCC structure with different atomic fraction of V.

Structures System Composition (at.%)

HCP

Zr-Ti-V

Zr41Ti59
Zr40Ti57V3
Zr39Ti55V6
Zr38Ti53V9
Zr36Ti52V12
Zr35Ti50V15

BCC

Zr41Ti59
Zr40Ti57V3
Zr39Ti55V6
Zr38Ti53V9
Zr36Ti52V12
Zr35Ti50V15

In this article, the CASTEP (Cambridge Sequential Total Energy Package, Cambridge, UK) total
energy calculation software package, based on the density functional theory (DFT) [37] pseudopotential
plane wave method [38], was used to analyze the Zr-Ti-Al alloys and Zr-Ti-V alloys in HCP and BCC
structures for first-principles calculations. Density functional theory (DFT) as an effective approximation
method is used to solve the structure of multi-electronic systems [39–46], and it obtains the total energy
of multi-electronic systems based on the energy minimization method. The pseudopotentials describe
the valence configurations of the elements, which are as follows: Zr 4s24p64d25s2, Ti 3s23p63d24s2,
Al 3s23p1and V 3s23p63d34s2. The electronic exchange-correlation energy was treated within the
generalized gradient approximation (GGA) with the PBE revised for solids [47]. The convergence
criteria of 5 × 10−7 eV per atom was applied to be self-consistent, all calculations were executed in
reciprocal space to improve the speed and accuracy, in addition, the calculation and convergence
were controlled by the cut-off point of the wave energy of the Ultrasoft pseudopotential plane.
After convergence is tested, the Monkhorst-Pack grid of 2 × 2 × 3 is adopted for the brillouin zone
integration, the plane wave kinetic energy cut-off was determined as 350 eV, and the unit cell parameters
of Zr-Ti-Al alloys and Zr-Ti-V alloys are calculated by first principles. About the lattice stability,
formation energy Ef

(
ZryTizX100−(y+z)

)
was defined by:

Ef

(
ZryTizX100−(y+z)

)
=

{
E
(
ZryTizX100−(y+z)

)
− yE(Zr) − zE(Ti) − [100− (y + z)]E(X)

}
/100 (1)

Here, E
(
ZryTizX100−(y+z)

)
is the total energy per atom of the ZryTizX100−(y+z) (at.%) alloy with

alloying element concentration. E(Zr), E(Ti), and E(X) are the energies per atom of Zr, Ti, and X in
their ground state structures.
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In this paper, according to our modeling system based on static modeling, the total energy
and forming energy of the system calculated in this paper are considered from the level of electron
exchange. They are themselves relative values because most of the energy is subtracted based on
mass–energy equivalence. The energy of the atom itself is approximated as the absolute value of the
total non-electron energy, which may not be considered in this article. We performed a static total
energy calculation, based on that, the lattice stabilities of Zr-Ti-X (X = Al, V) alloys are evaluated with
analyzing the total energy dependence on elements species, alloying fraction, and phase structure
using the first principles in our work.

We determined the independent elastic coefficients, Cij, based on expanding the total energy, U, of
the crystal as a function of lattice strain Є[48], which is expressed as

U = U0 + V
∑

i

σiεi +
1
2

V
∑

i

∑
j

Cijεiεj + . . . (2)

where V is the volume and U0 is the total energy of the undistorted lattice system. The linear term in
the expansion vanished, and the cubic or higher powers of εi terms in the polynomial expansion are
neglected for sufficiently small strains.

In this paper, the elastic constant, Cij, that describes the response of the crystal to external forces,
is generally used to determine the strength of a material [49]. Based on the research findings of
Zhou et al. [50], we theoretically predicted the elastic properties of Zr-Ti-X (X = Al, V) alloys of the
alloying elements.

A small strain (δ) is applied to the solid lattice of the ZryTizV100−(y+z) (at.%) alloys to construct a
quadratic function relationship between the total energy changes (∆U) and the strains (δ) according to
the Hooks law, as follows:

∆U =
V
2

6∑
I,j=1

Cijεiεj (3)

where ∆U is the total energy changes, V is the original unit cell volume, Cij are the elastic constants,
εi and εj are the components of strain matrix.

In order to investigate these elastic constants, as shown in Table 3, three sets of specific strains
(δ) are applied to BCC metal in different directions. We also list the different strain configurations to
compute the five independent elastic constants of HCP metal in Table 4. The elastic constants can be
obtained by fitting the relationship between the total energy changes (∆U) and the applied strains (δ).

Table 3. The relationship between the strains (δ) and the total energy changes (∆U) of BCC metal.

Strain Change of Total Energy

Є = (0, 0, 0, δ, δ, δ) ∆U
V = 3

2 C44δ
2

Є = (δ, δ, 0, 0, 0, 0) ∆U
V = (C11 + C12)δ

2

Є = (δ, δ, δ, 0, 0, 0) ∆U
V = 3

2 (C11 + 2C12)δ
2

Table 4. The relationship between the strains (δ) and the total energy changes (∆U) of HCP metal.

Strain Change of Total Energy

Є = (δ, δ, 0, 0, 0, 0) ∆U
V = (C11 + C12)δ

2

Є = (0, 0, 0, 0, 0, δ) ∆U
V = 1

4 (C11 −C12)δ
2

Є = (0, 0, δ, 0, 0, 0) ∆U
V = 1

2 C33δ
2

Є = (0, 0, 0, δ, δ, 0) ∆U
V = C44δ

2

Є = (δ, δ, δ, 0, 0, 0) ∆U
V = 3

2 (C11 + 2C12)δ
2
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For different unit cell structures, the stability criteria are also different according to Born-Huang’s
mechanical stability theory. In this paper, the HCP Zr-Ti-Al alloys and HCP Zr-Ti-V alloys are calculated
by first principles to obtain five independent elastic constants, C11, C12, C13, C33, and C44, their stability
is determined from the elastic constants by:

C11 > 0 (4)

C44 > 0 (5)

C11 > C12 (6)

(C11 + C12)C33 − 2C2
13 > 0 (7)

The BCC Zr-Ti-Al alloy systems and BCC Zr-Ti-V alloy systems are calculated by first principles
to obtain three independent elastic constants, C11, C12 and C44, their stability is determined from the
elastic constants by:

C11 + 2C12 > 0 (8)

C11 > C12 (9)

C44 > 0 (10)

The mechanical parameters of the Zr-Ti-Al alloys and Zr-Ti-V alloys can be calculated by using
single crystal elastic constants according to the Voigt-Reuss-Hill scheme [51–54]. The bulk modulus
(B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (ν) of the Zr-Ti-Al alloys and Zr-Ti-V
alloys are calculated as follows:

BV =
1
9
(C11 + C22 + C33) +

2
9
(C12 + C13 + C23) (11)

1
BR

= (S11 + S22 + S33) + 2(S12 + S13 + S23) (12)

BH =
BR + BV

2
(13)

GV =
1
15

(C11 + C22 + C33) −
1

15
(C12 + C13 + C23) −

1
5
(C44 + C55 + C66) (14)

15
GR

= 4(S11 + S22 + S33) − 4(S12 + S13 + S23) + 3(S44 + S55 + S66) (15)

GH =
GV + GR

2
(16)

E =
9BHGH

3BH + GH
(17)

υ =
3BH − 2GH

2(3BH + GH)
(18)

The ratio of bulk modulus to shear modulus (BH/GH) proposed by Pugh [55] has been widely
used to evaluate the toughness and brittleness of materials. It should be noted that a lower value of B
means the atomic bond is weaker. Consequently, materials with a low value of B exhibit relatively poor
resistance to various forms of localized corrosion (such as intergranular corrosion, pitting corrosion
and stress-corrosion cracking) [56–58]. Furthermore, Clerc et al. [59] have demonstrated that the
hardness of the annealed metal is proportional to G. It is commonly known that materials with a high
value of the B/G ratio (>1.75) often result in ductility, while materials with a low value of the B/G
ratio (<1.75) often exhibit brittleness [56,58,60,61]. Vitos et al. investigated the elastic properties of the
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Fe100−(c+n)CrcNin alloys (13.5 at.% < c < 25.5 at.% and 8 at.% < n < 24 at.%) [56], in that work, shear
modulus (G) and bulk modulus (B) fall into the range of 74–81 GPa and 161–178 GPa, respectively.

In addition, the brittleness and ductility of materials can also be judged according to the value of
Poisson’s ratio ν and the Cauchy pressure, that is, the difference between C12 and C44 [62]. The larger
the value of Poisson’s ratio ν, the better the ductility of the material, and if the calculated Cauchy
pressure of materials is negative or their Poisson’s ratio ν is lower than 0.26, these materials can be
considered brittle. Jiang et al. [63] investigated the mechanical properties and Debye temperature of
W-TM (TM = Cr, Cu, Fe, Mn, Mo, and Ni, respectively) alloys based on the first principles method,
and results showed that the ductile/brittle properties of W-TM alloys can be evaluated based on the
mechanical characteristic of B/G ratio, Poisson’s ratio (ν), and Cauchy pressure (C’).

3. Results and Discussion

Single cell unit cell parameters of alloy systems are shown in Section 3.1. In Section 3.2, the lattice
stability of Zr-Ti-X (X = Al, V) alloys are evaluated with analyzing the total energy dependence on
elements species, alloying fraction, and phase structure. The elastic constants of BCC and HCP Zr-Ti-X
(X = Al, V) alloys, are shown in Section 3.3. Finally, the bulk modulus (B), shear modulus (G), Young’s
modulus (E), and Poisson’s ratio (ν) of BCC and HCP Zr-Ti-X (X = Al, V) alloys are then examined.

3.1. Lattice Constants

The calculated lattice constants a, b, and c (Å) for HCP-structured and BCC-structured Zr-Ti-Al
alloy systems with different Al atomic fractions are shown in Table 5, the single crystal cell parameters
for HCP-structured and BCC-structured Zr-Ti-V alloy systems with various V concentrations are listed
in Table 6.

Considering the concentration dependence, the lattice parameters decrease with increasing Al and
V content, and the lattice parameters of the Zr-Ti-Al alloys and Zr-Ti-V alloys are close to each other.

Table 5. Effect of Al atomic fraction on single crystal cell parameters of HCP structure and BCC
structure Zr-Ti-Al alloy systems.

Structures System Composition (at.%)
Lattice Parameters (Å)

a b c

HCP

Zr-Ti-Al

Zr41Ti59 3.039 3.039 4.924
Zr40Ti57Al3 3.028 3.028 4.873
Zr39Ti55Al6 3.012 3.012 4.825
Zr38Ti53Al9 2.993 2.993 4.763
Zr36Ti52Al12 2.982 2.982 4.689
Zr35Ti50Al15 2.971 2.971 4.597

BCC

Zr41Ti59 3.382 3.382 3.382
Zr40Ti57Al3 3.368 3.368 3.368
Zr39Ti55Al6 3.354 3.354 3.354
Zr38Ti53Al9 3.341 3.341 3.341
Zr36Ti52Al12 3.333 3.333 3.333
Zr35Ti50Al15 3.325 3.325 3.325
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Table 6. Effect of V atomic fraction on single crystal cell parameters of HCP structure and BCC structure
Zr-Ti-V alloy systems.

Structures System Composition (at.%)
Lattice Parameters (Å)

a b c

HCP

Zr-Ti-V

Zr41Ti59 3.039 3.039 4.924
Zr40Ti57V3 3.029 3.029 4.878
Zr39Ti55V6 3.014 3.014 4.831
Zr38Ti53V9 2.998 2.998 4.772
Zr36Ti52V12 2.989 2.989 4.694
Zr35Ti50V15 2.978 2.978 4.622

BCC

Zr41Ti59 3.382 3.382 3.382
Zr40Ti57V3 3.371 3.371 3.371
Zr39Ti55V6 3.359 3.359 3.359
Zr38Ti53V9 3.346 3.346 3.346
Zr36Ti52V12 3.338 3.338 3.338
Zr35Ti50V15 3.329 3.329 3.329

3.2. Lattice Stability

As shown in Figure 3, the lattice stability of Zr-Ti-X (X = Al, V) alloys are evaluated with
analyzing the total energies dependence on elements species, alloying fraction and phase structure
using the first principles. Lattice stability studies are carried out with the purpose of explaining the
complex relationships between the mechanical properties and the alloying elements, deformation,
and temperature.Metals 2020, 10, x FOR PEER REVIEW 9 of 17 
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As shown in Figure 3a, the Zr-Ti-Al alloys in BCC structure generally have higher total energy
than HCP Zr-Ti-Al alloys, and the introduction of Al atoms does not change the fact that the HCP Zr-Ti
alloys is more stable than BCC [36]. When the Al atomic fraction reaches about 12 at.%, that is, when
the Al mass fraction reaches about 5 wt.%, the HCP Zr-Ti-Al alloys are the most stable because of the
lowest total energy, while their stability will decrease if the Al atomic fraction continues to increase.
For the Zr-Ti-Al alloys in BCC structure, the introduction of Al atoms will enhance the stability because
of micro alloying. When the mass fraction of Al goes from 0 to 1 wt.%, the structural stability of BCC
Zr-Ti alloys will be improved, and reach the maximum when the mass fraction of Al is about 1 wt.%,
but their stability will gradually decrease after the mass fraction of Al exceeds 1 wt.%. Therefore, the Al



Metals 2020, 10, 1317 9 of 16

element can be regarded as a stable element of α phase of Zr-Ti alloys, which verifies the experimental
research of Cordeiro [64].

It can be seen in Figure 3b, the introduction of V atoms can greatly enhance the stability of
BCC-structured Zr-Ti alloys. When the V atomic fraction reaches about 15 at.%, the total energies of
the BCC Zr-Ti-V alloys are lower than that of the HCP Zr-Ti-V alloys. For the HCP-structured Zr-Ti
alloys, because of the micro alloying effect brought by trace V elements, their stability will be enhanced.
But when the V atomic fraction exceeds 3 at.%, the continued addition of V atoms has little effect on
the structural stability of HCP Zr-Ti-V alloys. In addition, the increase of V atomic fraction will greatly
improve the structural stability of BCC Zr-Ti-V alloys. Thus, the V element can be regarded as a stable
element of β phase in the Zr-Ti alloys, which also verifies the experimental research of Cordeiro [64].

3.3. Elastic Properties

In this study, the elastic constants of Zr-Ti-Al alloy systems (Table 7) in HCP structure and
BCC structure and Zr-Ti-V alloy systems (Table 8) in HCP structure and BCC structure were
calculated by first principles. Figure 4 shows the effect of Al atomic fraction on the independent elastic
constants of HCP-structured and BCC-structured Zr-Ti-Al alloy systems, Figure 5 shows the effect of V
atomic fraction on the independent elastic constants of HCP-structured and BCC-structured Zr-Ti-V
alloy systems.

Table 7. Independent elastic constants of HCP structure and BCC structure Zr-Ti-Al alloy systems.

Structures System Composition (at.%)
Elastic Constants/GPa

C11 C12 C13 C33 C44 C66

HCP

Zr-Ti-Al

Zr41Ti59 178.1 45.2 70.1 184.2 27.1 65.8
Zr40Ti57Al3 183.4 46.1 72.3 189.5 27.6 66.3
Zr39Ti55Al6 189.2 46.8 75.4 192.3 28.2 66.8
Zr38Ti53Al9 191.4 47.5 77.9 198.2 28.5 67.2
Zr36Ti52Al12 194.5 47.9 79.3 203.3 28.9 67.5
Zr35Ti50Al15 201.1 48.4 82.8 205.9 32.5 68.1

BCC

Zr41Ti59 118.3 94.7 \ \ 33.6 \

Zr40Ti57Al3 119.5 95.4 \ \ 35 \

Zr39Ti55Al6 120.2 95.8 \ \ 36.3 \

Zr38Ti53Al9 121.8 96.2 \ \ 38.5 \

Zr36Ti52Al12 122.2 97.9 \ \ 39.1 \

Zr35Ti50Al15 123.6 99.3 \ \ 40.5 \

Table 8. Independent elastic constants of HCP structure and BCC structure Zr-Ti-V alloy systems.

Structures System Composition (at.%)
Elastic Constants/GPa

C11 C12 C13 C33 C44 C66

HCP

Zr-Ti-V

Zr41Ti59 178.1 45.2 70.1 184.2 27.1 65.8
Zr40Ti57V3 183.4 46.1 72.3 189.5 27.6 66.3
Zr39Ti55V6 189.2 46.8 75.4 192.3 28.2 66.8
Zr38Ti53V9 191.4 47.5 77.9 198.2 28.5 67.2
Zr36Ti52V12 194.5 47.9 79.3 203.3 28.9 67.5
Zr35Ti50V15 201.1 48.4 82.8 205.9 32.5 68.1

BCC

Zr41Ti59 118.3 94.7 \ \ 33.6 \

Zr40Ti57V3 119.5 95.4 \ \ 35 \

Zr39Ti55V6 120.2 95.8 \ \ 36.3 \

Zr38Ti53V9 121.8 96.2 \ \ 38.5 \

Zr36Ti52V12 122.2 97.9 \ \ 39.1 \

Zr35Ti50V15 123.6 99.3 \ \ 40.5 \
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As can be seen from Figures 4 and 5, in the calculated elastic constants of HCP Zr-Ti-Al alloys
and HCP Zr-Ti-V alloys, C11 and C33 are much larger than other elastic constants, which shows that
they are highly incompressible under uniaxial stress along the a and c axes. Moreover, as a hexagonal
structure unit cell, the value of C33 is greater than the value of C11, indicating that the c-axis of these
materials is more difficult to compress than a-axis. In addition, it can be seen in Figures 4 and 5, the C44

of the HCP Zr-Ti-Al alloys is only about 28 GPa, and the C44 of the HCP Zr-Ti-V alloys is only about 25
GPa. These results indicate that HCP Zr-Ti-Al alloys and HCP Zr-Ti-V alloys have very weak resistance
to shear deformation in the (100) plane.

In addition, for all Zr-Ti-Al alloys and Zr-Ti-V alloys constructed in this study, the Cauchy pressure
calculated under the set environmental conditions is positive, which are generally higher than those of
the Zr-Ti alloys [36]. These results indicate that these two alloy systems have higher ductility than
Zr-Ti alloy systems, therefore, the introduction of alloying elements Al and V can improve the ductility
of Zr-Ti alloy systems, and verified the experimental research results by Liang et al. [18,21].

Based on HCP structure and BCC structure, the elastic properties of the Zr-Ti-Al alloys of different
Al atomic fractions and the Zr-Ti-V alloys of different V atomic fractions are calculated by first principles
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in this paper, the calculation results using Equations (11)–(18) are shown in Tables 9 and 10, as well as
Figures 6 and 7.

Table 9. Elastic properties of HCP structure and BCC structure Zr-Ti-Al alloy systems.

Structures System Composition (at.%)
Elastic Properties

BH(GPa) GH(GPa) BH/GH E(GPa) ν

HCP

Zr-Ti-Al

Zr41Ti59 89.5 39.2 2.28 102.6 0.309
Zr40Ti57Al3 91.9 40.2 2.29 105.3 0.309
Zr39Ti55Al6 94.3 41.3 2.28 108.1 0.309
Zr38Ti53Al9 95.5 41.7 2.29 109.2 0.309
Zr36Ti52Al12 96.8 42.4 2.28 111 0.309
Zr35Ti50Al15 99.3 46.1 2.15 120 0.299

BCC

Zr41Ti59 102.6 22.1 4.64 61.9 0.4
Zr40Ti57Al3 103.4 22.8 4.53 63.7 0.397
Zr39Ti55Al6 103.9 23.5 4.42 65.6 0.395
Zr38Ti53Al9 104.7 24.8 4.22 69 0.39
Zr36Ti52Al12 106.9 24.5 4.36 68.3 0.394
Zr35Ti50Al15 107.4 25.1 4.27 69.9 0.392

Table 10. Elastic properties of HCP structure and BCC structure Zr-Ti-V alloy systems.

Structures System Composition (at.%)
Elastic Properties

BH(GPa) GH(GPa) BH/GH E(GPa) ν

HCP

Zr-Ti-V

Zr41Ti59 89.5 39.2 2.28 102.6 0.309
Zr40Ti57V3 91.1 35.1 2.60 93.3 0.292
Zr39Ti55V6 91.7 38.6 2.38 101.6 0.315
Zr38Ti53V9 93.4 38.1 2.45 100.6 0.320
Zr36Ti52V12 93.7 37.8 2.47 100.0 0.322
Zr35Ti50V15 94.3 36.9 2.56 98.0 0.327

BCC

Zr41Ti59 102.6 22.1 4.64 61.9 0.400
Zr40Ti57V3 104.1 20.0 5.21 56.6 0.410
Zr39Ti55V6 102.3 16.2 6.31 46.2 0.425
Zr38Ti53V9 102.7 17.4 7.13 41.3 0.433
Zr36Ti52V12 102.6 15.0 6.84 42.9 0.431
Zr35Ti50V15 103.1 13.3 7.75 38.3 0.438
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For Zr-Ti-Al alloys, it can be seen from Figure 6a that the bulk modulus of the HCP structure is
less than that of BCC, indicating that α phase of Zr-Ti-Al alloys is lower than that of β phase. However,
the HCP Zr-Ti-Al alloys have higher shear modulus and Young’s modulus than BCC, which indicates
that the hardness and stiffness of α phase are higher than that of β phase. In addition, the bulk
modulus, shear modulus, and Young’s modulus of HCP-structured Zr-Ti-Al alloys are positively
correlated with Al atomic fraction. When the mass fraction of Al increases between 0 and 6.8 wt.%,
the strength, hardness, and stiffness of α phase in Zr-Ti-Al alloys will be improved with the increasing
of Al. For BCC Zr-Ti-Al alloys, their bulk modulus, shear modulus, and Young’s modulus are basically
unchanged when the Al mass fraction exceeds 4 wt.%, and then these values continue to increase.
In general, when the mass fraction of Al in the Zr-Ti-Al alloys is from 4 wt.% to 6.8 wt.%, the Zr-Ti-Al
alloys have the highest strength, hardness, and rigidity.

As shown in Figure 6b, for the Zr-Ti-V alloys, the bulk modulus of the HCP structure are lower
than that of BCC, which shows that the strength of α phase of Zr-Ti-V alloys is lower than that of β
phase. In addition, the bulk modulus of HCP-structured Zr-Ti-V alloys is positively correlated with
the atomic fraction of V, but the shear modulus and Young’s modulus are negatively correlated. When
the mass fraction of V increases from 0 to 12 wt.%, the strength of α phase in the Zr-Ti-V alloys will be
improved, while the hardness and rigidity of them will be weakened.

With the increasing of atomic fraction of V, the bulk modulus of BCC Zr-Ti-V alloys increases first
and then remains unchanged. When the mass fraction of V increases from 0 to 2.4 wt.%, the strength of
β phase in the Zr-Ti-V alloys will be enhanced, and when the mass fraction of V exceeds 2.4 wt.%,
the strength of β phase in the Zr-Ti-V alloys is basically unchanged with the increasing mass fraction
of V. In addition, the shear modulus and Young’s modulus of the BCC Zr-Ti-V alloys are negatively
correlated with the element V, which indicates that the hardness and stiffness of β phase in Zr-Ti-V
alloys will be reduced with the increasing of V element. In general, it can be seen that with the
increasing of V mass fraction, the strength of Zr-Ti-V alloys improves, while the hardness and stiffness
are opposite. When the mass fraction of V is around 2.4 wt.%, the Zr-Ti-V alloys achieve the best
strength, hardness, and stiffness.

As shown in Figure 7, for Zr-Ti-Al alloys and Zr-Ti-V alloys, the BH/GH value of the BCC structure
is greater than that of HCP. These two types of alloy systems have similar characteristics in Poisson’s
ratio, which indicates that the ductility of α phase is lower than that of β phase in Zr-Ti-Al alloys
and Zr-Ti-V alloys. In addition, for HCP Zr-Ti-Al alloys, when the Al mass fraction is between 0 and
5.2 wt.%, the increasing of Al atomic fraction has almost no effect on the BH/GH value of the HCP
Zr-Ti-Al alloys. However, the BH/GH value of the HCP structure Zr-Ti-Al alloys tends to decrease after
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the Al mass fraction exceeds 5.2 wt.%, and the Poisson’s ratio of the HCP Zr-Ti-Al alloys also follows a
similar rule. For BCC Zr-Ti-Al alloys, the increase of Al atomic fraction will reduce the BH/GH value
and Poisson’s ratio of these alloy systems. It can be concluded that with the increasing of the Al mass
fraction, the ductility of the β phase of the Zr-Ti-Al alloys will be weakened. On the contrary, for the
Zr-Ti-V alloy systems, the ductility of these alloys will be improved as the V atomic fraction increases
by observing the BH/GH value and Poisson’s ratio in Figure 7, which indicates that the ductility of
Zr-Ti-V alloys will be enhanced when the mass fraction of V increases from 0 to 12 wt.%.

In this paper, we studied the influence of Zr and Ti on the phase composition of ternary Zr-Ti-X
alloys (X = Al, V) by the content of different Al and V. In addition, based on the research that the changes
of phase compositions and structure with alloying element content distinctly affect the mechanical
properties of quaternary Zr-Ti-Al-V alloys, first-principles calculations could provide an effective
guide for further exploring the effects of the amount of Zr and Ti on the phase composition and
structure of quaternary Zr-Ti-Al-V alloys, thereby providing direction and help in discussing the
relationship between Zr-Ti-X (X = Al, V) compositions and the mechanical properties of the multiphase
Zr47Ti45Al5V3 alloy.

4. Conclusions

To improve our fundamental understanding of the roles of alloying elements in Zr-Ti-X alloys
(X = Al, V), first-principles calculations were performed with the SQS method to consider the disordered
atomic configurations in solid solution alloys. In this paper, the relationship between the microstructure
and properties of the Zr-Ti-X alloys (X = Al, V) is studied on the basis of Zr47Ti45Al5V3 (wt.%) alloy,
based on a certain ratio of Zr and Ti atomic fractions, the effects of different alloying elements (Al, V)
mass fractions and different phase structures (HCP and BCC structure, α phase and β phase) on the
lattice stability and elastic properties of Zr-Ti-X alloys (X = Al, V) are calculated by the first principles.
The main conclusions are as follows.

1. Al acts as an α stabilizer for Zr-Ti-Al alloys and V can stabilize the β phase for Zr-Ti-V alloys.
2. For Zr-Ti-Al alloy systems, the strength of α phase is lower than that of β phase, but the hardness

and stiffness of the α phase are higher than that of β phase. For Zr-Ti-V alloy systems, the
hardness and stiffness of α phase are higher than that of β phase, while the ductility of β phase is
generally higher than that of α phase.

3. When the mass fraction of Al in Zr-Ti-Al alloys increases from 4 wt.% to 6.8 wt.%, Zr-Ti-Al alloys
have relatively good strength, hardness, and rigidity, however, the ductility of Zr-Ti-Al alloys
becomes worse as the mass fraction of Al increases. When the mass fraction of V in Zr-Ti-V alloys
reaches 2.4 wt.%, Zr-Ti-V alloy achieves the best strength, hardness, and rigidity, and the ductility
of Zr-Ti-V alloys improved as the mass fraction of V increases from 0 to 12 wt.%.

4. Mechanical properties of quaternary Zr47Ti45Al5V3 alloy significantly depend on the amount
of Zr and Ti; in addition, the changes of phase compositions and structure with Al content or
V content distinctly affect mechanical properties of ternary Zr-Ti-X alloys (X = Al, V), thereby
impacting the mechanical properties of the multiphase Zr47Ti45Al5V3 alloy from the point of view
of the amount of Zr and Ti.
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