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Abstract: Epigenomic changes in the venous cells exerted by oscillatory shear stress towards the
endothelium may result in consolidation of gene expression alterations upon vein wall remodeling
during varicose transformation. We aimed to reveal such epigenome-wide methylation changes.
Primary culture cells were obtained from non-varicose vein segments left after surgery of 3 patients
by growing the cells in selective media after magnetic immunosorting. Endothelial cells were either
exposed to oscillatory shear stress or left at the static condition. Then, other cell types were treated
with preconditioned media from the adjacent layer’s cells. DNA isolated from the harvested cells
was subjected to epigenome-wide study using Illumina microarrays followed by data analysis with
GenomeStudio (Illumina), Excel (Microsoft), and Genome Enhancer (geneXplain) software packages.
Differential (hypo-/hyper-) methylation was revealed for each cell layer’s DNA. The most targetable
master regulators controlling the activity of certain transcription factors regulating the genes near the
differentially methylated sites appeared to be the following: (1) HGS, PDGFB, and AR for endothelial
cells; (2) HGS, CDH2, SPRY2, SMAD2, ZFYVE9, and P2RY1 for smooth muscle cells; and (3) WWOX,
F8, IGF2R, NFKB1, RELA, SOCS1, and FXN for fibroblasts. Some of the identified master regulators
may serve as promising druggable targets for treating varicose veins in the future.

Keywords: vein wall layers; endothelial cells; smooth muscle cells; fibroblasts; oscillatory shear
stress; DNA methylation; gene regulation; master regulators

1. Introduction

Varicose vein (VV) disease pathogenesis is of a multifactorial chronic nature; genetic,
as well as epigenetic, factors make a considerable contribution to it and may serve as predis-
posing and affecting factors. Altered (non-uniform) shear stress, a tangential hemodynamic
force, accompanies the pathological condition of the vessels and is one of the characteristics
of many vascular disorders [1]. The mechanical effect of changes in hemodynamics may
result in a cascade of molecular reactions leading to a shift in physiological processes and
prompting the development of the disease. Not all factors underlying the initiation and the
progression of VV disease have been discovered so far.
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The three main layers constituting the vein wall are the following. The inner layer,
the tunica intima, consists of a monolayer of endothelial cells with underlying collagen
and elastin. The middle layer, the tunica media, predominantly consists of several layers
of circularly located smooth muscle cells separated by collagen and elastin fibers. The
outer layer, the tunica adventitia or externa, consists of collagen and, mainly, fibroblasts [2].
These layers are tightly connected to each other such that all changes happening to one
layer are reflected in another layer. Moreover, these changes promptly spread through the
whole vein wall, affecting its condition. Indeed, one of the shear-stress responsive genes,
LKLF (KLF2), is endothelium-specific, and its expression affects tunica media formation
and vessel wall integrity/stabilization [3].

Endothelial cells line the inner surface of the vein wall and, since they come in contact
with both circulating blood components and surrounding tissues, they serve as primary sen-
sors of the systemic, as well as the local, stimuli that may modulate the essential endothelial
functions. For instance, due to blood flow, such modulation by local stimuli—hemodynamic
forces—can lead to short-term vasoactive responses and long-term remodeling of the vessel
wall [4]. Endothelial cells possess a set of mechanosensors, such as receptor tyrosine ki-
nases, ion channels, integrins, and G-protein-coupled receptors that convert changes in the
hemodynamics into the biochemical signals modulating endothelial cells’ gene expression,
morphology, behavior, and phenotype through specialized mechanosensitive signaling
pathways [1,5]. The endothelium plays a key role in vascular hemostasis, coagulation,
inflammation, regulation of angiogenesis and vascular tone, and vascular permeability.
Therefore, by sensing biochemical and biomechanical signals, as well as modifying its
functional phenotype, the inner layer of the venous wall contributes to the maintenance of
vascular homeostasis and the development of vascular pathology [4]. It is widely accepted
that local hemodynamics play a crucial role in risk prediction [6].

Endothelial cells possess phenotypic and functional heterogeneity depending on the
type of blood vessels, and, therefore, demonstrate vascular-bed-specific properties that
define their response to fluid shear stress exposure (laminar, oscillatory, or pulsatile) [1].
There are different in vitro 2D and 3D (two-dimensional and three-dimensional) models
mimicking the hemodynamics of the vascular system, but these cannot take into account all
aspects of the complex in vivo environment, since various factors, including vessel geometry,
blood viscosity and velocity, and blood pressures, affect hemodynamics in the vasculature.
Nevertheless, these models are quite useful because they may help to investigate cellular
responses and interactions under different patterns of fluid shear stress [6]. Of particular
interest for us is the endothelial cells’ response to oscillatory shear stress (which is most
effective for mimicking varicose vein conditions) and the transmission of the molecular
signals to the adjacent layers of the vein wall. Thereby, the affected layers may respond
to such molecular signals with changes within themselves and, subsequently, outside
of themselves—into their environment. This is the case of the middle layer, which is
responsible for constriction of the vessel wall and venous tone maintenance.

Studies have demonstrated that upon exposure to an altered hemodynamic environ-
ment, the vascular endothelium becomes activated (including ROS (reactive oxygen species)
generation/production) and acquires a proinflammatory phenotype. This is caused by
mechanoactivation of the NF-KB signaling pathway and characterized by the expression
of endothelial inflammatory markers, augmented endothelial cell turnover, and increased
endothelial cell apoptosis/loss [1,4,6].

Hemodynamic forces such as shear stress control the transcriptional activity of a
large and diverse set of genes (noteworthily, not necessarily endothelium-specific genes)
expressed by the vascular endothelium that plays a key role in transducing biomechanical
forces into biochemical signaling [6,7]. We hypothesized that the oscillatory flow present in
incompetent veins and primarily affecting endothelial cells leads to epigenomic changes
in these cells and cells of other types constituting adjacent layers of the venous wall.
The influence of epigenetic factors contributes to the multifactorial nature of varicose
vein disease [8]. Such factors change the structure of DNA without changing the DNA
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sequence itself. Thus, DNA methylation can affect the transcription and, consequently, gene
expression. Epigenomic modifications, i.e., epigenetic changes across the whole genome,
are unique in terms of the type and amount of chemical modification at each location
on a chromosome, and can vary from cell to cell; moreover, they are very dependent
on environmental factors, so they can be modulated externally with small molecules [9].
This gives us hope that there could be awesome possibilities for the treatment of vascular
diseases in the future.

“OMIC” approaches allow the profiling of multiple genes/their modifications and
products simultaneously [10]. Recording “OMIC” data to measure gene activities, protein
expression, and metabolic events is becoming a standard approach to characterize the
pathological state of an affected tissue. Increasingly, several of these methods are applied in
a combined approach, leading to large multi-“OMIC” data sets. Still, the challenge remains
how to reveal the underlying molecular mechanisms that render a given pathological
state different from the norm. The disease-causing mechanism can be described by a
re-wiring of the cellular regulatory network, for instance as a result of epigenetic alterations
influencing the activity of relevant genes. Reconstruction of the disease-specific regulatory
networks can help to identify potential master regulators of the respective pathological
processes [11–14]. Knowledge about these master regulators can point to ways to block a
pathological regulatory cascade. Suppression of certain molecular targets as components of
these cascades may stop the pathological process and cure the disease.

In case of the epigenome, and methylome in particular, epigenome-wide association
studies (EWAS) significantly accelerated the field of epigenetics research. The aim of this
study was to reveal epigenome-wide methylation changes in the cells-representatives of the
venous wall layers, exerted by oscillatory shear stress towards the endothelium, which may
result in the consolidation of gene expression alterations upon vein wall remodeling during
varicose transformation. It is essential to investigate how hemodynamics is involved in VV
disease initiation/progression, since it may render to the identification of potential drug
targets in the molecular network that governs the studied pathological process. Yet, future
mechanistic studies on the pathogenesis of the disease should provide new insights into
potential targets for VVs treatment.

2. Results
2.1. Identification of Target Genes

In the first step of the analysis, target genes were identified from the uploaded ex-
perimental data. There were 300 genes (among all mapped to differentially methylated
sites), with the highest number of transcription factor binding sites found in the regions
±400 bp from these methylated sites. Initially, raw methylation data were analyzed using
Illumina GenomeStudio (Methylation Module) software, which mapped the differentially
methylated sites to: (a) 36 differentially methylated genes (17 hypo- and 19 hypermethy-
lated) for endothelial cells (ECs), (b) 92 differentially methylated genes (19 hypo- and
73 hypermethylated) for smooth muscle cells (SMCs), and (c) 353 differentially methylated
genes (222 hypo- and 131 hypermethylated) for fibroblasts (FBs), as listed in Supplementary
Tables S1–S3. This prompts us to speculate that the ratios of hypo- to hypermethylated
genes may reflect possible changes after oscillatory shear stress exposure in overall tran-
scription processes within the corresponding cell type of the vein layer: 0.89 < 1 (which
means quenching) for ECs, 0.26 << 1 (which means considerable quenching) for SMCs, and
1.69 > 1 (which means activating) for FBs.

Then, we applied the software package “Genome Enhancer” (geneXplain platform) to
a data set processed in GenomeStudio. The ultimate goal of this pipeline was to identify
potential drug targets in the molecular network that governs the studied pathological
process. According to the Genome Enhancer, there were twenty main genes (presented in
Table 1) that changed their methylation statuses in ECs after being exposed to oscillatory
shear stress.
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Table 1. Top 20 genes among those significantly hypo- and hypermethylated in ECs upon exposure.

Gene
Symbol Gene Description DiffScore 1 ECs + Avg_Beta 2 ECs − Avg_Beta TargetID 3 p-Value 4

EEF1D eukaryotic translation elongation
factor 1 delta −109.1854 0.6555644 0.8999788 cg22186533 1.21 × 10−11

MMD monocyte to macrophage
differentiation-associated −35.18965 0.2981108 0.5100111 cg14861570 0.000302716

TESK1 testis associated actin remodeling
kinase 1 −31.42026 0.4998818 0.6956196 cg09000510 0.000721064

SLC24A4 solute carrier family 24 member 4 −28.64084 0.3270859 0.5232344 cg15052901 0.001367464
MYH3 myosin heavy chain 3 −28.24431 0.2393593 0.4242639 cg18190433 0.001498197

PDGFB platelet derived growth factor
subunit B −24.95273 0.11867 0.2644652 cg19167673 0.003196885

AR androgen receptor −24.15009 0.5732113 0.7435369 cg27271368 0.003845838

ZCCHC10 zinc finger CCHC-type
containing 10 −22.23847 0.585928 0.748945 cg08801754 0.005972457

CELSR3 cadherin EGF LAG seven-pass
G-type receptor 3 −22.23847 0.5043565 0.6789438 cg06621358 0.005972457

CNIH2 cornichon family AMPA receptor
auxiliary protein 2 −21.25318 0.1661903 0.3161516 cg19026260 0.007493453

ZFP28 ZFP28 zinc finger protein 16.8081 0.4203998 0.2640518 cg23850212 0.02085403
YY1 YY1 transcription factor 18.57949 0.7956405 0.6552107 cg22763181 0.013869187

FRMD1 FERM domain containing 1 19.00112 0.6587915 0.49145 cg00350478 0.012586008
MEST mesoderm specific transcript 21.27902 0.8093046 0.6647319 cg13917504 0.007449

LARP1 La ribonucleoprotein 1,
translational regulator 23.04286 0.5051906 0.3232486 cg23613317 0.004962654

CRELD2 cysteine rich with EGF like
domains 2 23.1515 0.836981 0.6953279 cg25882056 0.004840052

RAB9A RAB9A, member RAS
oncogene family 25.78106 0.7809207 0.6158033 cg02620228 0.002641764

KRT17 keratin 17 28.64084 0.7502007 0.5708218 cg00214794 0.001367464

SLC29A1 solute carrier family 29 member 1
(Augustine blood group) 45.2453 0.7506605 0.5342799 cg10519140 2.98862 × 10−5

SLC45A1 solute carrier family 45 member 1 57.2597 0.6744524 0.4233551 cg11283860 1.87945 × 10−6

1 DiffScore definition is given in Materials and Methods (4.2). 2 Avg_Beta represents an average methylation
beta-value for ECs (+/− shear stress, respectively). 3 TargetID identifies the probe name. cg# represents CpG loci.
4 p-value = [10ˆ(DiffScore/10)] for hypomethylated genes; [10ˆ(−DiffScore/10)] for hypermethylated genes.

After SMCs cells representing an adjacent (to the endothelium) vein wall layer—tunica
media—were treated with cell culture media taken from +/− exposed ECs, they also
changed their DNA methylation statuses (as shown in Table 2 for top ten hypo- and top ten
hypermethylated genes).

After FBs representing an adjacent (to the tunica media) vein wall layer—tunica
adventitia—were treated with cell culture media taken from +/− treated SMCs, they also
changed their DNA methylation statuses (as shown in Table 3 for top ten hypo- and top ten
hypermethylated genes).

Epigenome-wide DNA methylation profiling revealed the changes in the cell type of
each venous wall layer, not only in the venous endothelium exposed to oscillatory shear
stress, but also in the cells-representatives of the adjacent layers. For a graphical illustration
of the data shown in Tables 1–3, we created a cluster heatmap where the average beta
values reflecting the methylation levels of the genes (assigned to CpG loci in the group of
samples) are represented by colors, and the rows and columns of the data matrix have been
ordered according to the output from clustering (Figure 1).

In Figure 1, a heatmap of differentially methylated genes is shown for each cell
type separately. One can observe that there are clusters of genes that synchronously
increase or synchronously decrease in methylation. Additionally, we combined all three
sets of genes, each of them being differentially methylated in a certain cell type, with
the corresponding beta values in all those cells (treated and untreated), and applied a
cluster heatmap analysis in order to compare samples from different cells with each other
(Supplementary Figure S1). Interestingly, the result was that they did not differ much (the
difference between “treatment” and “control” in one cell type was often higher than the
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difference between control samples in other cell types). Additionally, in general, these
genes had fairly stable methylation statuses in different cell types—they are represented
with similar colors along the entire length of the heatmap.

Table 2. Top 20 genes among those significantly hypo- and hypermethylated in SMCs upon exposure.

Gene
Symbol Gene Description DiffScore 1 SMCs +

Avg_Beta 2
SMCs −
Avg_Beta TargetID 3 p-Value 4

SCT secretin −44.15369 0.3001944 0.5255814 cg05782292 3.84265 × 10−5

HLTF helicase-like transcription factor −37.04874 0.3306479 0.5443499 cg26151310 0.0001973
CDH2 cadherin 2 −34.43425 0.3850524 0.5944616 cg09313439 0.000360226
ZNRF1 zinc and ring finger 1 −30.55943 0.385322 0.5856031 cg20957193 0.000879138

PRADC1 protease associated domain
containing 1 −28.45422 0.4262078 0.6192294 cg26993951 0.001427506

CCNJL cyclin J-like −21.76985 0.4390145 0.6126426 cg17178888 0.006652961
METTL25B methyltransferase-like 25B −21.18877 0.4171189 0.590144 cg23881601 0.007605416

CDCA5 cell division cycle-associated 5 −21.18382 0.4315823 0.6038101 cg20252016 0.00761409
SIRT3 sirtuin 3 −20.95826 0.7362766 0.8588417 cg23530288 0.008019993
TCF15 transcription factor 15 −20.04535 0.3651721 0.534321 cg06143901 0.009896121

TMEM215 transmembrane protein 215 29.97724 0.8431917 0.6911527 cg11308840 0.001005254
KMT2D lysine methyltransferase 2D 30.48615 0.4764972 0.2821061 cg24471867 0.000894098

CDC37L1 cell division cycle 37-like 1, HSP90
cochaperone 30.55943 0.8350812 0.6772436 cg22189519 0.000879138

SPA17 sperm autoantigenic protein 17 34.0979 0.8123621 0.6387361 cg22318304 0.000389233

PGBD4 piggyBac transposable element
derived 4 35.79305 0.6302417 0.4193449 cg12237946 0.000263448

KHK ketohexokinase 39.8873 0.8598925 0.6937668 cg01522194 0.000102629
RNF213 ring finger protein 213 44.15369 0.8767144 0.7105584 cg09907395 3.84265 × 10−5

MRPL12 mitochondrial ribosomal
protein L12 48.63778 0.816642 0.6133671 cg01372689 1.36843 × 10−5

RPRM reprimo, TP53-dependent G2
arrest mediator homolog 58.14957 0.6450388 0.3928624 cg18411898 1.53124 × 10−6E

SLC22A18 solute carrier family 22 member 18 77.42734 0.8139806 0.5674041 cg16035277 1.80828 × 10−8

1 DiffScore definition is given in Materials and Methods (4.2). 2 Avg_Beta represents an average methylation
beta-value for SMCs (+/− shear stress, respectively). 3 TargetID identifies the probe name. cg# represents CpG
loci. 4 p-value = [10ˆ(DiffScore/10)] for hypomethylated genes; [10ˆ(−DiffScore/10)] for hypermethylated genes.

Table 3. Top 20 genes among those significantly hypo- and hypermethylated in FBs upon exposure.

Gene
Symbol Gene Description DiffScore 1 FBs + Avg_Beta 2 FBs −

Avg_Beta TargetID 3 p-Value 4

PPP1R13L protein phosphatase 1 regulatory
subunit 13-like −287.4783 0.1425181 0.5611927 cg03554552 1.78719 × 10−29

PPP1CC protein phosphatase 1 catalytic
subunit gamma −195.8575 0.5820595 0.9008529 cg03310453 2.59567 × 10−20

SCRN2 secernin 2 −174.5741 0.5376809 0.858446 cg11646887 3.48811 × 10−18

MYL5 myosin light chain 5 −174.3685 0.5000765 0.831169 cg18176712 3.65721 × 10−18

FUCA1 alpha-L-fucosidase 1 −166.3722 0.6312342 0.9132504 cg24792360 2.30558 × 10−17

ISYNA1 inositol-3-phosphate synthase 1 −161.8102 0.4622425 0.7933455 cg09374949 6.59144 × 10−17

YIPF5 Yip1 domain family member 5 −153.572 0.4413335 0.7704819 cg04293726 4.39339 × 10−16

SEMA6C semaphorin 6C −149.7812 0.4570227 0.7800868 cg25820693 1.05167 × 10−15

FBN2 fibrillin 2 −147.2405 0.7476242 0.9649287 cg25084878 1.88777 × 10−15

RANGNRF RAN guanine nucleotide release
factor −146.2499 0.4167334 0.743665 cg11178443 2.37143 × 10−15

DCAF16 DDB1 and CUL4-associated
factor 16 90.26163 0.7206882 0.4538092 cg27127056 9.41536 × 10−10

SACM1L SAC1-like phosphatidylinositide
phosphatase 91.75178 0.8458125 0.6134535 cg22986271 6.6807 × 10−10

CACHD1 cache domain containing 1 94.27448 0.7917484 0.5357191 cg19304410 3.73725 × 10−10

UGDH UDP-glucose 6-dehydrogenase 97.15292 0.8846164 0.6643396 cg25117976 1.92623 × 10−10

GGTLC2 gamma-glutamyltransferase light
chain 2 99.88158 0.8204779 0.5666317 cg01457622 1.02764 × 10−10
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Table 3. Cont.

Gene
Symbol Gene Description DiffScore 1 FBs + Avg_Beta 2 FBs −

Avg_Beta TargetID 3 p-Value 4

C16orf54 chromosome 16 open reading
frame 54 101.7236 0.2649694 0.0511992 cg23093496 6.72419 × 10−11

FXN frataxin 103.5087 0.5243153 0.2395225 cg23667933 4.4579 × 10−11

RGS11 regulator of G protein signaling 11 104.2319 0.4908251 0.2102013 cg01344518 3.77407 × 10−11

PRICKLE3 prickle planar cell polarity
protein 3 105.7841 0.3453371 0.09902742 cg10417559 2.63992 × 10−11

SPATA4 spermatogenesis associated 4 335.9589 0.5617582 0.2024512 cg01311285 2.53577 × 10−34

1 DiffScore definition is given in Materials and Methods (4.2). 2 Avg_Beta represents an average methylation
beta-value for FBs (+/− shear stress, respectively). 3 TargetID identifies the probe name. cg# represents CpG loci.
4 p-value = [10ˆ(DiffScore/10)] for hypomethylated genes; [10ˆ(−DiffScore/10)] for hypermethylated genes.
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treated ECs, SMCs, and FBs, respectively. Heatmap displays differentially methylated genes ranging
from hypomethylated (blue) to hypermethylated (red). avg_Beta represents an average methylation
beta value and corresponds to a certain color within the range. Cluster pattern is shown on the left
side of each diagram.

However, we focused not just on the hypo-/hypermethylated sites, but rather on
their regulators and potential master regulators. Differentially methylated sites were
mapped to genes, and the top 300 genes with the highest number of transcription factor
binding sites (found in the 400 bp regions around these methylated sites) were selected for
further analysis.

2.2. Functional Classification of Genes

A functional analysis of the top 300 genes near differentially methylated sites was
conducted by mapping the input genes to several known ontologies, such as the Gene
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Ontology (GO)_biological process and the ontology of signal transduction and metabolic
pathways from the TRANSPATH® database. Statistical significance was computed using
a binomial test. Figures 2–4 show the most significant categories for ECs, SMCs, and
FBs, correspondingly.
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GO analysis of the genes associated with differentially methylated sites showed that a
number of genes potentially affected by differential methylation upon exposure of ECs to
Oscillatory Shear Stress played roles in such processes as negative regulation of muscle cell
differentiation (hit names: PDGFB, PLPP7, YY1), positive regulation of cellular component
biogenesis (CCP110, HGS, TESK1, TIGD5, TPPP2), regulation of protein autophosphory-
lation (PDGFB, TESK1), platelet-derived growth factor receptor signaling pathway (HGS,
PDGFB), steroid hormone mediated signaling pathway (AR, NR3C2, NR4A2), cellular
response to organic cyclic compound (AR, LARP1, NR3C2, NR4A2, PDGFB), vesicle tar-
geting/coating and rough ER to cis-Golgi and vesicle budding from membrane (CNIH2,
RAB1B), positive regulation of exocytosis (HGS, RAB9A), regulation of systemic arterial
blood pressure (AR, PDGFB), retrograde vesicle-mediated transport, Golgi to endoplasmic
reticulum (RAB1B, RER1), macroautophagy (HGS, LARP1, RAB1B), etc. (see Supplemen-
tary Table S4).
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Full classification of GO categories for SMCs may be seen in Supplementary Table S5.
GO analysis revealed that a number of genes potentially affected by differential methy-
lation upon exposure of SMCs to the preconditioned media from ECs (+/− oscillatory
shear stress-exposed) played roles in such processes as negative regulation of cellular pro-
cesses, regulation of nitrogen compound metabolic processes (hit names: C5AR2, CCND2,
CD38, CD9, CDH2, CDKN3, CHFR, CHMP6, CLSPN, DCLK1, DDX5, etc.), regulation of
metabolic process (C5AR2, CCND2, CCNJL, CCNT2, CCT7, HGS, etc.), negative regulation
of cell communication (C5AR2, CD38, CDH2, DRD1, F2R, HGS, HIF1AN, ING2, P2RY1,
PSMD13, SIRT3, SPRY2, etc.), regulation of the production of small RNAs involved in gene
silencing by RNA (DDX5, LIN28A, TERT), presynaptic active zone organization (ERC2,
PCDH17), regulation of protein phosphorylation (C5AR2, CCND2, CCNJL, CCNT2, CDH2,
CDKN3, CHMP6, CLSPN, DRD1, F2R, HGS, MICAL1, NCKAP1L, P2RY1, etc.), regulation
of blood vessel diameter and size (CD38, CPS1, DRD1, F2R, P2RY1), cell junction mainte-
nance (ERC2, F2R, SYNGAP1), regulation of synaptic vesicle clustering (CDH2, PCDH17),
regulation of cyclin-dependent protein serine/threonine kinase activity (CCND2, CCNJL,
CCNT2, CDKN3), negative regulation of the epidermal growth factor receptor signaling
pathway (CHMP6, HGS, SPRY2), vascular processes in the circulatory system (CD38, CPS1,
DRD1, F2R, P2RY1), regulation of presynaptic cytosolic calcium ion concentration (ATP2B2,
P2RY1), regulation of exosomal secretion (CHMP6, HGS), and smooth muscle contraction
(CD38, DRD1, F2R).

HIF1AN (also known as FIH1)—a HIF1-alpha inhibitor—is the cellular oxygen sensor
factor inhibiting hypoxia-inducible factor 1 alpha [15] by preventing its transcriptional
activity and leading to adaptive responses to hypoxia. HIF1AN plays a critical role in
controlling the survival of vascular ECs through interacting with Notch2 and repressing
its activity [16]. This may point to an interconnection between ECs and SMCs belonging
to adjacent layers. It is worth noting that the HIF1AN antagonist—HIF1-alpha—is not
only regulated by the hypoxic stimulus, but can also act as a target for potentiating the
protective effects from some adaptogenic triggers [17].

A full classification of GO categories for FBs may be seen in Supplementary Table S6.
GO analysis revealed that a number of genes potentially affected by differential methylation
upon exposure of FBs to the preconditioned media from SMCs (treated with the precondi-
tioned media from +/− oscillatory shear stress-exposed ECs) played roles in such processes
as negative regulation of GTPase activity (hit names: GPS1, IQGAP2, PTPRN2, RCC2),
protein glycosylation (B3GALT6, DOLK, GALNT1, GALNT17, MAN2A2, RFNG, TET2,
TMTC2, etc.), protein-containing complex assembly (CDC42EP2, CDC42EP4, CHMP6, F8,
FMC1, GPX4, etc.), intrinsic apoptotic signaling pathway by p53 class mediator (PTTG1IP,
RPL11, SHISA5, WWOX), actin filament polymerization (CDC42EP2, CDC42EP4, IQGAP2,
MSRB2, PPP1R9A, TIGD5), the inositol phosphate catabolic process (IMPA2, NUDT3), the
oxidation–reduction process (ADHFE1, CYP4B1, DHCR7, DHFR, F8, FAHD1, FXN, GPX4,
HIF1AN, MSRB2, NDUFA7, NDUFS3.., etc.), and regulation of the apoptotic signaling
pathway (FXN, INHBB, MCL1, NACC2, NDUFS3, NR4A2, PTTG1IP, RPL11, WWOX).

For instance, it was shown that activation of CDC42 is involved in the hypoxia-induced
production of angiogenesis-promoting factors such as vascular endothelial growth factor
(VEGF) [18], as well as in actin filament polymerization [19]. Proteins of this family also
play roles in cytoskeletal remodeling and signaling, cell shape, directed migration and
differentiation, and pathological fibroblast activation [20]. The aforementioned HIF1AN,
participating in the oxidation–reduction process, is also present in FBs.

The results of the additional functional analysis of the input genes mapped to the
ontology of signal transduction and metabolic pathways, according to the TRANSPATH®

database, are shown in Supplementary Figures S2–S4. The affected genes were significantly
enriched with specific pathway ontology categories. A full classification of those categories
for each cell type may be seen in Supplementary Tables S7–S9.

The result of overall GO analysis of the genes near differentially methylated sites can
be summarized by the following diagram (Figure 5), which reveals the most significant
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functional categories overrepresented among the observed genes. Thus, we can report that
our epigenome-wide analysis revealed important changes that accompany the effect of
oscillatory shear stress on the venous endothelium, which spreads to SMCs and FBs that
represent the middle and outer layers of the vein wall, correspondingly.

Figure 5. The most significant functional GO categories overrepresented among the observed genes
near differentially methylated sites.

To better understand the relation of differentially methylated genes to the pathological
condition, we developed an interactive illustration for the most significant of those genes
in different cells and their cellular functions with respect to pathological consequences
(Figure 6).
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Figure 6. Association of genes (and their functions) differentially methylated in different cell types
with the pathological processes during varicose transformation of the vein wall.

The figure shows how the functions of these genes (with the highest value of |DiffS-
core|) could be linked to the pathological processes involved in varicose transformation of
the vein wall.

2.3. Analysis of Enriched Transcription Factor Binding Sites and Composite Modules

In the next step, a search for transcription factor binding sites (TFBS) was performed
in the regulatory regions of the target genes by using the TF binding motif library of the
TRANSFAC® database. We searched for so-called composite modules acting as poten-
tial condition-specific enhancers of the target genes in their upstream regulatory regions
(−1000 bp upstream of transcription start site (TSS)) and identified transcription factors
regulating the activity of the genes through such enhancers.

Classically, enhancers are defined as regions in the genome that increase the tran-
scription of one or several genes when inserted in either orientation at various distances
upstream or downstream of the gene [21]. Enhancers typically have a length of several
hundreds of nucleotides and are bound by multiple transcription factors in a cooperative
manner [22].

In the current work, we used epigenomics data from the tracks (Supplementary Tables S1–S3)
to predict the positions of potential enhancers regulating the genes near differentially
methylated sites revealed by comparative epigenomics analysis. We took genomic regions
−550 bp upstream and 550 bp downstream from the middle point of each interval of the
track and checked whether these regions were located inside the 5 kb flanking areas of the
genes near differentially methylated sites (or inside the bodies of the genes). In such cases,
these genomic regions are used for the search for potential condition-specific enhancers.
In all other cases, when the genes near differentially methylated sites did not contain
epigenomic peaks in their bodies or in the 5 kb flanking regions, we used the upstream
regulatory regions of these genes (−1000 bp upstream and 100 bp downstream of TSS) for
our search for condition-specific enhancers.



Epigenomes 2023, 7, 8 12 of 28

We applied the Composite Module Analyst (CMA) method [8] to detect such potential
enhancers as targets of multiple TFs bound in a cooperative manner to the regulatory
regions of the genes of interest. CMA applies a genetic algorithm to construct a generalized
model of the enhancers by specifying combinations of TF motifs (from TRANSFAC®)
whose sites are most frequently clustered together in the regulatory regions of the studied
genes. CMA identifies the transcription factors which, through their cooperation, provide a
synergistic effect and, thus, have a great influence on the gene regulation process.

To build the most specific composite modules, we chose genes as the input for the
CMA algorithm. The results of this search are represented in Figure 7. The model consisted
of two modules. In Figure 7A–C, the following information is shown for each module:
PWMs (position weight matrixes) producing matches, scores of the best matches, and the
number of individual matches (N) for each PWM. Through this analysis, we identified TFs
whose binding to their control regions may be significantly altered by CpG methylation,
leading to shifts in the expression of many genes in our experiment. The CMA algorithm
identified enriched combinations of TFs with high statistical significance (Wilcoxon p-value
= 2.33 × 10−36 for ECs, 4.34 × 10−35 for SMCs, and 1.62 × 10−48 for FBs). The AUC of the
model for FBs achieved a value (=0.81) significantly higher than expected for a random set
of regulatory regions (Z-score = 3.81), which means that there are significantly more TF site
pairs in CpG regulatory regions compared to the background.
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Figure 7. Enhancer model potentially involved in the regulation of target genes. (A–C)—the most
specific composite modules obtained as the results of CMA analysis for ECs, SMCs, and FBs, corre-
spondingly. “Module width” is the preferable distance between sites; “V$” stands for “vertebrates”;
the right part of the PWM name represents the TF family name. Score of the best match is shown as
the optimized cut-off of the PWM score; number of individual matches (N) for each PWM gives the
maximal number of TF sites with the highest scores, which are computed in the module. (D–F)—for
ECs, SMCs, and FBs, correspondingly, contain two histograms of the distributions of model scores
(reflecting the number of TF site pairs found in the sequence) in the CpG regulatory regions (red)
versus CpG sites of unchanged genes (blue). AUC = 0.76 for ECs and SMCs, and 0.81 for FBs.

On the basis of the enhancer models, we identified transcription factors potentially
regulating the target genes of our interest. We found 14, 17, and 7 transcription factors
controlling the expression of target genes for ECs, SMCs, and FBs, correspondingly (see
Table 4). In the table, ≤10 TFs for each cell type are shown. Full lists of TFs may be seen in
Supplementary Tables S10–S12.

The key transcription factors which were predicted to be potentially regulating genes
near differentially methylated sites in our experiment were: JUN, CDX2, and POU2F1
for ECs; SREBF2, LEF1, and IRF3 for SMCs; and RELA, ESR1, and TFAP2A for FBs. The
relevance of these TFs is discussed later on, in the Section 3.
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Table 4. Transcription factors of the predicted enhancer model potentially regulating the genes near
the differentially methylated sites.

Gene Symbol Gene Description Regulatory Score 1 Yes-No Ratio 2

ECs
JUN Jun proto-oncogene, AP-1 transcription factor subunit 2.09 1.56

CDX2 caudal type homeobox 2 1.77 1.62
POU2F1 POU class 2 homeobox 1 1.61 1.87
SREBF2 sterol regulatory element binding transcription factor 2 1.59 1.33
NKX3-1 NK3 homeobox 1 1.58 1.58
NHLH1 nescient helix-loop-helix 1 1.39 2.6
GABPA GA binding protein transcription factor subunit alpha 1.38 1.24
RUNX3 RUNX family transcription factor 3 1.32 4.61

NRL neural retina leucine zipper 1.21 1.75
MAFK MAF bZIP transcription factor K 1.15 2.13

SMCs
SREBF2 sterol regulatory element binding transcription factor 2 1.8 1.5

LEF1 lymphoid enhancer binding factor 1 1.78 2.26
IRF3 interferon regulatory factor 3 1.76 2.39
WT1 WT1 transcription factor 1.74 5.13
SFPQ splicing factor proline and glutamine rich 1.71 1.24

POU2F1 POU class 2 homeobox 1 1.7 3.54

RBPJ recombination signal binding protein for immunoglobulin
kappa J region 1.7 1.65

DPF2 double PHD fingers 2 1.64 1.31
PAX5 paired box 5 1.64 1.35

SREBF1 sterol regulatory element binding transcription factor 1 1.64 4.45
FBs

RELA RELA proto-oncogene, NF-kB subunit 2.27 1.9
ESR1 estrogen receptor 1 2.09 2.44

TFAP2A transcription factor AP-2 alpha 1.66 2.12
RUNX3 RUNX family transcription factor 3 1.62 1.8

ELF3 E74 like ETS transcription factor 3 1.46 2.96
TFAP2B transcription factor AP-2 beta 0 2.12
TFAP2C transcription factor AP-2 gamma 0 2.42

1 Regulatory score is the measure of involvement of the given TF in controlling the expression of genes that encode
the master regulators presented below (through positive feedback loops). 2 Yes–No ratio is the ratio between
frequencies of the sites in Yes sequences versus No sequences. It describes the level of the enrichment of binding
sites for the indicated TF in the regulatory target regions.

2.4. Finding Master Regulators in Networks

In the second step of the upstream analysis, common regulators of the revealed TFs
were identified. We considered master regulators to be the keynodes with positive feedback
loops; master regulator protein controls the activity of TFs which, in turn, activate the gene
encoding the master regulator protein. The sorting of master regulators is conducted by
total rank. The total rank is a kind of average rank that takes into account both whether
this keynode is at the top of the regulatory pyramid (keynode score) and to what degree
the gene encoding this keynode is regulated by predicted TFs (CMA score), as well as
whether or not this gene contains a hypomethylation or hypermethylation site (epigenomics
data). These master regulators appear to be the key candidates for therapeutic targets,
as they have a master effect on the regulation of the intracellular pathways that activate
the pathological processes which are the focal points of our study. The identified master
regulators may be seen in Table 5, where the top 10 master molecules for ECs, SMCs, and
FBs, correspondingly, are shown. Full lists of the master molecules for each type of cells
may be seen in Supplementary Tables S13–S15.
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Table 5. Master regulators that may govern the regulation of genes near the differentially methylated sites.

Master Molecule Name Gene Symbol Gene Description Total Rank 1

ECs
PDGFB-isoform1(h) PDGFB platelet-derived growth factor subunit B 9
PDGFB-isoform2(h) PDGFB platelet-derived growth factor subunit B 9

PDGFB(h) PDGFB platelet-derived growth factor subunit B 11

HRS(h) HGS hepatocyte growth factor-regulated tyrosine kinase
substrate 13

HRS:PtdIns(3)P:SARA:SMAD2 HGS, SMAD2, ZFYVE9
SMAD family member 2, hepatocyte growth

factor-regulated tyrosine kinase substrate, zinc finger
FYVE-type containing 9

13

HRS:PtdIns(3)P:SARA:SMAD3 HGS, SMAD3, ZFYVE9
SMAD family member 3, hepatocyte growth

factor-regulated tyrosine kinase substrate, zinc finger
FYVE-type containing 9

13

HRS-isoform1(h) HGS hepatocyte growth factor-regulated tyrosine kinase
substrate 13

HRS(h){pY} HGS hepatocyte growth factor-regulated tyrosine kinase
substrate 13

HRS-isoform2(h) HGS hepatocyte growth factor-regulated tyrosine kinase
substrate 13

HRS(h){pY334} HGS hepatocyte growth factor-regulated tyrosine kinase
substrate 13

SMCs

HRS(h) HGS hepatocyte growth factor-regulated tyrosine kinase
substrate 30

HRS:PtdIns(3)P:SARA:SMAD2 HGS, SMAD2, ZFYVE9
SMAD family member 2, hepatocyte growth

factor-regulated tyrosine kinase substrate, zinc finger
FYVE-type containing 9

30

HRS:PtdIns(3)P:SARA:SMAD3 HGS, SMAD3, ZFYVE9
SMAD family member 3, hepatocyte growth

factor-regulated tyrosine kinase substrate, zinc finger
FYVE-type containing 9

30

HRS-isoform1(h) HGS hepatocyte growth factor-regulated tyrosine kinase
substrate 30

HRS(h){pY} HGS hepatocyte growth factor-regulated tyrosine kinase
substrate 30

HRS-isoform2(h) HGS hepatocyte growth factor-regulated tyrosine kinase
substrate 30

HRS(h){pY334} HGS hepatocyte growth factor-regulated tyrosine kinase
substrate 30

Sprouty2(h){p} SPRY2 sprouty RTK signaling antagonist 2 30
Sprouty2(h) SPRY2 sprouty RTK signaling antagonist 2 31

CD23(h) FCER2 Fc fragment of IgE receptor II 32
FBs

SOCS-1(h) SOCS1 suppressor of cytokine signaling 1 21

p50:NF-kappaBp65:SOCS-1 NFKB1, RELA, SOCS1 RELA proto-oncogene, NF-kB subunit, nuclear factor
kappa B subunit 1, suppressor of cytokine signaling 1 21

p50:NF-kappaBp65{ub}n:SOCS-1 NFKB1, RELA, SOCS1 RELA proto-oncogene, NF-kB subunit, nuclear factor
kappa B subunit 1, suppressor of cytokine signaling 1 21

SOCS-1(h) SOCS1 suppressor of cytokine signaling 1 29
IGF-2R(h) IGF2R insulin like growth factor 2 receptor 32

G12/13
GNA12, GNA13, GNB1, GNB1L,

GNB2, GNB3, GNB4, GNB5,
GNG2, GNG3, GNG5, GNGT1

G protein subunit alpha 12, G protein subunit alpha
13, G protein subunit beta 1, G protein subunit beta 1
like, G protein subunit beta 2, G protein subunit beta
3, G protein subunit beta 4, G protein subunit beta 5,

G protein subunit gamma 2, G protein subunit
gamma 3, G protein subunit gamma 5, G protein

subunit gamma transducin 1

49

DHTXisoform1(h) UVRAG UV radiation resistance associated 50
F8B(h){gly}n F8 coagulation factor VIII 51

F8B(h) F8 coagulation factor VIII 52
F8B-isoform2(h) F8 coagulation factor VIII 53

1 Total rank is the sum of the ranks of the master molecules sorted by keynode score, CMA score, and epigenomics
data. The lower the total rank is, the more likely it is that a master molecule is considered as a master regulator.

The intracellular regulatory pathways controlled by the aforementioned master regu-
lators are depicted in Figures 8–10, where positive feedback is represented by dotted lines.
This diagram displays the connections between the identified TFs that play important roles
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in the regulation of genes near the differentially methylated sites and the selected master
regulators that are responsible for the regulation of these TFs.
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For ECs, master regulators HGS and PDGFB are involved in the platelet-derived
growth factor receptor signaling pathway; AR and PDGFB are involved in epithelial cell
development and regulation of systemic arterial blood pressure; and AR, HGS, and PDGFB
are involved in the regulation of protein phosphorylation and cellular protein metabolic
process (according to GO processes presented in Supplementary Table S4). Furthermore,
the key pathways for master regulators in ECs are: the AR pathway; the IGF-1 pathway;
MKK4 —JNK1—/AR; PDGF A, PDGF B —> AKT; PDGF B —> STATs; PDGF B—/Ras;
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and the PDGF pathway (according to the pathway categories presented in Supplementary
Table S7).
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Figure 9. Diagram of intracellular regulatory signal transduction pathways of genes near differentially
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and blue frames highlight molecules that are encoded by genes mapped to differentially methylated
sites. Positive feedbacks are represented by dotted lines.

For SMCs, master regulators CDH2, HGS, and SPRY2 are involved in such key pro-
cesses as regulation of the nitrogen compound metabolic process, regulation of cell popula-
tion proliferation, and blood vessel morphogenesis. CDH2, HGS, P2RY1, and SPRY2 are
involved in regulation of cellular metabolic process, negative regulation of cell communica-
tion, and phosphorylation. HGS and SPRY2 are involved in negative regulation of the ERBB
signaling pathway, regulation of protein kinase activity, and regulation of the epidermal
growth factor receptor signaling pathway. CDH2 and P2RY1 are involved in regulation
of the synaptic vesicle cycle and neurogenesis. HGS, P2RY1, and SPRY2 are involved
in positive regulation of gene expression; HGS and P2RY1 are involved in export from
the cell and secretion by the cell (according to GO processes presented in Supplementary
Table S5). The key pathways for the master regulators in SMCs are: Spry2 —> ErbB1; EGF
pathway; activin A —> Smad3; activin A —> Smad2; TGFbeta pathway; and N-cadherin
—Eplin—> actin; N-cadherin network (according to the pathway categories presented in
Supplementary Table S8).

For FBs, the master regulators WWOX, F8, and FXN are involved in oxidation–
reduction processes; FXN and WWOX are involved in regulation of the apoptotic signaling
pathway (according to GO processes presented in Supplementary Table S6). The key path-
ways for master regulators in FBs are: Src —/p73beta; ErbB4 mediated signaling; p73
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pathway; IL-5 pathway; and SOCS-1 —/STAT5; IL-2—STAT5 pathway (according to the
pathway categories presented in Supplementary Table S9).
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Figure 10. Diagram of intracellular regulatory signal transduction pathways of genes near differen-
tially methylated sites in FBs. Master regulators are indicated by red rectangles, transcription factors
are indicated by purple rectangles, and green rectangles represent intermediate molecules, which
were added to the network during the search for master regulators from the selected TFs. Orange
and blue frames highlight molecules that are encoded by genes mapped to differentially methylated
sites. Positive feedbacks are represented by shown by dotted lines.

The Tables with master regulator molecules that have been converted into genes
are Supplementary Tables S16–S18 for ECs, SMCs, and FBs, correspondingly. After we
performed intersection of those three tables, we found that the first two cell types shared
one potential master molecule {HRS(h),HRS(h){pY334},HRS(h){pY},HRS-isoform1(h),HRS-
isoform2(h),HRS:PtdIns(3)P:SARA:SMAD2,HRS:PtdIns(3)P:SARA:SMAD3} that corresponded
to potential master regulators HGS, SMAD2, SMAD3, and ZFYVE9 (see the Venn diagram
in the Figure 11). The second two cell types—SMCs and FBs—representing the middle
and outer layers of the venous wall, correspondingly, also shared one potential master
molecule {ZNRF1(h),ZNRF1-isoform1(h),ZNRF1-isoform2(h} that corresponded to the po-
tential master regulator ZNRF1. In addition, ZNRF1 was in the fourth place (according to
the DiffScore = −30.56, p-value < 0.001) among the genes hypomethylated in SMCs upon
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our treatment, and this gene was also hypomethylated in FBs, albeit to a lesser extent
(DiffScore = −22.02).
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For the final summary, Genome Enhancer software chose the potential master reg-
ulators that were the most interesting and promising in terms of druggability. These
master regulators control the activity of certain TFs regulating the genes near differentially
methylated sites. Thus, the most targetable master regulators appeared to be the following:
(1) HGS, PDGFB, and AR (corresponding to the master molecules {HRS}, {PDGFB}, and
{AR-isoform1}), which control the activity of transcription factors JUN, CDX2, and POU2F1
for endothelial cells; (2) HGS, CDH2, SPRY2, SMAD2, ZFYVE9, and P2RY1 (corresponding
to the master molecules {HRS}, {N-cadherin}, {Sprouty2}, {HRS:PtdIns(3)P:SARA:SMAD2},
and {P2Y1}), which control the activity of transcription factors SREBF2, LEF1, and IRF3 for
smooth muscle cells; and (3) WWOX, F8, IGF2R, NFKB1, RELA, SOCS1, and FXN (corre-
sponding to the master molecules {WOX1}, {F8B}, {IGF-2R}, {p50:NF-kappaB-p65:SOCS-1},
{FXN}, and {SOCS-1}), which control the activity of transcription factors RELA, ESR1, and
TFAP2A for fibroblasts (see Figure 12).
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3. Discussion

This study is the first attempt, to the best of our knowledge, to assess the changes to
methylation profiles in the cells representing the corresponding layers of the vein wall in
response to oscillatory shear stress, which somehow reflects the events happening in incom-
petent veins (VVs). Such an effort to resolve the heterogeneity of cell composition of the
vein as an organ may deliver new insights into the mechanism of VV pathogenesis. Our 2D
experimental model may not have been 100 percent realistic, but it definitely covered some
aspects of the pathological condition. It is worth mentioning that our experimental design,
which utilized oscillatory shear stress, partially represented proatherogenic conditions that
are characterized by low-magnitude and oscillatory shear stress [1].

The cellular monolayer lining the tunica intima is normally subjected to biomechanical
stimuli resulting from shear stress and from strain due to stretching of the vein wall. Shear
stress has been implicated in altering the structure and functional properties of ECs at
the cellular and molecular levels, with profound effects on physiology [23]. The vascular
endothelium in vivo acts as a signal transduction interface for hemodynamic forces which
determine the cytoskeletal organization, shape, and function of ECs, allowing the vessels
to cope with physiological or pathological conditions [24]. This must be true for conditions
in vitro. Interestingly, in response to shear stress, ECs increase NO production leading to an
enhancement of the shear stress response of leukocytes [25]. On the other hand, we cannot
exclude the outside-in hypothesis, according to which the tunica adventitia may be a sensor
of vascular wall disruption and dysfunction, as well as an early responder and activator of
the blood vessels’ response to injury [26]. The tunica media is in between, and must react
and adjust to all possible effects from the inside and outside of the vein wall.

In this work, we have shown that the exposure of the venous endothelium to oscillatory
shear stress not only resulted in epigenome-wide changes within this layer, but exerted
even more prominent changes in the neighboring layers of the vein wall. Moreover, we
observed different ratios of hypo- to hypermethylated genes, which may reflect possible
changes caused by oscillatory shear stress in the overall transcription processes within
the corresponding cell type of the vein layer: quenching for ECs (0.89 < 1), considerable
quenching for SMCs (0.26 << 1), and activation for FBs (1.69 > 1). In turn, this may overlap
with morphological changes during the varicose transformation of the venous wall, when
endothelial dysfunction, impairment of the functional smooth muscle layer, and accrescence
of adventitia are often observed. It is amazing how an impact of oscillatory shear stress on
the inner layer alone is capable to launch much bigger changes in the adjacent layers of
the vessel.

In the current work, we were limited by the methylation studies, but a combination of
DNA methylation with gene expression could provide much more information about the
molecular mechanisms involved. Herein, we used 27 K CpG arrays that represented only a
fraction of the CpG positions in the genome (located near gene bodies and covering mainly
predominately invariant methylation regions) that can become methylated and potentially
affect gene regulation; thus, other regions not covered by these arrays were not included in
our analysis. Despite this, we were able to discover a number of differentially methylated
CpGs mapped to the genes whose functions were linked to the transformative changes that
occurred in the vein wall (Figure 6). In addition, in our study, we conducted an analysis
of the individual DMSs (differentially methylated sites) located in various genes, but we
did not analyze DMRs (differentially methylated regions) that could potentially provide
additional information about epigenetic changes in the genome and draw attention to some
specific genes, though DMRs usually have nothing to do with gene regulation.

Conventional approaches of statistical “OMICs” data analysis provide only very
limited information about the causes of the observed phenomena, and, therefore, con-
tribute little to the understanding the pathological molecular mechanism. In contrast,
the “upstream analysis” method [11–14] applied herein is designed to provide a casual
interpretation of the data obtained for a pathology state. This approach comprises two
major steps: (1) analyzing promoters and enhancers of differentially expressed genes for
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the transcription factors (TFs) involved in their regulation and, thus, important for the
process under study; (2) reconstructing the signaling pathways that activate these TFs
and identifying master regulators at the top of such pathways. For the first step, the
database TRANSFAC® [27] is employed together with the TF binding site identification
algorithms Match [28] and CMA [21], so that pipeline discovers TFs that regulate genes’
activities in a pathological state. The activities of these TFs are controlled by so-called
master regulators, which are identified in the second step of analysis. The second step
involves the signal transduction database TRANSPATH® [22] and special graph search
algorithms [29] implemented in the “Genome Enhancer” software. After a subsequent
druggability checkup, the most promising master regulators are chosen as potential drug
targets for the analyzed pathology.

In the present work, we have revealed the master regulators that control the activity
of certain TFs regulating genes near the differentially methylated sites for ECs, SMCs, and
FBs, which represent the three layers of the venous wall. Herein, we will discuss only those
potential master regulators which are the most promising in terms of druggability [30].

JUN, CDX2, and POU2F1 have been revealed as the key transcription factors predicted
to potentially regulate genes near differentially methylated sites in our experiment for
ECs exposed to oscillatory shear stress. JUN (Jun proto-oncogene, AP-1 transcription
factor subunit) is a member of the Jun family of proteins, which are primary components
of the activating protein transcription factor [31]. It is inducible by hypoxia related to
endothelial cell barrier dysfunction [32]. CDX2 (caudal-type homeobox-2) is a member of
the caudal-related homeobox transcription factor gene family. Aberrant expression of the
CDX2 gene is associated with intestinal inflammation [33]. Researchers hypothesize that it
is related to the reconstruction of the blood vessels [34]. POU2F1 (POU class 2 homeobox 1)
is shown as a transcription factor regulated by DNA damage [35] and as a transcriptional
repressor for genes expressed in ECs [36]. The POU2F1 gene may play an important role in
the development of primary VVs [37], as well as generally, in the condition of the vascular
system [38].

The most obvious master regulators of the aforementioned TFs were HGS, PDGFB,
and AR. HGS (hepatocyte growth factor-regulated tyrosine kinase substrate) is involved
in tight junction protein trafficking and ECs permeability [39]. HGS is necessary for main-
taining cerebrovascular stability [40]. PDGFB (platelet-derived growth factor subunit B)
is expressed at a very low level in healthy vessels [41]. It contributes to the migration
and proliferation of SMCs [42] and plays a role in cell growth, apoptosis, and actin reor-
ganization [41]. It is believed that platelet-derived growth factor is necessary for tunica
intima growth and to prevent regression of its thickening [43]. Platelet-derived growth
factors are involved in tissue homeostasis regulation due to control of the interstitial fluid
pressure [44]. ARs (androgen receptors) play a role in vascular calcification [45], vascu-
lar SMC migration [46], endothelial dysfunction [47,48], and induction of vascular SMC
apoptosis [49]. In veins from organ donor extraction (from patients without VVs) ARs were
located in the adventitia. The redistribution of ARs through the venous wall was observed
in VV conditions, and as a result, AR-positive cells were found in the neointima [50].

SREBF2, LEF1, and IRF3 have been revealed as the key transcription factors predicted
to potentially regulate genes near differentially methylated sites in our experiment with
SMCs treated with culture media from ECs ± exposed to oscillatory shear stress. In
vascular endothelial cells, SREBF2 (sterol regulatory element binding transcription factor 2)
is activated by sterol loss [51] and oscillatory shear stress [52]. It also promotes TGF-
β1-induced cell movement [53]. LEF1 (lymphoid enhancer binding factor 1) plays an
important role in embryogenesis and tumorigenicity [54]. LEF1 suppresses the expression
of epithelial/endothelial–mesenchymal transition-relevant genes, which contributes to
the malignancy of colonic adenocarcinomas [55]. IRF3 (interferon regulatory factor 3) is
member of a family of transcription factors for genes associated with innate and adaptive
immune responses [56]. In response to low shear stress, IRF3 is activated, which leads to
endothelial inflammation [57].
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For SMCs, the most obvious master regulators of the TF identified were HGS, CDH2,
SPRY2, SMAD2, ZFYVE9, and P2RY1. CDH2 (cadherin 2) is essential for vascular SMC
survival [58]. Inhibition of CDH2 function retards SMC migration and the promotion
of ECs survival [59]. Blockade of SPRY2 (sprouty RTK signaling antagonist 2) (together
with blockade of Dll4) leads to augmentation of the expression of venous markers in
arteries [60]. SPRY2 is upregulated in response to fibroblast growth factor 2 in primary
dermal ECs [61]. SMAD2 (SMAD family member 2) mediates the signal of the transforming
growth factor beta, which allows for the regulation of cell proliferation, apoptosis, and
differentiation. Low fluid shear stress activates SMAD2, leading to inward remodeling in
atherosclerotic vessels [62]. ZFYVE9 (zinc finger FYVE-type containing 9) participates in the
transforming growth factor beta signaling pathway. ZFYVE9 recruits the aforementioned
master regulator SMAD2 to the transforming growth factor beta receptor complex by
controlling its subcellular localization [63]. P2RY1 (purinergic receptor P2Y1) functions
as a receptor for extracellular ATP and ADP. The expression of the P2Y1 in vascular ECs
has also been shown [64]. It has previously been demonstrated that P2Y1 mediates ADP
stimulation of MAPK pathways and ECs migration [65].

RELA, ESR1, and TFAP2A have been revealed as the key transcription factors predicted
to potentially regulate genes near differentially methylated sites in our experiment with
FBs exposed to culture media from pretreated SMCs. RELA (RELA proto-oncogene, NF-kB
subunit) is a member of the NF-kB family [66]. The NF-kB pathway can be activated by
different stimuli, including cytokines, oncogenes, oxidative stress, and DNA damage [67,68].
RELA inhibition led to the inactivation of proinflammatory molecules [69]. ESR1 (estrogen
receptor 1) gene expression in the VVs of women around menopause noticeably increases.
ESR1 is present in the endothelium, SMCs, and some adventitial cells in the femoral
veins [70]. TFAP2A (transcription factor AP-2 alpha) is expressed in the neural tube, neural
crest, facial prominences, and limb bud mesenchyme throughout embryogenesis [71]. In
ECs, TFAP2A plays a role in cell proliferation [72].

For FBs, the most obvious master regulators of the TF identified were WWOX, F8,
IGF2R, NFKB1, RELA, SOCS1, and FXN. WWOX (WW domain containing oxidoreduc-
tase) is involved in cell proliferation, differentiation, and metabolism [73]. Mutations in
the WWOX gene cause neurodevelopmental and brain degenerative disorders [74]. F8
(coagulation factor VIII) participates in the intrinsic pathway of blood coagulation. Defects
in this gene result in hemophilia A, a common recessive X-linked coagulation disorder [75].
Activation of cardiac IGF2R (insulin like growth factor 2 receptor) results in cardiomyocyte
hypertrophy, cardiomyocyte proliferation, binucleation, or apoptosis [76]. NFKB1 (nuclear
factor kappa B subunit 1) gene mutants affect the expression of mitochondrial morphology-
related proteins, leading to excessive mitochondrial fission [77]. SOCS1 (suppressor of
cytokine signaling 1) is a member of the STAT-induced STAT inhibitor. A decrease in SOCS1
promotes immune activation of SMCs [78]. FXN (frataxin) is a mitochondrial protein [79]
expressed mainly in tissues with high metabolic rates (e.g., heart and brown fat) [80].

After three tables showing the most promising master regulators for each cell type
(Tables S16–S18, where all master molecules were converted into genes) were intersected, it
was revealed that ECs and SMCs share such potential master regulators as HGS, SMAD2,
SMAD3, and ZFYVE9, and SMCs and FBs share a potential master regulator—ZNRF1. It
is known that rs17684886 in ZNRF1 is associated with diabetic retinopathy [81], and its
expression is induced in peripheral nerves after injury [82], so its overexpression causes
neurite-like elongation. It has been found that expression of the SMAD2 protein is progres-
sively increased in reactive lesions and oral submucous fibrosis (OSMF) [83], and SMAD3
contributes to ascending aortic dilatation independently of transforming growth factor-beta
in bicuspid and unicuspid aortic valve disease [84], which is consistent with our data.

A meta-analysis of epigenome-wide association studies in trauma-exposed cohorts
revealed the association of the HGS differential methylation in whole blood-derived DNA
with post-traumatic stress disorder [85]. Recently, a novel physiological role of endogenous
HGS—a key component of the endosomal sorting complex required for transport (ESCRT)—
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has been explored in the vascular system. It was discovered that in mice, knockout of this
gene in brain ECs led to impaired endothelial apicobasal polarity and brain vessel collapse;
thus, the product of this gene was essential for vascular endothelial (VE)-cadherin recycling
to the plasma membrane, pointing to a crucial function of HGS in the maintenance of
endothelial cell polarity and cerebrovascular stability [40]. All of these studies appear to be
supportive of the data analyzed in this study.

4. Materials and Methods
4.1. Sample Preparation and Cell Culture Experiments

Non-varicose great saphenous vein segments (adjacent to varicose vein segments) left
after surgeries on 3 patients with VVs (C2-C3 CEAP [86] clinical classes) were immediately
placed in cell culture media and transported to the laboratory for the subsequent production
of primary cell cultures. Mechanically crushed fragments of the vein segments were treated
with a solution of type II collagenase. A growth medium was added to the obtained
suspensions of pieces and cells and centrifuged for 5 min at 300× g; then, the supernatant
was taken and the sediment was resuspended in the medium for endothelial growth before
being seeded on adhesive plates coated with type IV collagen. Pieces with cells (in the
medium, but not covered with it, to prevent floating) were cultured under conditions of 5%
CO2, 37 ◦C. When there was a sufficient density of cells that had grown from the pieces (in
reality, this was a mixture of endothelial cells, smooth muscle cells, and fibroblasts), they
were removed from the plastic with a TrypLE Express solution (Life Technologies, Carlsbad,
CA, USA) and sorted by magnetic immunosorting using a CD31 MicroBead Kit (Miltenyi
Biotec) according to the manufacturer’s instructions. CD31+ endothelial cells were seeded
in endothelial growth medium (EGM-2 Endothelial Medium, Lonza, Basel, Switzerland),
CD31− cells were seeded in the growth media for SMCs and FBs (SmGM-2 Smooth
Muscle/FGM-2 Fibroblast BulletKits, Lonza), respectively, on adhesive plates coated with
type IV collagen (primary cell cultures are illustrated in Supplementary Figure S5). The
endothelial cells grew much more slowly compared to SMCs and FBs.

ECs were either exposed to oscillatory shear stress for 1 day (using a Multitron Cell
shaker-incubator (INFORS HT) at 37 ◦C and 5% CO2, with platform oscillation only in
the plane along the XY axis) or left in static conditions (37 ◦C and 5% CO2). Then, SMCs
were treated for 1 day with preconditioned media from ECs, and FBs were subsequently
treated for 1 day with preconditioned media from SMCs. Each experimental condition
was performed in triplicate. After every exposure, the cells were harvested and subjected
to DNA isolation using TRIzol Reagent (Life Technologies, Carlsbad, CA, USA). The
experiment design is schematically shown in Supplementary Figure S6. DNA from all
samples was further processed according to the manufacturer’s instructions (Illumina, Inc.,
San Diego, CA, USA), and then taken for methylation microarray analysis.

4.2. Epigenome-Wide DNA Methylation Analysis

DNA methylation microarray analysis was carried out according to the standard
Illumina protocol. A total of 1 µg of gDNA was bisulfite converted using a EZ DNA Methy-
lation™ Kit (Zymo Research, Irvine, CA, USA) according to the manufacturer’s protocol.
After that, for genome-wide screening of methylation events, we used Infinium Human-
Methylation27 BeadChips (Illumina), which cover 27,578 CpG sites spanning 14,495 genes
per sample. Arrays were scanned on the Illumina iScan. Overall chip performance and the
quality of the raw data were checked using Illumina GenomeStudio (methylation module)
software in accordance with the manufacturer’s instructions (GenomeStudio Methylation
Module v1.8 User Guide [87]). The raw intensity data were quantile-normalized. The
methylation level of each CpG locus was calculated as methylation beta-value (β = inten-
sity of the methylated allele (M)/(intensity of the unmethylated allele (U) + intensity of
the methylated allele (M) + 100). Differential methylation (hypo- or hypermethylation)
of the CpG sites was determined based on a DiffScore cut-off of ±13. DiffScore is the
measure of the likelihood of variability between the compared groups. It is directly de-
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rived from the p-value, for which it provides methylation change directionality. It is a
log10 transformation of the p-value and provides the p-value with scale and direction:
p-value = [10ˆ(DiffScore/10)] for hypomethylated genes, and [10ˆ(−DiffScore/10)] for hy-
permethylated genes. The higher (or lower) the DiffScore is, the more likely it is that a
change in methylation has taken place. Statistically significant values were determined
(p-value < 0.05 that corresponds to |DiffScore| > 13): DiffScore < 0 corresponds to hy-
pomethylated genes; DiffScore > 0 corresponds to hypermethylated genes. Differentially
methylated (DM) sites were associated with genes using the Custom Model of the Illumina
GenomeStudio. Then, the software package “Genome Enhancer” from the geneXplain
platform was applied to a data set analyzed with GenomeStudio and Microsoft Excel. A
cluster heatmap analysis was performed within the geneXplain platform.

4.3. Advanced Bioinformatics Analyses

Transcription factor binding sites (TFBS) in promoters and enhancers of genes near
differentially methylated sites were analyzed using known DNA-binding motifs described
in the TRANSFAC® library, release 2022.2 (geneXplain GmbH, Wolfenbüttel, Germany)
(https://genexplain.com/transfac (accessed on 22 December 2022)). The motifs were
specified using position weight matrices (PWMs), which gave weights to each nucleotide
in each position of the DNA-binding motif for a TF or a group of them.

We searched for TFBS that were enriched in the promoters and enhancers under study
as compared to a background sequence set, such as promoters of genes that were not
differentially regulated under the conditions of the experiment. We denoted study and
background sets briefly as Yes and No sets. In the current work, we used a workflow
considering promoter sequences of a standard length of 1100 bp (−1000 to +100). The
error rate in this section of the pipeline was controlled by estimating the adjusted p-value
(using the Benjamini–Hochberg procedure) in comparison to the TFBS frequency found in
randomly selected regions of the human genome (adjusted p-value < 0.01).

We applied the CMA (Composite Module Analyst) algorithm for the purpose of
searching for composite modules [28] in the promoters and enhancers of the Yes and No
sets. We searched for a composite module consisting of a cluster of 10 TFs in a sliding
window of 200–300 bp that statistically significantly separated sequences in the Yes and No
sets (minimizing the Wilcoxon p-value).

Then, we searched for master regulator molecules in signal transduction pathways
upstream of the identified TFs. The master regulator search used the TRANSPATH®

database (BIOBASE), release 2022.2 (geneXplain GmbH, Wolfenbüttel, Germany) (https:
//genexplain.com/transpath (accessed on December 2022)). A comprehensive signal trans-
duction network of human cells was built by the software on the basis of reactions annotated
in TRANSPATH®. All signal transduction reactions from TRANSPATH® (including ligand
binding reactions, phosphorylation and dephosphorylation reactions, complex formation
reactions, ubiquitination, and other reactions known from the scientific literature) were
considered as a weighted and directed graph. The main algorithm of the master regulator
search has been described in earlier works [13,14]. The goal of the algorithm was to find
nodes in the global signal transduction network that may potentially regulate the activity
of a set of TFs found at the previous step of the analysis. Such nodes are considered as most
promising drug targets, since any influence on such a node may switch the transcriptional
programs of hundreds of genes that are regulated by their respective TFs. In our analysis,
we ran the algorithm with a maximum radius of 12 steps upstream of each TF in the input
set. The error rate of this algorithm is controlled by applying it 10,000 times to randomly
generated sets of input transcription factors of the same set size. Then Z-score and FDR
(false discovery rate) value of ranks were calculated for each potential master regulator
node on the basis of such random runs (see detailed description in [22]). The error rate was
controlled by an FDR threshold of 0.05.

https://genexplain.com/transfac
https://genexplain.com/transpath
https://genexplain.com/transpath
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5. Conclusions

The present in vitro study on methylation profiling identified epigenome-wide changes
in the cells that represent the corresponding layers of the vein wall in response to oscillatory
shear stress towards the endothelium. These epigenomic changes may be implicated
in creating altered phenotypes of those cells, which reflects the morphological changes
observed in incompetent veins (VVs). The master regulators that control the activity of
key TFs regulating the genes near the differentially methylated sites were revealed for ECs,
SMCs, and FBs. Due to the discovery of novel therapeutic targets, the future development
of treatment strategies may eventually improve the quality of life of patients suffering from
vascular diseases.
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