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Abstract: Weight resistance training (RT) has been shown to positively influence physical perfor-
mance. Within the last two decades, a methodology based on monitoring RT through movement
velocity (also called velocity-based resistance training, VBRT) has emerged. The aim of this PRISMA-
based systematic review was to evaluate the effect of VBRT programs on variables related to muscle
strength (one-repetition maximum, 1-RM), and high-speed actions (vertical jump, and sprint perfor-
mance) in trained subjects. The search for published articles was performed in PubMed/MEDLINE,
SPORT Discus/EBSCO, OVID, Web of Science, Scopus, and EMBASE databases using Boolean al-
gorithms independently. A total of 22 studies met the inclusion criteria of this systematic review
(a low-to-moderate overall risk of bias of the analyzed studies was detected). VBRT is an effective
method to improve 1-RM, vertical jump and sprint. According to the results of the analyzed studies,
it is not necessary to reach high muscle failure in order to achieve the best training results. These
findings reinforce the fact that it is possible to optimize exercise adaptations with less fatigue. Future
studies should corroborate these findings in female population.

Keywords: resistance training; muscle strength; athletes; strength training; athletic performance;
weight bearing strengthening program

1. Introduction

Weight resistance training (RT) has been proven as an important tool to improve
performance in different sports disciplines [1–4]. In addition, RT is also a key factor
to improve body composition in physically active population [5,6], health condition in
the general population [7,8], and even as preventive and palliative treatment in many
metabolic and neurodegenerative diseases [9,10]. The magnitude of the effect produced by
RT will depend on the manipulation of the so-called acute training variables, especially
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the relative load, volume, and type of exercises [11–13]. Traditionally, relative load during
RT has been configured using the percentage of one-repetition maximum (1-RM) or the
maximum number of repetitions complete against an absolute load (X-RM) [11,12]. Both
methodologies present several limitations related to excessive degree of fatigue, spending
time, and difficulty in applying tests of these characteristics to certain populations, such as
the elderly, young people, and athletes without previous experience in RT [14,15]. However,
the main limitation of the 1-RM percentage-based RT (PBT) method to prescribe the relative
load is the mismatch between the actual load and the proposed load that occurs as a result
of daily changes in 1-RM [16]. As a consequence, it is not possible to know the real load
with which the athlete has trained in each training session and, therefore, it is impossible to
determine the load that has produced a certain training effect. For example, a pre-specified
1-RM value during a long-term training program disregards a number of confounding
factors (i.e., sleep, diet, and training-induced fatigue) that affect the athlete’s “true” load
and daily preparedness [17]. On the other hand, volume is prescribed in terms of sets and
repetitions per set [12]. However, the maximal number of repetitions completed against a
given relative load present high between-subjects variability [18]; thus, subjects performing
the same number of repetitions per set against the same relative load are likely performing
a different effort [18,19].

To solve these problems of monitoring and quantification of the training loads, recent
attention has been placed on movement velocity during RT [14,20,21]. First, several studies
have observed a strong relationship between the relative load (1% RM) and movement
velocity in different resistance exercises [22–24]. Thus, it is possible to estimate the 1%
RM that is being used as soon as the first repetition with any given absolute load is
performed [14]. Furthermore, there is also a strong relationship between the percentage
of velocity loss (VL) attained in the set and the percentage of repetitions completed with
respect to the maximum possible repetitions against a given relative load [18,19]. These
results suggest that, rather than prescribing a fixed number of repetitions with a given
relative load, training volume during RT should be monitored using the magnitude of VL
attained in each exercise set because it is closely linked to the actual level of effort being
incurred [18,19,25,26]. In addition, it has been observed that, for the same relative load, the
magnitude of VL incurred in the set determine the degree of fatigue [27,28]. Therefore, first
repetition’s mean velocity (which is intrinsically related to the 1% RM being used) and the
percent VL to be reached during each set are the two variables that might be prescribed and
monitored during an RT program aimed to optimize athletic performance. This procedure
for monitoring and dosing the load is called “velocity-based RT” (VBRT) [27,29,30].

Previous studies, systematic review, and meta-analysis have shown greater strength
gains for RT using repetitions not to failure compared to muscle failure [31–33]. Addi-
tionally„ this type of RT induced lower metabolic stress and endocrine response [27,34].
Despite these findings, the knowledge concerning the influence of different level of efforts
on strength capacity and other variables related to athletic performance is limited. In an
attempt to answer this fundamental question, some studies have shown the importance of
VBRT method for monitoring and adjusting the fatigue degree in real time in order to find
the optimal training load for improving the physical performance [28,35,36]. In this regard,
it has been reported that VBRT generates significant improvements in the rate of force
development (RFD) of trained athletes, which would directly influence athletic actions,
such as jumps and sprints [37]. However, the magnitude of training-effects is determined
by the degree of fatigue induced during RT program [29,30,38–40]. If the athlete presents
higher movement velocities against the same absolute load, this indicates an improvement
of the maximum strength and the RFD against that load. In fact, a recent meta-analysis with
meta-regression highlighted this and concluded that the application of faster movement
velocity and the intention to produce rapid force result in the greatest increases in RFD [41].
Similarly, the VBRT allows the evaluation and control of the magnitude of VL during a set,
which is an indicator of increased muscle fatigue. This fact is the special interest for the
specificity of the stimulus since the fact of performing slower repetitions would not only



Sports 2022, 10, 8 3 of 18

indicate fatigue (as a consequence of reaching a higher percentage of VL in the series), but
would also be could also lead to suboptimal adaptations [22,24,42].

Although the application of the VBRT has been shown to improve training in high-
performance athletes [43,44] some studies have found no superior effects when individual-
izing based on the force-velocity profile [45]. In addition, with the emergence of new brands
of linear position transducers, accelerometers, and applications for mobile devices [46,47],
VBRT has become more accessible to the general public and has gone from being applied in
the laboratory to become a tool for the personal trainer who seeks to control and program
the training load quickly and safely. Considering that an analysis of the scientific literature
regarding the effect of VBRT in elite or recreationally trained populations aiming to im-
prove muscular strength and physical performance has not been carried out, the goal of this
systematic review is to evaluate the effect of adjusting and controlling loads within a VBRT
program on physical performance variables related to muscular strength and high-speed
actions (maximum repetition [1-RM], vertical jump, and running speed) in trained subjects.

2. Materials and Methods
2.1. Protocol and Registration

This systematic review was developed and reported according to the parameters
established in the Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) [48]. Considering that this review is not eligible to be registered in PROSPERO,
as it focused on physical performance, the protocol of this work has been published in
Figshare to make it publicly accessible and avoid unnecessary duplication of analyzing the
same study objective (https://doi.org/10.6084/m9.figshare.13065950).

2.2. Eligibility Criteria

The studies were selected according to the following inclusion criteria: (1) randomized
clinical trials; (2) published in specialized scientific journals hosted in databases from 2009
onwards; (3) written in English or Spanish; (4) with full-text access; (5) that evaluated
VBRT using either an alternative experimental group or a control group (traditional 1-RM
percentage-based training); and (6) that reported effects on variables related to muscle
strength (1-RM), vertical jump, or running speed. We excluded articles that were not
original studies (i.e., editorials, notes, perspectives, narrative reviews, dissertations, etc.),
interventions of less than four weeks, and studies including subjects with RT experience
less than six months.

2.3. Information Sources

The search for published articles was carried out in the databases PubMed/MEDLINE,
SPORTDiscus/EBSCO, OVID, Web of Science, Scopus and EMBASE.

2.4. Search Methods

The PICO strategy was used: P (athletes) I (VBRT) C (resistance training) O (strength,
jump and sprint performance), which allows the problem to be analyzed according to Patient,
Intervention, Comparison, and Outcomes [49] to structure the search strategy. The authors
(M.B.-M. and A.R.J.) independently ran the following Boolean algorithms to search for
studies in each database: PubMed/MEDLINE, SPORTDiscus/EBSCO, OVID y Web of
Science: velocity based training AND athlet* AND “resistance training” AND strength NOT
old NOT elder*; Scopus: “velocity based” training AND “resistance training” AND strength;
and EMBASE: velocity AND based AND training AND athlet* AND ‘resistance training’ AND
strength NOT old* NOT elder*. Additionally, free language terms related to “velocity-based
resistance training” were used to complement the search in some databases.

2.5. Study Selection

After performing the search, the filter option of the databases was used to meet
the inclusion criteria 1 to 4. Subsequently, the remaining publications were manually

https://doi.org/10.6084/m9.figshare.13065950
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filtered in an Excel matrix where the title of the article, year of publication, name of the
journal, abstract, objective, conclusions were structured. The study selection process took
place during February and May 2021 although an updated search was conducted prior to
manuscript submission (October 2021).

2.6. Data Collection Process and Items

The authors (M.B.-M., A.R.J., and D.A.B.) were responsible for extracting the following
information for subsequent analysis: (i) reference and year of publication; (ii) descriptive
statistics of the study population (number of subjects, sex, age, and BMI); (iii) description
of the experimental intervention; (iv) assessment methods, magnitude and units of the
variables related to muscle strength and power; and (v) baseline values and change in the
study variables.

2.7. Risk of Bias

The risk of bias of the selected publications was assessed with the Cochrane risk of
bias analysis tool RoB 2.0 [50] including: selection bias, performance bias, detection bias,
attrition bias, outcome reporting bias, and any other bias. Discrepancies were identified
and resolved through discussion among the authors (with the intervention of a third author
when necessary). All randomized participants were included in the analysis of each study,
considering that this is the least biased way to analyze clinical effects. Figures to represent
the results of the risk of bias assessment were developed using the package Risk-of-bias
Visualization (robvis) [51].

2.8. Data Analysis and Synthesis

Changes in variables related to muscle strength (1-RM), vertical jump or running
speed after intervention with a VBRT program were considered as the primary outcome.
Those selected publications that met all the inclusion criteria went on to the next phase of
analysis and synthesis, where a table was used to report the comparison of results.

3. Results
3.1. Study Selection

After running the search algorithms with Boolean operators and free language terms,
441 references were retrieved. Then, the screening process of the publications was per-
formed (filtering by date, type of article and availability of full text) and 271 potentially
eligible studies were found. However, after evaluating the abstracts, full-texts, and analyz-
ing the strict fulfillment of the other inclusion criteria, 236 articles were excluded. A total of
22 studies met the pre-established requirements [22,29,30,38–40,52–67]. Considering that
the present systematic review is reported according to the parameters established in the
PRISMA guidelines, a flow chart of the literature search is shown in Figure 1.
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Table 1. Evidence of the effects of a velocity-based resistance training program on muscle strength/power.

Reference n
(M:F)

Age, Body Mass and
Stature

VBRT Program
Analyzed Variable

and Change (%)Groups (n) Frequency
(Days·wk−1) Intensity Volume Duration

(Weeks) Device

Randell
et al. [52]

13
(13:0)

25.7 ± 3.6 years;
188.5 ± 8.2 cm;
104.3 ± 10.0 kg

GVBRT1 (7):
feedback

GVBRT2 (6): no
feedback

3 40 kg
4–6 RM

3–6 reps ×
3–5 sets 6 Celesco

PT5A-150

CMJ (cm) GVBRT1: 4.6
GVBRT2: 2.8

Horizontal
Jump (cm)

GVBRT1: 2.6 *
GVBRT2: 0.5

Sprint 10 m GVBRT1: 1.3
GVBRT2: 0.1

Sprint 20 m GVBRT1: 0.9
GVBRT2: 0.1

Sprint 30 m GVBRT1: 1.4 *
GVBRT2: −0.3

Ramos
et al. [53]

27
(27:0)

20.4 ± 5.0 years;
180.3 ± 5.9 cm;
81.4 ± 8.4 kg

GVBRT (16)
Gcontrol (11) 2 MPV:

0.7–1
4–8 reps ×

3–4 sets 18 T-Force

CMJ (cm) GVBRT: 6.9 †

Gcontrol: 2.5

RMBP (kg) GVBRT: 10.5 † *
Gcontrol: 4.9

RMSQ (kg) GVBRT: 14.2 † *
Gcontrol: 3.4

Gonzalez-
Badillo

et al. [54]

20
(20:0)

21.9 ± 2.9 years;
177 ± 8 cm;

70.9 ± 8.0 kg

GVBRT HV (9)
Gcontrol MV (11) 3 MPV: 0.79 (HV)

0.47 (MV)
2–6 reps ×

3–4 sets 6 T-Force 1-RM (kg) GVBRT: 18.2 *
Gcontrol: 9.7

Pareja-Blanco
et al. [55]

21
(21:0)

23.3 ± 3.2 years;
177 ± 7.0 cm;
73.6 ± 9.2 kg

GVBRT HV (10)
Gcontrol MV (11) 3

MPV:
1.0 (HV)

0.84 (MV)

2–8 reps ×
3–4 sets 6 T-Force

CMJ (cm) GVBRT: 8.9 *
Gcontrol: 2.4

Sprint 10 m GVBRT: −2.8 *
Gcontrol: −1.1

Sprint 20 m GVBRT: −1.6
Gcontrol: −1.6

Sprint 30 m GVBRT: 18 *
Gcontrol: 9.7

Dolezal
et al. [56]

19
(10:9)

19.9 ± 1.5 years;
178.9 ± 7.0 cm;
88.4 ± 19.5 kg

GVBRT M (10)
GVBRT F (9) 3 50–80% 1-RM 2–8 reps ×

3–6 sets 12 NA RMSQ
GVBRT M: 14.3 †

GVBRT F: 18.4 †



Sports 2022, 10, 8 7 of 18

Table 1. Cont.

Reference n
(M:F)

Age, Body Mass and
Stature

VBRT Program
Analyzed Variable

and Change (%)Groups (n) Frequency
(Days·wk−1) Intensity Volume Duration

(Weeks) Device

Pareja-Blanco
et al. [38]

22
(24:0)

22.7 ± 1.9 years;
176 ± 6 cm;
5.8 ± 7.0 kg

GVBRT1:
20% VL (12)

GVBRT2:
40% VL (10)

2 MPV
0.85–0.62

3 sets with
20% or
40% VL

8 T-Force

RM GVBRT1: 17.6 † *
GVBRT2: 13.5 † *

CMJ GVBRT1: 9.1 † *
GVBRT2: 3.7

Sprint 20 m GVBRT1: −0.3
GVBRT2: 1

Pareja-Blanco
et al. [22]

16
(16:0)

23.8 ± 3.4 years,
174 ± 7 cm;

75.5 ± 8.6 kg

GVBRT1:
15% VL (8)

GVBRT2:
30% VL (8)

3 MPV
1.13–0.82

3 sets with 15%
or

30% VL
6 T-Force

RM GVBRT1: 8.9 †

GVBRT2: 3.6

CMJ GVBRT1: 5.3 † *
GVBRT2: −2.6

Sprint 30 m GVBRT1: −0.5
GVBRT2: −0.2

Perez-Castilla
et al. [57]

20
(20:0)

22.0 ± 0.2 years;
175.7 ± 1.5 cm;

77 ± 18.4 kg

GVBRT1: 10% VL
(10)

GVBRT2: 20% VL
(10)

2 MPV
1.20

36 reps with 10%
or

20% VL
4 T-Force

RM GVBRT1: 2.0
GVBRT2: 3.6

CMJ GVBRT1: 6.3 † *
GVBRT2: 3.6 †

Sprint 15 m GVBRT1: 0.41
GVBRT2: 0.41

Martinez-Cava
et al. [58]

50
(50:0)

24.0 ± 4.7 years;
176.2 ± 8.4 cm;
73.4 ± 9.9 kg

GBP (11)
GBP2/3 (13)
GBP1/3 (12)
Gcontrol (12)

2
MPV

60–80%
1-RM

4–8 reps ×
4–5 sets 10 T-Force RMBP

GBP: 12.3 †

GBP2/3: 7.01
GBP1/3: −0.26
Gcontrol: −2.9

Galiano
et al. [39]

28
(28:0)

23.0 ± 3.2 years;
175.8 ± 4.7 cm;
73.8 ±10.8 kg

GVBRT1:
5% VL (15)

GVBRT2: 20% VL
(13)

2 MPV
1.14

3 sets with 5% or
20% VL 7 T-Force

RM GVBRT1: 10.7 †

GVBRT2: 13.6 †

CMJ GVBRT1: 9.3 †

GVBRT2: 8.8 †

Sprint 20 m GVBRT1: −4.9 †

GVBRT2: −3.6 †
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Table 1. Cont.

Reference n
(M:F)

Age, Body Mass and
Stature

VBRT Program
Analyzed Variable

and Change (%)Groups (n) Frequency
(Days·wk−1) Intensity Volume Duration

(Weeks) Device

Orange
et al. [59]

27
(27:0)

17 ± 1 years;
179 ± 5.8 cm;

83.15 ± 11.9 kg

GVBRT (12)
GPBT (15) 2 60–80% 1-RM 5 reps ×

5 sets 7
OptoJump

Witty Timing
System

RM GVBRT: 0.38 † *
GPBT: 0.51 †

CMJ GVBRT: 0.53 †

GPBT: 0.40 †

Sprint 5 m GVBRT: −0.09
GPBT: −0.69 †

Sprint 10 m GVBRT: −0.41 †

GPBT: −0.81 †

Sprint 20 m GVBRT: −0.48 †

GPBT: −1.02 †

Sprint 30 m GVBRT: −0.70 †

GPBT: −0.78 †

Banyard
et al. [60]

24
(24:0)

25.5± 6 years
84.7± 6.8 kg

GVBRT (12)
GPBT (12) 3 MPV

0.84–0.62
5 reps ×

5 sets 6 NA

RM
CMJ

Sprint 5 m
Sprint 10 m
Sprint 20 m

GVBRT: 11.3 †

GVBRT: 7.4 † *
GVBRT: −6.5 *

GVBRT: −3.8 † *
GVBRT: −1.8

Sanchez-
Moreno

et al. [61]

29
(29:0)

26.5 ± 6.3 years;
176.1 ± 5.3 cm;
74.3 ± 6.1 kg

GVBRT1:
25% VL (15)

GVBRT2:
50% VL (14)

2 MPV
0.84

2–4 sets with
25% or
50% VL

8 T-Force RM GVBRT1: 5.4 † *
GVBRT2: 0.7

Dorrell
et al. [62]

16
(16:0)

22.8 ± 4.5 years;
180.2 ± 6.4 cm;
89.3 ± 13.3 kg

GVBRT1 (8)
GPBT (8) 2 MPV

0.51–0.91
3 sets with

20% VL
6 GymAware

PowerTool

RMSQ
GVBRT: 9.3 †

GPBT: 9.0 †

RMBP
GVBRT: 7.3 † *

GPBT: 4.8 †

RMOP
GVBRT: 6.5 †

GPBT: 6.1 †

RMDL
GVBRT: 6.3 †

GPBT: 2.9

CMJ GVBRT: 4.9 † *
GPBT: 1.0
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Table 1. Cont.

Reference n
(M:F)

Age, Body Mass and
Stature

VBRT Program
Analyzed Variable

and Change (%)Groups (n) Frequency
(Days·wk−1) Intensity Volume Duration

(Weeks) Device

Pallares
et al. [63]

53
(53:0)

23.0 ± 4.4 years;
174.0 ± 7.4 cm;
76.0 ± 12.8 kg

GVBRT1 FSQ (12)
GVBRT2 PSQ (13)
GPBT HSQ (11)

Gcontrol (14)

2–4 MPV
0.43–0.79

4–8 reps ×
4–5 sets 10 T-Force

RMSQ

GVBRT1: 16.4 †

GVBRT2: 10.3 †

GVBRT3: 2.6 †

Gcontrol: −8.08 †

PP

GVBRT1: 6.5
GVBRT2: 5.9

GVBRT3: −1.2
Gcontrol: −0.2

CMJ

GVBRT1: 12.8 †

GVBRT2: 9.1
GVBRT3: 5.3
Gcontrol: −3.4

Sprint 20 m

GVBRT1: −2.4
GVBRT2: −1.0
GVBRT3: 0.0
Gcontrol: 1.7

Pareja-Blanco
et al. [40]

55
(55:0)

24.1 ± 4.3 years,
175 ± 6 cm;

75.5 ± 9.7 kg

GVBRT1:
0% VL (14)

GVBRT2:
10% VL (14)

GVBRT3:
20% VL (13)

GVBRT4:
40% VL (14)

2
MPV

70–85%
1-RM

3 sets with 0%,
10%, 20% or

40% VL
8 T-Force RM

GVBRT1: 13.7 †

GVBRT2: 18.1 †

GVBRT3: 14.9 †

GVBRT4: 12.3 †

Shattock
et al. [64]

20
(20:0)

22 ± 3 years;
94.3 ± 15.5 kg

GVBRT (10)
GRPE (10) 3–4 MPV:

70–85%

3 reps × 8 sets
or 4 reps ×

6 sets
12 NA

CMJ GVBRT: 8.2 † *
GRPE: 3.8 †

RMSQ
GVBRT: 7.5 † *

GRPE: 3.5 †

RMBP
GVBRT: 7.7 †

GRPE: 3.8 †

Sprint 10 m GVBRT: −0.4
GRPE: 0.5

Sprint 20 m GVBRT: −0.4
GRPE: 0.1
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Table 1. Cont.

Reference n
(M:F)

Age, Body Mass and
Stature

VBRT Program
Analyzed Variable

and Change (%)Groups (n) Frequency
(Days·wk−1) Intensity Volume Duration

(Weeks) Device

Rodriguez-
Rosell

et al. [30]

25
(25:0)

22.6 ± 3 years;
74.5 ± 10 kg

GVBRT1:
10% VL (12)

GVBRT2:
30% VL (13)

2 MPV
0.84–0.60

3 sets with 10%
or

30% VL
8 T-Force

1-RM GVBRT1: 17.9 †

GVBRT2: 14.9 †

CMJ GVBRT1: 9.2 †

GVBRT2: 5.4 †

Sprint 10 m GVBRT1: −0.6 †

GVBRT2: 0.7 †

Sprint 20 m GVBRT1: −1.5 †

GVBRT2: −0.4 †

Rodriguez-
Rosell et al.

[29]

33
(33:0)

22 ± 3 years;
72 ± 8 kg

GVBRT1:
10% VL (11)

GVBRT2:
30% VL (11)

GVBRT3:
45% VL (11)

2 MPV
1.07–0.84

3 sets with 10%,
30% or 45% VL

8 T-Force

RMSQ

GVBRT1: 22.1 †

GVBRT2: 22.0 †

GVBRT3: 15.4 †

CMJ
GVBRT1: 12.0 † *

GVBRT2: 5.0 †

GVBRT3: 4.6 †

Sprint 10 m
GVBRT1: −3.4 †
GVBRT2: −1.1
GVBRT3: 0.0

Sprint 20 m
GVBRT1: −2.3 †

GVBRT2: −1.9 †

GVBRT3: −0.6

Rodriguez-
Rosell

et al. [65]

32
(32:0)

23.2 ± 3 years;
75.8 ± 9 kg

GVBRT1
LP: (16)
GVBRT2
UP: (16)

2 MPV
1.16–0.68

3 sets with 15%
VL

8 T-Force

1-RM GVBRT1: 14.2 †

GVBRT2: 8.5 †

CMJ GVBRT1: 12.2 †

GVBRT2: 8.8 †
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Table 1. Cont.

Reference n
(M:F)

Age, Body Mass and
Stature

VBRT Program
Analyzed Variable

and Change (%)Groups (n) Frequency
(Days·wk−1) Intensity Volume Duration

(Weeks) Device

Riscart-Lopez
et al. [66]

43
(43:0)

22.9 ± 4.8 years;
71.7 ± 7.6 kg

GVBRT1
LP: (11)
GVBRT2
UP: (10)
GVBRT3
RP: (11)
GVBRT4
CP: (11)

2 MPV
1.14–0.59

3 sets with
20%VL

8 T-Force

1-RM

GVBRT1: 17.2 †

GVBRT2: 10.9 †

GVBRT3: 18.0 †

GVBRT4: 15.23 †

CMJ

GVBRT1: 5.2 †

GVBRT2: 8.0 †

GVBRT3: 10.8 †

GVBRT4: 7.2 †

Sprint 20 m

GVBRT1: −2.0 †

GVBRT2: −1.3 †

GVBRT3: −2.0 †

GVBRT4: −1.6 †

Jiménez-Reyes
et al. [67]

24
(24:0)

23.1 ± 3 years;
73.6 ± 6 kg

GVBRT1
AL: (13)
GVBRT2

NAL: (11)

2

MPV
1.13–0.68

1-RM
50–80%

2–8 reps × 3–4
sets 8 T-Force

1-RM GVBRT1: 12.7 † *
GVBRT2: 28.9 †

CMJ GVBRT1: 7.9 † *
GVBRT2: 16.1 † *

Sprint 10 m GVBRT1: −1.2 †

GVBRT2: −2.2 †

Sprint 20 m
GVBRT1:
−0.95 † *

GVBRT2: −1.99 †

Data are expressed as means ± SD. The change values are expressed as percentage according to the formula: ((post-pre)/pre) × 100. To facilitate convention, the groups are represented
using the capital “G”. AL: adjusted load; BP: full bench press; BP2/3: two-thirds bench press; BP1/3: one-third bench press; CMJ: Countermovement Jump; CP: constant programming;
DL: dead lift; F: females; HV: high velocity; LP: linear programming; M: males; MPV: mean propulsive velocity (m·s−1); MV: medium velocity; PBT: percentage-based training;
RPE: rating of perceived exertion; FSQ: full squat; NA: not available; NAL: non-adjusted load; OP: overhead press; PP: Wingate peak power; 1-RM: one-repetition maximum; RP:
reverse programming; SQ: full back squat; UP: undulating programming; VBRT: velocity-based resistance training; VL: velocity loss. † Significant difference in comparison to baseline;
* significant difference in comparison to the other group.
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4. Discussion
4.1. Effects on 1-RM

A high percentage of the analyzed articles (95.45%) have evaluated the effects of VBRT
on 1-RM (Table 1). Changes in this variable have been reported in several exercises, such as
the squat, bench press, pull-ups, overhead press, and deadlift with full or partial ranges
of motion. Most of the studies evaluating the squat exercise reported similar or higher
significant improvements in the 1-RM for the VBRT group in comparison to control groups.
In fact, only one study did not find positive effects after a VBRT protocol with 30% of
VL [38]. Moreover, the research by Jiménez-Reyes et al. [67] showed that non-adjusted
loads during a VBRT program resulted in greater changes in 1-RM than adjusting training
loads although the improvements were probably due to the former group working at lower
relative intensity (with lower VL). According to the authors, this might have generated
lower fatigue levels and greater performance benefits. By comparing the effects of PBT
and VBRT programs, Banyard et al. [60] found that both training methods might increase
1-RM although higher clinical significance (larger effect size) favored PBT in stronger
individuals while VBRT was more advantageous for improving high-speed actions (e.g.,
CMJ, sprint). Notwithstanding, most of the studies revealed greater improvements in
1-RM after a VBRT program when compared to PBT (Table 1). Regarding to exercise
technique, Pallares et al. [63] evaluated three different positions of the squat exercise: full
squat, parallel squat, and half squat. This study showed statistically significant effects in
full and parallel squat, but not in half squat. These findings are consistent with the fact
that most of the studies reviewed have found positive results in full squat after a VBRT
program [22,29,30,38–40,53,55,60,62,65–67].

Eight studies have used the bench press as an intervention exercise for the evaluation
of the VBRT effects on strength-related variables. Interestingly, it has been reported that
performing this exercise in a partial range of moment does not generate positive effects
during VBRT-based programming in recreational and well-trained athletes [58]. In fact, it
is worth noting that this research evaluated different ranges of movement during bench
press (full, two-thirds, and one-third bench press) without finding significant effects in the
group that trained at one-third of the movement and minor effects in those subjects who
performed partial bench press [31].

In addition, the programmed pull-up exercise through the movement velocity was
evaluated in a study conducted by Sánchez-Moreno et al. [61]. This study showed that the
group with 25% of VL obtained significant improvements in 1-RM while no changes were
observed during RT close to muscle failure (50% VL) [54]. On the other hand, although
VBRT-based programming in the overhead press has also shown significant improvements
in 1-RM values, no improvements have been described for the deadlift [62]. In general
terms, VBRT has been shown to be efficient in improving strength measured through 1-RM
in most exercises. However, when RT involved exercise executed in a partial range of
motion, the training effect is considerably less.

4.2. Effects on Sprint Performance

Fifteen studies have investigated the effect of VBRT on running sprinting (10–30 m)
with a total of 406 strength-trained subjects [22,29,30,38–40,52,55,57,59,60,63,64,66,67]. How-
ever, only eight studies [29,30,39,55,59,60,66,67] concluded that VBRT has positive or supe-
rior effects to other strategies, while the other studies did not report improvements with
respect to the control group. Despite these findings, it should be noted that VBRT does
not negatively affect the sprinting ability of athletes. As expected, one of the most inter-
esting findings of most studies was that positive results are found in the groups training
at a higher movement velocity during the concentric phase (i.e., lower relative loads). In
addition, there was a tendency to show greater increases in sprint performance when less
percentage of VL was used in each training set. This resulted in lower total volume than the
other groups and, therefore, a lower level of accumulated fatigue [29,30,39,55,59,60,66,67].
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Although some studies have reported no significant difference in sprinting ability when
comparing two groups training with different VL [22,38], several studies suggest that
lower %VL (10–15%) could be the most appropriate fatigue level to improve 20 m sprint
performance [29,30,39]. Moreover, compared to PBT, the VBRT methodology showed
more benefits on the performance of sport-specific actions, such as sprints and changes of
direction [60]. Finally, it seems that the full squat [63] with feedback [52] would be most
recommended. In any case, it seems that more research is needed regarding the effect of
different ranges of motion in lower-limb exercises during a VBRT program that seeks to
improve sprint performance.

4.3. Effects on CMJ

Of the selected studies, only three did not evaluate the effect of a VBRT program
on countermovement jump (CMJ) [54,58,61]. Thus, results are analyzed for a total of
363 subjects with experience in RT. The findings indicate that VBRT positively affects the
CMJ of athletes, obtaining benefits in functional performance with lower total training
load. Similar to sprint performance, it appears that the most efficient VBRT program
would be the one with lower percentage of VL in the set [22,38–40,57] and performed at
maximum intended velocity [55], as it would reduce fatigue accumulation and facilitate
motor neuronal adaptations to improve the ability to apply force quickly. Similar to the
other strength-related variables, the full range of motion [63] with feedback [52,64] seems
to show the best results on CMJ.

4.4. Velocity Loss

Several studies have implemented the VL in the set (from 5% to 45%) to program the
training volume in different exercises, the squat being the most used [22,29,30,38–40,62,65,66].
In general, it is concluded that it is not necessary to reach a high percentage of VL in the
squat exercise, as magnitudes of VL ranging from 5 to 20% appear to show the best
results on jump, sprint, and strength performance (see Table 1). Therefore, results of these
studies suggest that exercise adaptations are favored with a lower total training volume
and less fatigue for the athlete. Some studies have evaluated biochemical markers of
muscle damage and electromyography activity during a VBRT program with different
VL in the set [29,30,65]. Although the concentrations of certain biomarkers did not show
important differences, a significant increase in troponin T (a marker of muscle damage)
was observed for training groups with 30% of VL compared to a 10% of VL in the set [30].
These results are in agreement with those reported by Pareja-Blanco et al. [38,68] who
indicated that the degree of fatigue attained at VL below 10% could be an important factor
in optimizing neuromuscular adaptations during a VBRT program. Regarding the muscle
activation assessment, no significant differences were found between the pre and post-
values; however, a VL in the set equal to 10% presented better percentage changes with
respect to the 30% group in muscle fiber recruitment, mean, and peak power frequency [30].
In summary, the magnitude of VL in the set is a variable that takes center stage in VBRT.
Studies have shown that it is not necessary to generate high magnitude of VL in the set
(>20%) to increase muscle strength in exercises such as squat [57], pull-ups [61], and bench
or overhead press [62]. Thus, the results of several studies suggest that higher training
volumes do not always bring better results when seeking to increase strength levels, which
gives some relevance to lower accumulated fatigue during neuromuscular adaptations.

4.5. Limitations and Future Directions

Despite the fact that sports performance variables were measured, the samples of the
selected studies did not always include performance athletes (particularly, some studies
included physically active young adults between 20 and 30 years old). Additionally, we
are aware that the analyzed studies did not have a “true” control group (that is a group
that did not receive treatment and therefore did not train); notwithstanding, we have based
our analysis on pre-post changes and compared this (when available) to either alternative
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experimental groups or traditional 1-RM percentage-based training groups (control group).
Although different authors have reported that improvements in strength-related variables
are associated with sports performance, such as vertical jump, running speed, and throwing
speed [69–72], it is worthwhile to evaluate the effect of this methodology on specific
technical gestures of different sports modalities [73]. So far, it can only be stated that VBRT
has positive effects on the performance of exercises such as the squat, bench press, pull-ups,
and overhead press. Furthermore, the study designs showed some heterogeneity, low-to-
moderate risk of bias and have mainly included male participants (training experience
from 1.5 to 8.5 years), which suggests that more research is needed to evaluate the effects
of this methodology in the female population. On the other hand, it has been shown
that not all exercises obtain the best performance benefits from the same velocity losses,
which implies that movement velocity is exercise-dependent [74]. Thus, future studies
should analyze the effect of VBRT in a larger number of exercises, with free weights
or other types of resistances such as elastic bands, and explore the potential effects of
different RT programming approaches on strength-related variables. Indeed, only two
studies have evaluated different methodologies (e.g., linear, undulating, or reverse) during
a VBRT program with no relevant differences between them [65,66]. Finally, although new
devices and smartphone applications have been developed recently [46,47], further external
validation research is required.

4.6. Practical Applications

Evidence support the fact that PBT improves maximal strength. However, additional
training methods such as VBRT might optimize load prescription and exercise adapta-
tions [75]. Considering the main findings of the selected studies, VBRT has proven to be an
effective methodology for improving strength in RT-trained individuals while completing
lower training volumes compared to traditional programming. The following are some
practical recommendations based on previous articles [21,76] and our systematic review:

• A VBRT program with three sets per exercise performed twice a week might have
significant changes in the 1-RM, CMJ, and sprint performance for a period of eight
weeks;

• Training at maximum intended concentric velocity is a key requirement to optimize
muscle strength and gains in high-speed actions using the VBRT methodology;

• It is necessary that the complete rest (>3 min) between sets are necessary to work at
the maximum intended velocity at high intensity;

• The load-velocity profile and mean propulsive velocity are valid options for monitor-
ing intensity and load progression;

• The magnitude of VL in the sets is a practical and objective method to program the
training volume during RT;

• A high magnitude of VL in the set is not necessary to achieve the best results on muscle
strength and athletic performance. In fact, lower velocity losses (5–10%) guarantee
less fatigue accumulation, which might lead to quicker recovery.

5. Conclusions

Movement velocity is a useful and reliable variable for monitoring and adjusting the
training loads during RT, making it easier for the personal trainer to program workloads
consistent with the athlete’s current performance capacity. This procedure corrects one of
the main shortcomings of PBT, where the programming of the loads is based on the 1-RM
of the athlete, ignoring the fact that this measure presents a high variability throughout
the training sessions. After reviewing current scientific evidence, VBRT seems to be an
alternative and efficient methodology to improve muscle strength (1-RM), CMJ and sprint
performance, although more research is needed in female participants to corroborate these
results. It must be noted that to improve muscle strength and high-speed actions, the RT
should not induce a high VL during the set or reach muscle failure. These results reveal
that it is possible to obtain more gains with less fatigue.
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