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Abstract: Background: We examined the acute effect of a red spinach extract (RSE) (1000 mg dose;
~90 mg nitrate (NO−

3 )) on performance markers during graded exercise testing (GXT). Methods:
For this randomized, double-blind, placebo (PBO)-controlled, crossover study, 15 recreationally-active
participants (aged 23.1 ± 3.3 years; BMI: 27.2 ± 3.7 kg/m2) reported >2 h post-prandial and
performed GXT 65–75 min post-RSE or PBO ingestion. Blood samples were collected at baseline
(BL), pre-GXT (65–75 min post-ingestion; PRE), and immediately post-GXT (POST). GXT commenced
with continuous analysis of expired gases. Results: Plasma concentrations of NO−

3 increased PRE
(+447 ± 294%; p < 0.001) and POST (+378 ± 179%; p < 0.001) GXT with RSE, but not with PBO
(+3 ± 26%, −8 ± 24%, respectively; p > 0.05). No effect on circulating nitrite (NO−

2 ) was observed
with RSE (+3.3 ± 7.5%, +7.7 ± 11.8% PRE and POST, respectively; p > 0.05) or PBO (−0.5 ± 7.9%,
−0.2 ± 8.1% PRE and POST, respectively; p > 0.05). When compared to PBO, there was a moderate
effect of RSE on plasma NO−

2 at PRE (g = 0.50 [−0.26, 1.24] and POST g = 0.71 [−0.05, 1.48]).
During GXT, VO2 at the ventilatory threshold was significantly higher with RSE compared to PBO
(+6.1 ± 7.3%; p < 0.05), though time-to-exhaustion (−4.0 ± 7.7%; p > 0.05) and maximal aerobic power
(i.e., VO2 peak; −0.8 ± 5.6%; p > 0.05) were non-significantly lower with RSE. Conclusions: RSE as a
nutritional supplement may elicit an ergogenic response by delaying the ventilatory threshold.
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1. Introduction

Acute and/or sub-chronic exogenous nitrate (NO−
3 ) ingestion has demonstrated potential for

improved sub-maximal exercise time-to-exhaustion (TTE) [1], time-trial performance [2,3], and graded
exercise testing (GXT) performance [4]. However, others report NO−

3 ingestion has limited or no effect
on performance outcomes [5–7]. Specificity of study designs with varying time-course supplementation
(i.e., acute vs. chronic), NO−

3 sources, diverse bioactive phytochemicals, or enzymatic changes from
enterosalivary circulation may contribute to variable bioavailability and production of nitric oxide
(NO) and, thus, influence the observed outcomes [8]. Wylie and colleagues [9] recently characterized
responses to acute ingestion of 4.2, 8.4, and 16.8 mmol of NO−

3 from beetroot juice. In that study,
plasma (all instances of plasma nitrate and nitrite noted in brackets) [NO−

3 ] and [NO−
2 ] increased

dose-dependently with peaks observed 2–4 h post-ingestion with the 6.8 mmol dose compared to 1–2 h
post-ingestion with the lower doses. Moreover, arterial blood pressure dose-dependently decreased
post-ingestion, but a significant effect was observed for the lowest dose (4.2 mmol) at only the 1-h
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post-ingestion time point, further illustrating a more transient response to lower doses of NO−
3 .

Thus, the timing of NO−
3 -mediated effects may depend upon the dose delivered.

An acute 2000 mg dose of red spinach extract (RSE) delivering ~180 mg (~2.9 mmol) of NO−
3 has

been shown to increase plasma [NO−
3 ] and [NO−

2 ] to peaks of 253 µmol/L (ca. a four-fold change)
and 0.56 µmol/L (~1.8-fold change), respectively [10]. Interestingly, these peak concentrations are
similar to, or exceed, those observed with acute ingestion of relatively higher NO−

3 doses from beetroot
juice [9,11]. Moreover, with acute RSE ingestion plasma [NO−

3 ] peaked at 1 h, although plasma
[NO−

2 ] was highly variable between consecutive 15 min time points with the largest spikes between
30–180 min post-ingestion [10]. Collectively, the data suggest differential pharmacokinetics from
those observed with beetroot. The majority of inorganic nitrate supplementation studies regarding
exercise performance have utilized beetroot. Remarkably, limited studies have evaluated NO−

3 rich
leafy vegetable and, more specifically, RSE on exercise performance [12]. Importantly, not only is RSE
rich in NO−

3 , potassium (>10% by weight), and anti-oxidant polyphenols (e.g., amaranthine), but it is
also devoid of sugar and oxalates.

Given the aforementioned more transient elevations in plasma [NO−
3 ] and [NO−

2 ] with lower
doses of NO−

3 , as well as previous work illustrating peak plasma [NO−
3 ] occurring between 45–90 min

post-ingestion of 2000 mg of this RSE [10], we chose to evaluate the effects on physical performance at
65–75 min post-RSE/placebo (PBO) consumption. This RSE is included in numerous multi-ingredient
‘pre-workout’ and ‘energy’ supplements (as Oxystorm®) with doses ranging from ~500–2000 mg.
Thus, we chose to use a ‘medial’ dose of 1000 mg to determine whether ingestion of the same RSE
nitrate source previously characterized [10] would increase plasma [NO−

3 ] and [NO−
2 ] and affect GXT

performance. We hypothesized the acute medial dose of RSE would increase exercise economy and
improve oxygen utilization during GXT.

2. Methods

2.1. Participants

Fifteen (N = 15; males = 8, females = 7) participants were recruited through a community
advertisement for this crossover, double-blinded study. Participants included were 19–35 years of age,
free from metabolic disease and hypertension (SBP < 140 mmHg and DBP < 90 mmHg), recreationally
active (>30 min of physical activity at least 3 days/week), and not consuming any ‘supplements’ for
>1 month. All procedures were approved by the Auburn University Institutional Review Board and
conformed to the standards set by the latest revision of the Declaration of Helsinki.

2.2. Study Design

Participants reported for two visits separated by >72 h, before the primary testing session. For each
visit, participants were instructed to abstain from exercise and alcohol for 24 h and caffeine for 12 h.
Participants were also asked to adhere to a low NO−

3 diet for >48 h adapted from the National
Heart, Blood, and Lung Institute [13] to reduce the effects of diet on circulating nitrate and nitrate
concentrations and to abstain from mouthwash due to its potential to inhibit bio-activation of NO−

3 [14]
for 24 h prior to visits. Finally, participants were instructed to replicate their 24 h diet prior to visits and
report >2 h post-prandial. In order to control for potential diurnal variation, all participants reported
for their visits at the same time of day. Some of these data (i.e., participant characteristics) have been
reported previously [15].

Upon reporting for each visit, adherence to guidelines was verbally confirmed. Thereafter,
participants’ height and weight were measured, a venipuncture was performed (BL), and a dose of
RSE or PBO was ingested. At one occasion 65–75-min post-RSE/PBO ingestion, venipuncture was
performed (PRE) after which subjects were immediately prepared for GXT. Maximal GXT commenced
using the Bruce protocol with analysis of expired gases. At the conclusion of the GXT, a final
venipuncture was performed (POST).
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2.3. Blood Collection and Humoral Nitrate/Nitrite Concentrations

For each venipuncture (BL, PRE and POST), ~4 mL of venous blood was collected from the
antecubital space in tubes containing ethylenediaminetetraacetic acid (EDTA) and immediately
centrifuged at 4000 g at 4 ◦C for 5 min. Plasma was then separated in cryotubes and immediately
placed in an −80 ◦C freezer for later batch-processing. Following a thaw at room temperature, plasma
samples were deproteinized using a cold ethanol precipitation. Briefly, the ethanol was pre-cooled
to 0 ◦C and 500 µL of each plasma sample was added to 1 mL of the cold ethanol and allowed to
let stand for 30 min at 0 ◦C. Thereafter, samples were vortexed and centrifuged at 14,000 rpm for
5 min. The resultant supernatant was collected for assessment of total plasma [NO−

3 ], [NO−
2 ] (NOx),

and plasma [NO−
2 ] only via ozone-based chemilluminescence [16,17] using a NO analyzer (Sievers

NOA 280i, Boulder, CO, USA). To determine [NOx], samples were added to 0.1 M vanadium chloride
in 1 M hydrochloric acid refluxing at 95 ◦C under nitrogen. To determine [NO−

2 ], samples were
added to aqueous iodine in 1 M acetic acid refluxing at room temperature under nitrogen. A cooled
photomultiplier tube housed in the NOA detected respective reduction to NO and concentrations
of NOx and NO−

2 were determined by a plotting signal (mV) against a calibration plot. [NO−
3 ] was

calculated as [NOx] − [NO−
2 ].

2.4. Supplementation: Red Spinach Extract and Placebo

A single oral dose of 1000 mg RSE powder (i.e., Oxystorm®) or PBO (maltodextrin) in gelatin
capsules was consumed with bottled water. Per manufacturer, the RSE is derived from only pure
Amaranthus dubius, has an herb to extract ratio of 50:1, and contains >9% NO−

3 (by HPLC) and >13%
potassium (by ICP-MS). The expected ingested dose of nitrate in the RSE was ~90 mg.

At the first visit, ingestion of RSE or PBO was determined at random (flip of coin) and the
alternate supplement was ingested at the second visit. Investigators and subjects were un-blinded
after completion of data collection and analysis.

2.5. Graded Exercise Testing

Participants underwent maximal GXT according to the Bruce protocol, which includes progressive
increases in treadmill belt speed and deck incline every 3 min. Expired gases were collected with
the subjects standing stationary on the treadmill until stable. Thereafter, participants were allowed
to warm up by walking at 2.7 km/h at a 0% incline for 3 min followed immediately by initiation of
the protocol (Table 1). GXT continued until participants reached volitional fatigue. Expired gases
were continuously analyzed using a TrueMax 2400 metabolic measurement system (ParvoMedics,
Sandy, UT, USA) and averaged in 20 s intervals.

Peak oxygen consumption rates (VO2 peak) were determined using the highest 20 s average
observed during the GXT and TTE was recorded as the time at which participants indicated volitional
fatigue. The ventilatory threshold (VT) was identified by a computer program (WinBreak 3.7, Epistemic
Mindworks, Ames, IA, USA) using multiple parallel methods of determination; excess carbon dioxide
(ExCO2) [18], ventilatory equivalent ((VEQ), [19]), and modified v-slope [20] methods. ExCO2 was
calculated as ((VCO2

2/VO2)-VCO2) and plotted over time with the point at which ExCO2 began to
increase disproportionately identified as the VT [18]. For the VEQ method, the VT was identified as
the first point at which the ventilatory equivalent for O2 increased without a concurrent increase in the
ventilatory equivalent for CO2. Finally, for the modified v-slope method, (1) a plot of VCO2 vs. VO2

was divided into two regions with each segment being fit with linear regression; (2) the location of
the intersection between the two regression lines was calculated where the point dividing the two
regions best fit the data by maximizing the ratio of the greatest distance of the intersection point from
the single regression line of the data to the mean square error of regression; and (3) it was ensured
that the slope of the first regression line was >0.6 and the change in slope from the first regression to
the second was >0.1 [21]. For the ExCO2 and VEQ methods, a standard algorithm for identifying the
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break point of two lines was used [22] and for the v-slope method the algorithm proposed by Beaver,
Wasserman, and Whipp [20] was used. An illustration of the VT identification methods is presented in
Figure 1. An average of the three methods was calculated as VT and the CV between the methods was
found to be 3.35%.

Table 1. Graded exercise testing protocol (Bruce protocol).

Stage Time (min) Speed (km/h) Grade (%)

0 −3–0 2.7 0
1 0–3 2.7 10
2 3–6 4.0 12
3 6–9 5.5 14
4 9–12 6.8 16
5 12–15 8.0 18
6 15–18 8.9 20
7 18–21 9.7 22
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Figure 1. Representative illustration of computer plots showing agreement between the (a) excess CO2

(ExCO2); (b) ventilatory equivalent (VEQ); and (c) modified v-slope methods for determination of
the ventilatory threshold (VT) using expired gas data. Open circles indicate 20 s average expired gas
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2.6. Statistical Analysis

All data were tested for normal distribution using the Shapiro-Wilk test. An alpha level of 0.05
was required for statistical significance. Independent t-tests were performed to compare subject
characteristics. For plasma [NO−

3 ] and [NO−
2 ], a repeated measures two-way ANOVA was employed.

When a significant treatment-by-time interaction was observed, within- and between-treatment
comparisons were performed using Student’s paired t-tests. Hedges’ g was calculated to determine
effect sizes with values of 0.5, and 0.8 representing moderate, and large effects, respectively [23].
For plasma [NO−

3 ] and [NO−
2 ] at PRE and POST, g was calculated using the ratio of the respective

mean difference from BL in the RSE and PBO conditions to the pooled standard deviation of the
differences. For GXT parameters, g was calculated using the ratio of the mean difference between
treatment conditions to the standard deviation of the differences. Statistical analyses were performed
using IBM SPSS Statistics 24 for Windows (Chicago, IL, USA). Data are reported as mean ± SD and
effect sizes as mean (95% confidence interval (lower limit, upper limit)).

3. Results

3.1. Participants

One participant was excluded due to the discovery of non-compliance with dietary guidelines
([NO−

3 ] >3-fold higher than study average at baseline). Participant characteristics are presented in
Table 2. There were no significant differences between male and female participants for age, height,
weight, BMI, and VO2 peak. Moreover, sex and weight were not found to be significant covariates for
any variable analyzed.

Table 2. Participant characteristics.

Characteristics Overall (n = 14) Males (n = 7) Females (n = 7)

Age, yrs 23.7 ± 3.2 23.5 ± 2.3 23.9 ± 4.1
Height, m 1.72 ± 0.09 1.77 ± 0.08 1.68 ± 0.09
Weight, kg 81.7 ± 17.3 88.1 ± 13.3 75.3 ± 19.4

BMI, kg/m2 27.3 ± 3.8 28.2 ± 2.9 26.4 ± 4.6
VO2 peak, mL/kg/min 40.9 ± 7.2 44.7 ± 7.3 37.2 ± 4.9

Data are presented as mean ± SD. BMI, body mass index.

3.2. Circulating Concentrations of Nitrate and Nitrite

Treatment means for [NO−
3 ] and [NO2] at BL, PRE, and POST are presented in Figure 2.

A time*treatment interaction were observed for [NO−
3 ] (p < 0.001 for all). RSE ingestion significantly

increased [NO−
3 ] at PRE and POST (p < 0.001) and concentrations were significantly higher than PBO

at the same time points (p < 0.001). Large effect sizes were observed for change in [NO−
3 ] at the PRE

(g = 2.95 [1.88, 4.02]) and POST (g = 2.94 [1.88, 4.01]) time points. For [NO−
2 ], no main effects or

time*treatment interaction (p = 0.278–0.336) was observed. However, moderate effect sizes for the
change in [NO−

2 ] were observed at the PRE (g = 0.50 [−0.26, 1.24]) and POST (g = 0.71 [−0.05, 1.48])
time points.
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values in μM concentrations ± SD. When a significant time*treatment interaction was observed, post-
hoc tests were performed using Student’s paired t-tests. * Significantly different from baseline within 
conditions (p < 0.01). † significantly different between conditions at the same time point (p < 0.01), 
respectively). 
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Figure 2. Plasma concentrations of (a) nitrate (NO−
3 ) and (b) nitrite (NO−

2 ) following ingestion of a red
spinach extract (RSE; •) and placebo (PBO; ◦) at baseline (BL), 65–75 min following ingestion (PRE),
and immediately following graded exercise testing (POST). Data are presented as mean absolute values
in µM concentrations ± SD. When a significant time*treatment interaction was observed, post-hoc tests
were performed using Student’s paired t-tests. * Significantly different from baseline within conditions
(p < 0.01). † significantly different between conditions at the same time point (p < 0.01), respectively).

3.3. Graded Exercise Testing Performance

Treatment means and individual values for GXT performance parameters are presented in Figure 3.
TTE and VO2 peak were not different between conditions (p > 0.100; Figure 3a,b) and no moderate
or large effect sizes were observed (d < 0.50). VO2 at the VT was significantly higher during the RSE
condition relative to PBO (p = 0.012; Figure 3c) and there was a large effect size (g = 0.73 [0.65, 0.80]).
The time at which the VT was observed was not different between conditions (518 ± 110 and 519 ± 97 s
for RSE and PBO, respectively; p = 0.991), though the percent of VO2 peak at which VT was observed
was significantly higher with RSE (66.8 ± 10.7 and 63.1 ± 7.6% for RSE and PBO, respectively;
p = 0.035).
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and (c) observed ventilatory threshold (in L O2/min) during the Bruce protocol GXT. Student’s paired
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conditions (p < 0.05).

4. Discussion

The primary findings are that a single 1000 mg dose of RSE compared to PBO (1) significantly
increased plasma [NO−

3 ], but not [NO−
2 ]; and (2) significantly increased the VT during GXT

commencing at 65–75 min post-ingestion.
Previously, we reported a three-fold increase in plasma [NO−

3 ] from BL 65–75 min post-ingestion
of a single 1000 mg dose of RSE [15]. However, in that study, mean plasma [NO−

3 ] was reported to
increase from 12 to 36 µM. Herein, using ozone-based chemiluminescence [NO−

3 ] was found to increase
from 40 to 184 µM, representing a 4.6-fold change. The markedly different [NO−

3 ] concentrations
and fold-changes likely represent the quantitative limitations associated with [NO−

3 ] and [NO−
2 ]

measurement using Griess-based assays [24]. Indeed, the peak plasma [NO−
3 ] response to a single

1000 mg dose of RSE herein was ~73% of that observed in another study utilizing a single 2000 mg dose
of RSE [10]. Thus, given the greater sensitivity of the ozone-based chemiluminescence method [17]
and a dose-response that appears to be consistent with previous RSE literature, from a quantitative
standpoint our current findings are likely more accurate than those previously reported.

Despite utilizing methods with greater sensitivity for detecting plasma [NO−
2 ], no statistically

significant effect of RSE ingestion on plasma [NO−
2 ] was observed. Moreover, the moderate effect

sizes suggesting an increase in [NO−
2 ] at both the PRE and POST time points with RSE ingestion

were not greater than their respective 95% confidence interval. The lack of a significant alteration in
plasma [NO−

2 ] with RSE ingestion could be due the ingested NO−
3 dose. Following un-blinding,

1000 mg of RSE was diluted in nitrate-free water and tested for [NO−
3 ] using the ozone-based

chemiluminescence methods described to better characterize the ingested dose. We found ~11.5%
NO−

3 by weight, which equates to the delivery of ~115 mg of NO−
3 . It has been previously shown

that acute KNO3 supplementation, with a NO−
3 dose of twice that given herein, resulted in a 1.4-fold

peak increase in plasma [NO−
2 ] at ~1 h post-ingestion [25]. Moreover, in an investigation specific

to RSE, a dose of twice that delivered herein resulted in ~1.5–2-fold increases in plasma [NO−
2 ] at
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30 and 90 min post-ingestion [10]. The plasma [NO−
2 ] fold-change observed in the present study

(~1.1) was considerably less than expected, particularly given that we observed peak plasma [NO−
3 ]

levels near 200 µM which have been previously associated with significant (greater than two-fold)
increases in plasma [NO−

2 ] with beetroot-derived NO−
3 [9]. Thus, the present results suggest that the

pharmacokinetics associated with RSE may differ significantly from other exogenous NO−
3 sources

and that a greater increase in plasma [NO−
3 ] from RSE may be required to affect plasma [NO−

2 ].
Regarding GXT performance, no significant alteration in TTE or VO2 peak was observed, though

previous reports have indicated that exogenous NO−
3 supplementation may actually decrease VO2

peak [4], or have little [26] to no effect [27] on these outcomes. However, VT during GXT was
significantly higher during the RSE condition, suggesting a delayed onset of significant anaerobic
metabolism. Given the acute nature of our study, more immediate and plausible proposed mechanisms
by which NO−

3 supplementation may influence oxygen uptake and utilization could include a
reduction of NO−

3 to NO, directly influencing mitochondrial efficiency [28], and vascular tone [8]
and/or tissue oxygenation [11,29]. However, the support for these mechanisms hinges on the
appearance of NO−

2 in the plasma and we did not observe a significant effect of acute RSE ingestion on
plasma [NO−

2 ]. Though it is plausible that peak plasma [NO−
2 ] could have occurred later due to the

lag time associated with NO−
2 appearance [30,31], the point remains that a marked increase of plasma

[NO−
2 ] was not observed at time points before or after the GXT protocol.
Previous studies have mostly evaluated exercise performance based upon a pharmacokinetic

profile consistent with higher doses of NO−
3 that demonstrate peak plasma [NO−

2 ] occurring ~2.5 h
post-ingestion. Herein, we evaluated the effects of RSE on exercise performance at a considerably
earlier time point (i.e., 65–75 min post-ingestion) due to the aforementioned plasma [NO−

3 ] and
[NO−

2 ] responses to lower doses of exogenous NO−
3 , and specifically RSE. Thus, the timing of

exercise performance measures post-ingestion of exogenous NO−
3 may warrant further consideration,

particularly as it relates to lower doses. In addition, beyond NO−
2 , it remains possible that other

phytochemicals and/or non-elucidated mechanisms contributed to our observations with submaximal
exercise performance and RSE.

Though alternative, non-NO−
2 mediated mechanisms that could affect VT without changes in VO2

peak is beyond the scope of this study, a few points warrant consideration. First, we have previously
reported an increase in lower limb resistance vessel reactivity ~1 h following acute ingestion of a
1000 mg dose of RSE [15] that may improve oxygen delivery/utilization in skeletal muscle during
exercise. Moreover, RSE is rich in potassium, which is strongly associated with ventilation and
may contribute to the exercise induced hyperemic response [32]. Secondly, it is noteworthy that
RSE is devoid of sugar (in contrast to beetroot juice), which may affect the metabolic response to
exercise. Third, although an antioxidant profile is not exclusive to RSE, some polyphenols are unique
in RSE (e.g., amaranthine) and the relative concentrations of constituents can differ markedly from
other exogenous NO−

3 sources, which may affect exercise performance (e.g., quercetin). However,
the ergogenic potential and pharmacodynamics associated with potassium and specific polyphenols
should be investigated. Finally, given that we only verbally confirmed adherence with dietary
guidelines we cannot rule out the possibility that nutrition in the days leading up to exercise trials
affected the observed outcomes.

Practical Applications

Practically, although we did not observe an alteration in the TTE or VO2 peak with GXT, the results
presented herein regarding acute RSE ingestions and exercise are intriguing given that the VT is highly
associated with the lactate threshold and endurance exercise performance [18]. If the observed
alteration in the VT with RSE ingestion is, in fact, associated with significant alteration of the anaerobic
threshold, it is plausible that a 1000 mg dose of RSE may improve sustained sub-maximal exercise
performance and/or potentiate higher sub-anaerobic training intensities. However, steady-state
submaximal exercise was not investigated herein with participants experiencing a range of submaximal
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efforts for only brief periods (i.e., 3 min). Further investigations to characterize the effects of RSE on
prolonged submaximal exercise performance as well as potential mechanisms for action beyond NO−

2
are warranted. Future investigations should specifically evaluate the effects of RSE on more precise
markers of the anaerobic threshold, including local markers of skeletal muscle metabolism.

5. Conclusions

In summary, we report that acute ingestion of 1000 mg of a RSE substantially increases plasma
[NO−

3 ], but not [NO−
2 ]. Additionally, despite the relatively low dose of NO−

3 from RSE we observed
a large effect on the VT compared to PBO (+0.12 ± 0.14 L/min) with VT occurring at a significantly
higher relative VO2 (+3.6 ± 5.2%). Finally, it should be considered that this study only included
‘recreationally active’ participants and the potential benefit in athletes needs to be determined.
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