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Abstract: (1) Background: The “bird dog” exercise is considered one of the most effective therapeutic
exercises for lumbopelvic rehabilitation and the prevention and treatment of low back pain. The
“standing bird dog” (SBD) exercise, executed in a single-leg stance, constitutes a natural and chal-
lenging variation in the “bird dog”; nevertheless, this exercise has not yet been investigated. This
study provides a stabilometric and electromyographic analysis of the SBD performed in static and
dynamic conditions and in ipsilateral and contralateral variations; (2) Methods: A time-synchronized
motion capture system, wireless electromyography sensors, and triaxial force platform were used
to analyze the selected SBD exercises; (3) Results: In dynamic conditions, the gluteus maximum,
multifidus, lumbar erector spinae, and gluteus medius reached a mean activation level higher than in
the static condition, with peak activation levels of 80%, 60%, 55%, and a 45% maximum voluntary
isometric contraction, respectively. In the static condition, balance control was more challenging in
the mediolateral compared to the anteroposterior direction. In the dynamic condition, the balance
challenge was higher in the anteroposterior direction and higher than the static condition in both
directions; (4) Conclusions: The SBD was proved to be effective for strengthening the hip and lumbar
extensor muscles and provided a powerful challenge to single-leg balance control in both mediolateral
and anteroposterior directions.

Keywords: rehabilitation; biomechanics; low back pain; lumbo–pelvic–hip complex; exercise; EMG

1. Introduction

The “bird dog” is one of the most popular core exercises [1,2], is commonly prescribed
in lumbopelvic rehabilitation interventions [3], and is considered one of the most effective
therapeutic exercises for the prevention and treatment of low back pain [4]. Several
electromyographic (EMG) studies have evaluated the activity of core muscles during
the bird dog exercise [5–20]. Overall, these studies provide evidence that this exercise
primarily targets the lumbar and hip extensor muscles and reported activation levels
of 21–56%, 23–42%, 21–42%, 23–46%, 22–38%, 21–35%, and 4–15% maximum voluntary
contractions (MVIC) were obtained for the gluteus maximus, gluteus medius, hamstrings,
lumbar multifidus, longissimus thoracis, external oblique abdominis, and rectus abdominis,
respectively. Notably, gluteal muscle weakness was associated with poor lumbopelvic
posture [21] and with an increased risk of lower limb injuries [22]; weakness and lack of
endurance in the lumbar extensor muscles were correlated with low back pain [23,24].
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Different variations of the bird dog have been devised to render the exercise more
challenging, produce higher levels of muscle activations, and develop superior adaptations.
For example, this exercise can be executed with external weights at the wrist and ankle [14],
using unstable supporting surfaces [11,18] and changing the base of support, including
assuming a plank position [12] or a standing position instead of a quadruped one.

The use of wrist/ankle weights has also led to the higher activation of the lumbar
multifidus and erector spinae muscle [14]. External loads at the distal segments, however,
also considerably increase the shear components of the reaction forces that act on the joints
of the trunk and limbs as these segments are positioned horizontally. These shear forces are
indeed proportional to the distance between the joint and the vertical line of action in the
gravitational resistance [25,26].

Using unstable surfaces can significantly improve neuromuscular control by promot-
ing anticipatory and reactive postural adjustments and enhancing the sensitivity of afferent
feedback pathways [27–29]. Overall, compared with the same exercises performed un-
der stable conditions, strength exercises performed on unstable surfaces yield a higher
core-muscle activation and perceived exertion but a lower force generation, power output,
movement velocity, and range of motion [27–29]. Specifically, compared to the ground-
based exercise, the dynamic bird dog executed on a whole-body wobble board developed
a higher activation of external and internal obliques, the serratus anterior, and trapez-
ius medius, which was nearly the same as the gluteus maximum activation, and lower
activation of the multifidus and erector spinae [18].

Executing the bird dog exercise from the plank rather than a quadruped position
also enhances the activity of the rectus abdominis, transversus abdominis, and external
obliques yet reduces that of the multifidus and erector spinae, thus resulting in less effective
outcomes for the lumbar musculature [12]. This effect is likely a direct consequence of the
“long lever” body position induced by the plank posture.

The standing bird dog (SBD), i.e., the bird dog exercise executed in a standing body
position, demonstrates biomechanical features that classify it as one of the most challenging
variations of the traditional quadruped bird dog exercise. In the starting position, the
exerciser stands straight with a neutral spine position, knees fully extended, arms straight
at the sides of the body, and feet flat on the floor about hip-width apart. From this position,
the trunk slowly leans forward, simultaneously raising one leg backward and the arm on
the opposite side forward (through simultaneous unilateral kip extension and contralateral
shoulder flexion) and keeping the other arm at the side against the body. During the
movement, the subject should maintain a neutral spine position, hips at the same level
(to avoid pelvic rotations in the transverse plane), and proper knee alignment (to avoid
knee varus/valgus and internal/external rotation). In the final position, the supporting
leg is nearly perpendicular to the ground, while the trunk, the upper limbs, and the non-
supporting leg should be in-line and parallel to the ground, with the trunk facing the
ground. In the isometric SBD, this position is held for a selected time before the subject
gradually returns to the starting standing position. In the dynamic SBD, this exercise is
performed in a continuous motion, alternating the sides of the body during consecutive
repetitions or sets. Unlike the abovementioned variations of the bird-dog exercise, the SBD
has not yet been investigated in either its isometric or dynamic form.

The aim of this study was to determine the stabilometric parameters and the EMG
activity of the gluteal and lumbar extensor muscles during static and dynamic SBD exercises.
This single-leg stance was maintained during the SBD, in the absence of contact between
the upper limbs and ground and in addition to the hip, which also exposes the spine to
a considerable gravitational flexion torque. Thus, we hypothesized that the gluteal and
lumbar extensor muscles could reach considerable levels of activity, despite the exercise
being performed on a stable support surface and with no external overload. We also
hypothesized that the reduced base of support and the challenging SBD body position
required a balance control that was considerably higher during standing in a single-leg
stance. Furthermore, unlike the quadruped bird dog, the SBD could be easily performed
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ipsilaterally, i.e., by raising a lower and an upper limb on the same side of the body. Thus,
both the contralateral and ipsilateral variations of the SBD were analyzed in this study.

2. Materials and Methods
2.1. Participants

Five females and fifteen males (mean age: 24 y, range: 21–39 y; mean height: 1.77 m,
range: 1.59–1.91 m; and mean body mass: 75 kg, range: 52–90 kg) recruited from local
fitness centers participated in the study. Based on preliminary data, the participant sample
size was determined by a priori power analysis using the G*Power 3.1.9.7 program (Test
family: F-test; Statistical test: ANOVA, repeated measures, within-subjects; Type of power
analysis: a priori), with a significance alpha level set at 0.05, a statistical power of 0.8, and a
medium-high effect size corresponding to a Cohen’s d effect size equal to 0.65. Only subjects
with proven experience in bodyweight resistance training (intermediate to advanced level)
and specifically with core exercises were considered for inclusion in this study. Exclusion
criteria included musculoskeletal injuries, a previous record of limb and trunk pathologies,
and the inability to perform the SBD exercise without pain and with proper form and
technique. All participants gave informed consent to their inclusion in the study and were
free to withdraw at any time during the experiment, which was approved by the ethics
committee of the University of Perugia and conducted in accordance with the Declaration
of Helsinki.

2.2. Selected Exercises and Muscles

Each participant performed the contralateral (raising one leg and the opposite-side
arm) and ipsilateral (raising one leg and arm on the same side of the body) SBD exercise
in isometric and dynamic conditions (Figure 1). Each static position was held for 12 s. In
the dynamic condition, each participant executed 12 short-range movements about the
static position at a constant cadence, with a 0.5-s concentric phase and a 0.5-s eccentric
phase, and with a range of hip and shoulder flexion/extension movements comprised
between 10◦ and 15◦. During each trial, EMG signals were recorded bilaterally from the
gluteus maximus (GMAX), gluteus medius (GMED), the lumbar part of the erector spinae
longissimus (ES), and lumbar multifidus (MF).
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Figure 1. The selected “standing bird dog” exercise variations: (a) Static ipsilateral; (b) Static
contralateral; (c) Dynamic ipsilateral; (b) Dynamic contralateral.

2.3. Familiarization Session

One week before the testing session, each participant underwent a pretest familiariza-
tion session during which the testing protocol was explained in detail, and the exercises
were first illustrated by a professional trainer and then practiced by the participants under
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his supervision. The participants also learned to execute the exercise repetitions at the
selected cadence, following the ticks emitted by a metronome set at 1 beat per second, and
a selected range of movement, with the aid of tactile feedback. At the end of the session,
all the participants were able to perform the exercises with the correct technique. The 12-s
duration of the trials was precisely selected by observing that trials lasting longer than 12 s
began to be affected by fatigue in some participants.

2.4. Testing Session

After a 10 min warm-up on a bike ergometer at self-selected resistance, we recorded
the EMG activity during the maximum voluntary isometric contractions (MVIC) of the
selected muscles following a procedure previously described by Biscarini et al. [18]. After
the MVIC tests and full recovery (of at least 5 min), each participant performed the four
selected SBD exercise variations with the foot of the supporting leg resting on a force
platform. The trials were randomly intermingled and separated by a 3 min resting phase.
The EMG signals recorded during the MVIC tests were used for the offline normalization
of the EMG signals recorded during the SBD trials (see the next section for details).

2.5. Data Recording and Processing

Surface EMG signals from the eight selected muscles were recorded with wireless EMG
sensors (FreeEMG 1000; BTS Bioengineering, Milano, Italy) and Ag/AgCl surface electrodes
placed on the muscle belly, parallel to the muscle fibers, 2 cm apart from each other. The
precise electrode placement for each muscle was reported in a previous paper [18]. The
raw EMG signals were differentially amplified (933 gain), bandpass filtered (10–500 Hz),
digitalized (16-bit resolution, 1-kHz sampling frequency), and transformed into amplitude
envelopes through a point-to-point moving root mean square filter (500-ms time interval).
The EGM amplitude envelopes recorded from each muscle during the SBD trials were then
normalized to the maximum of the EGM amplitude envelope obtained from the MVIC test
of the same muscle. Finally, we computed the mean value of each normalized EMG signal,
and the peak value of the ones relative to the dynamic SBD trials was obtained as the mean
of the peak values recorded in each of the 12 repetitions.

The stabilometric parameters of the supporting leg were obtained via a “BTS P-6000”
force platform (BTS Bioengineering, Milano, Italy). The signal recording was accomplished
with a 16-bit A/D converter and a 500 Hz sampling frequency. Only the central 10 s of
each recording was considered for the analysis of the relevant two-dimensional center
of pressure (CoP) parameters (mean velocity and excursion area) and one-dimensional
mediolateral and anteroposterior CoP parameters (standard deviation and mean velocity).

Kinematic data recording was conducted to identify the single repetitions during a
dynamic trial, thus enabling the determination of the peak EMG values and the range
of hip and shoulder movements in each repetition. Specifically, we used an 8-camera
optoelectronic motion capture system (Smart-DX 6000; BTS Bioengineering, Milano, Italy)
to track the reflective markers that were attached bilaterally to bone landmarks at the wrist,
ankle, hip, shoulder, elbow, and wrist joints of the body. A detailed description of the
motion capture system can be found in our previous papers [30,31].

The EMG, force plate, and optoelectronic systems were synchronized in time and pro-
vided with native Smart Capture® 1.10 software for data acquisition and Smart Analyzer®

1.10 and Sway® 1.4 software for data analysis.

2.6. Statistical Analysis

Analysis of variance (ANOVA) was performed to evaluate statistically significant
differences between SBD variations. Normality, the variance between populations and
sphericity were assayed by the Shapiro–Wilk test, Levene’s test, and Mauchly’s sphericity
test, respectively. Probabilities were corrected based on Greenhouse–Geisser, and Huynh–
Feldt epsilon when appropriated. Data that did not follow ANOVA assumptions for
normality and variances were transformed by applying an ln function to allow transformed
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data to satisfy the ANOVA assumptions. The mean ± SD used for descriptive statistics was
always referred to as the original data, even when the statistical analysis was carried out
on the transformed data.

EMG data samples were analyzed with 3-way repeated measures of ANOVA with ipsilat-
eral/contralateral exercise variations in a static/dynamic condition and the supporting/non-
supporting side of the body as independent within-subject factors. These two-dimensional
CoP stabilometric parameters were analyzed with 2-way repeated-measures ANOVA with
ipsilateral/contralateral exercise variation and a static/dynamic condition as independent
within-subject factors; for the one-dimensional CoP parameters, 3-way repeated-measures of
ANOVA were used with a mediolateral/anteroposterior direction as the third independent
within-subject factor. The comparison between the change in the mediolateral component
and the change in the anteroposterior component of a one-dimensional CoP parameter
was obtained with the same ANOVA method used for the two-dimensional parameters.
For the significant main effects or interactions, the statistical power and effect size were
assessed by the observed power (ω) and partial eta squared (η2

p) coefficients, respectively,
and post hoc analysis was run via the Scheffè test. The significance level was designated
at p < 0.05 for each statistical test. Among all the many possible comparisons, we consid-
ered only those of interest for this research study. The SPSS software package was used for
statistical calculations.

3. Results
3.1. Stabilometric Parametrs

None of the six selected CoP displacement parameters (mean velocity, equivalent
radius of excursion area, mediolateral and anteroposterior standard deviation, and mean
velocity) were significantly affected by the contralateral/ipsilateral exercise variation
(Figure 2). The intraclass correlation coefficient ICC was estimated, and their 95% confi-
dence interval (model: test–retest/intra-rater reliability, type: single measurement, defini-
tion: absolute agreement) was calculated for each corresponding contralateral/ipsilateral
pair of sets of measurements (Table 1). The ICC estimates indicated good reliability for the
two-dimensional CoP parameters, moderate reliability for the mediolateral and anteropos-
terior mean CoP velocity, and poor reliability for the mediolateral and anteroposterior CoP
standard deviation [32].

Table 1. Interclass correlation coefficient (model: test–retest/intra-rater reliability, type: single mea-
surement, definition: absolute agreement) of the CoP stabilometric parameters for each corresponding
contralateral/ipsilateral pair of sets of measurements.

CoP Parameter Condition Interclass
Correlation

95% Confidence Interval

Lower Bound Upper Bound

Velocity Static 0.878 0.723 0.950
Dynamic 0.798 0.558 0.915

Equivalent radius Static 0.798 0.555 0.915
Dynamic 0.812 0.584 0.921

ML velocity Static 0.590 0.219 0.814
Dynamic 0.786 0.536 0.910

AP velocity Static 0.726 0.423 0.882
Dynamic 0.638 0.277 0.840

ML standard
deviation

Static 0.281 −0.177 0.637
Dynamic 0.756 0.488 0.895

AP standard
deviation

Static 0.431 0.000 0.727
Dynamic 0.455 0.014 0,774
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Figure 2. One-dimensional and two-dimensional center of pressure (CoP) parameters recorded during
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variations: (a) Mean velocity; (b) Mediolateral and anteroposterior mean velocity; (c) Equivalent
radius of excursion area; (d) Standard deviation of mediolateral and anteroposterior displacement.

All stabilometric parameters were significantly greater in dynamic than in static
conditions (p < 0.001, η2

p > 0.79, ω = 1.00), reflecting a greater body instability during
the dynamic executions of the SBD (Figure 1). For these static conditions, one-dimensional
mediolateral parameters were greater than the corresponding anteroposterior ones, whereas
the opposite results were obtained in the dynamic conditions. Despite some of these
differences appearing statistically insignificant, following the transition from the static
to the dynamic execution, the increase in all the anteroposterior parameters was always
significantly larger than those in the mediolateral ones (p < 0.001, η2

p ≥ 0.55, ω > 0.99).

3.2. EMG Parameters

The independent variables had quite different effects on the mean EMG level of the
selected muscles (Figure 3). The ipsilateral/contralateral variant had no significant effect
on muscle activation levels.

The GMAX and GMED activation was significantly higher at the side of the backward-
raised lower limb (p < 0.001, ω = 1.00, η2

p = 0.69 for GMAX, η2
p = 0.72 for GMED), ES

activation was significantly higher at the side of the forward-raised upper limb (p = 0.001,
η2

p = 0.47, ω = 0.97), and MF activity was not significantly different between the sides of
the body.

The mean activation of all the muscles was significantly higher in dynamic compared
to static conditions (p ≤ 0.001, 0.43 ≤ η2

p ≤ 0.68, ω ≥ 0.95). Notably, the peak EMG levels
reached by GMAX, MF, ES, and GMED in dynamic conditions were about 80%, 60%, 60%,
and 45% MVIC, respectively.
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Figure 3. Mean muscle activation levels recorded during the static SBD and mean and peak muscle
activation levels, which were recorded during the dynamic SBD: (a) Gluteus maximum (GMAX),
(b) Gluteus medius (GMED), (c) Multifidus (MF), (d) Lumbar erector spinae (ES). Both the contralat-
eral and ipsilateral exercise variations are displayed. Muscle activation levels are expressed as a
percentage of the peak electromyographic amplitude at MVIC.

4. Discussion

This study provided a stabilometric and electromyographic analysis of the standing
bird dog exercise performed in static and dynamic conditions and in contralateral (rising a
lower and upper limb at opposite sides of the body) and ipsilateral (rising a lower and upper
limb at the same side of the body) variations. We found that SBD was an effective exercise
for strengthening the hip and lumbar extensor muscles and provided a powerful challenge
to single-leg balance control in both the mediolateral and anteroposterior directions.

EMG data highlight that the mean muscle activation levels of GMAX, GMED, ES, and
MF during the static SBD were significantly lower than the corresponding mean values
obtained during the dynamic SBD executed with short-range movements about the static
position (Figure 3). The values of all the CoP displacement parameters (mean velocity,
equivalent radius of excursion area, mediolateral and anteroposterior standard deviation,
and mean velocity) were also significantly lower in static than in dynamic conditions
(Figure 2). This suggests that the selected dynamic version of the SBD exercise constituted
a challenging variation in the static SBD, which required a higher muscle effort and balance
control relative to the static condition.

During the static SBD, the CoP standard deviation and mean velocity were higher in
the mediolateral than anteroposterior direction, plausibly due to the different dimensions
at the base of the support (the foot plant) in the two directions (Figure 2). The sagittal-
plane limb movements performed in dynamic conditions yielded a considerable increase
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(about 70%) in the value of the anteroposterior parameters; nevertheless, it also induced
a statistically significant increase (about 25%) in the mediolateral parameters. This result
highlighted how the destabilization effects caused by an internal perturbation acting in one
direction could be spread in different directions.

The available EMG levels of the hip and lumbar extensor muscles during the static
quadruped bird dog exercise were characterized by a large variability (see Section 1).
Nevertheless, when averaged over the existing studies, these values could be compared
to those obtained in the present study during the static SBD. Contrary to the GMED, MF,
and ES activation levels were higher in the SBD than in the quadruped bird dog exercise.
In both the quadruped and the standing bird dog, the activation levels of GMAX and
GMED were higher at the side of the raised lower limbs, while the ES activity was higher
at the side of the raised upper limb. However, unlike the quadruped bird dog, during the
SBD, MF activity was not significantly different between the sides of the body. Notably,
in the dynamic SBD, GMAX, MF, and ES reached mean activation levels higher than
40% MVIC, and peak activation levels of about 80%, 60%, and 60% MVIC, respectively,
avoiding the use of any overload, unstable surface, or explosive movement (Figure 3). These
levels were considerably higher compared to those recorded during other ground-based
bodyweight exercises, which were designed for strengthening hip and lumbar extensor
muscles (e.g., the supine bridge exercise) and performed by keeping the spine safely in a
neutral position [5–20].

Contrary to the quadruped bird-dog exercise, SBD provides a considerable challenge
to balance control. Exercises performed in a single-leg stance or on unstable supporting
surfaces could significantly improve neuromuscular control by promoting proactive and
reactive postural adjustments and enhancing the sensitivity of afferent feedback path-
ways [27–29]. Postural control and joint stability in the single-leg stance are fundamental
components of many natural human movements and sports actions and often constitute
a critical factor in lower limb athletic rehabilitation and injury prevention during contact
sports. Notably, compared to quiet standing in a single-leg stance [33], the CoP velocity
and excursion area are about two and six times higher, respectively, during the static SBD;
and three and nine times higher during the dynamic SBD (Figure 2).

In the dynamic SBD trials, hip and shoulder flexion/extension movements were
executed with a short range (10–15◦) about the static position. Instead, in the standard
SBD exercise, a full ROM is typically used, from quiet standing in a single-leg stance to
the position maintained during the static trial. The hip and shoulder ROM was limited to
maximize the mean muscle activity during repetition, enabling a more effective exercise
and for a meaningful comparison with the static trials and the quadruped bird dog. In
fact, while reaching the standing reference position, the hip and shoulder flexion/extensor
external torque developed by gravity was gradually reduced to negligible values, and the
activation level of at least the GMAX and GMED of the non-supporting leg was expected
to become insignificant.

Ultimately, this study highlighted that SBD is an effective exercise for strengthening
the hip and lumbar extensor muscles and provides a powerful challenge to single-leg
balance control. Additionally, it can be considered a safe exercise as it is performed with the
spine in a neutral position and without the use of external overloads and unstable surfaces.
However, correct exercise execution requires considerable levels of flexibility, balance
control, and joint stability. Therefore, SBD is more suitable for individuals experienced
in resistance training, athletic training regimens, injury prevention in contact sports, and
during the late functional phase of athletic rehabilitation programs.

The limitations of this study are mainly related to the biomechanical features of the
SBD exercise. Specifically, the CoP position was recorded during a 12-s time interval,
which is considerably shorter than that recommended for standard postural assessments
executed in the standing position. However, compared to standing in a double-leg or
single-leg stance, the selected SBD exercises were considerably more challenging, and trials
lasting longer than 12 s could likely have been made biased by fatigue. The stabilometric
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parameters subsequently recorded in ipsilateral and contralateral exercise conditions,
which displayed no statistically significant difference, were used to assess data test–retest
reliability through the calculation of the ICC coefficients. The results suggested good
reliability (0.75 < ICC < 0.9) [32], at least for the two-dimensional CoP parameters.

During the dynamic SBD trials, participants were not given feedback on their hip and
shoulder range of motion and repetition cadence. This feedback was only provided in the
familiarization session until the experimenters and professional supervisor trainers judged
the exercise execution to be satisfactory. During the trials, participants were only asked to
reproduce the exercise execution focusing on balance and proper exercise form. In fact, a
sharp focus on cadence and range of motion could have a negative impact on balance, joint
alignment, and correct body position. Only a few trials that demonstrated a mean value of
repetition cadence and range of motion (determined by motion analysis) that differed more
than 20% from the selected values (1 s cadence, 10–15◦ range of motion) were repeated by
participants.

The hip and lumbar extensors were the target muscles of the SBD exercise, as they
primarily oppose the hip and spine flexor torque and are induced by gravity. However,
other muscles, particularly the internal and external obliques and the tibialis posterior
and the fibularis muscles could contribute to body stabilization due to the challenging
asymmetric body position maintained in a single-leg stance. Therefore, further studies are
needed to achieve a full EMG characterization of the SBD exercise.

5. Conclusions

This study provided a stabilometric and electromyographic analysis of different
variations of the SBD exercise. These results highlight that static and dynamic SBD can be
included sequentially in the final stage of exercise progressions that gradually challenge
the lumbar extensor muscles and single-leg balance control (in both the mediolateral
and anteroposterior directions), avoiding the use of external overloads and unstable
supporting surfaces.
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