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Abstract: The dynamic regulation of histone methylation and demethylation plays an important role
in the regulation of gene expression. Aberrant expression of histone lysine demethylases has been
implicated in various diseases including intractable cancers, and thus lysine demethylases serve as
promising therapeutic targets. Recent studies in epigenomics and chemical biology have led to the
development of a series of small-molecule demethylase inhibitors that are potent, specific, and have
in vivo efficacy. In this review, we highlight emerging small-molecule inhibitors targeting the histone
lysine demethylases and their progress toward drug discovery.
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1. Introduction

Genes are expressed when genetic information from DNA is transcribed into RNA
under the control of proteins that bind to specific DNA sequences. In both prokaryotes and
eukaryotes, part of the mechanism that maintains the specificity of the gene expression
is likely to be the positive feedback of the DNA-binding transcription factors [1,2], but in
eukaryotes, there is an additional specific regulatory mechanism for gene expression; that
is, the formation of chromatin structures with nucleosomes as the compaction unit [3,4].
The condensed state of chromatin is regulated by post-translational modifications (PTMs)
of the core histone proteins, the major components of the nucleosome [5].

Core histones consist of four types, H2A, H2B, H3, and H4, and specific residues in
the N-terminal tail of each are the major targets of PTMs including methylation, acetylation,
phosphorylation, and ubiquitination [5–9]. These PTMs ultimately control the accessibility
of the transcription machinery to DNA, thereby qualitatively and quantitatively regulating
gene expression in the eukaryotic genome [5,10]. Of these modifications, the methylation
of many lysine residues in the N-terminal tail of histone H3 (K4, K9, K27, K36) and H4K20
as well as some of the lysine residues in the core region such as H3K56 and H3K79, is
a major regulator of gene expression [11]. The methylation of lysine residues has three
different states: monomethyl (me1), dimethyl (me2), and trimethyl (me3), and these minute
differences in methylation often have different regulatory significance. The methylation
state of histones leads to chromatin opening or condensation and the subsequent acti-
vation or repression of transcription in various ways, depending on the residue that is
methylated [12]. In addition, genome-wide studies suggest that the degree of methylation
events and their position within the genome have important roles and could have specific
consequences on chromatin states. For example, 11 different gene promoter states can be
defined in human cells by different patterns of H3K4me1/H3K4me2/H3K4me3 or H3K79
methylation, and H4K20me1 or promoter acetylation [13,14].

Histone lysine methylation is reversibly modulated by histone lysine (K) methyltrans-
ferases (KMTs or HMTs) and lysine demethylases (KDMs). Lysine methylation is usually
considered as a stable mark, and earlier, it was believed that histone lysine methylation is ir-
reversible and can only be erased upon histone exchange or during DNA replication [11,15].
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Following the discovery of lysine-specific demethylase 1 (LSD1/KDM1A), which catalyzes
the demethylation of H3K4me1 and H3K4me2 [16], other lysine demethylases have been
identified, and based on their catalytic functions, are classified into two major subgroups.
The first family of lysine demethylases is composed of two members: KDM1A (also known
as LSD1 [16]) and KDM1B (also known as LSD2 [17]), which can demethylate mono- and
di-methyl-lysine residues. The second lysine demethylase family contains the Jumonji C
(JmjC) domain, which can demethylate all three methyl-marks [18].

Aberrations in KMTs or KDMs are involved in the regulation of various diseases
through the control of chromatin-related processes such as gene transcription and genome
stability. Mutations or changes in gene expression involving the KMTs are often associated
with diseases [19]. Dysregulation of several KDMs has also been implicated in diseases
including cancer and inflammation [15,20]. The histone methylation states (e.g., Kme0
to Kme3) can be linked to unique biological activities [21] and the potential signaling
mechanisms and biological pathways involved in diseases for each KMT family member
have been summarized in recent reviews [20,22,23]. Therefore, this review focused on the
lysine demethylase family.

Important feature of epigenomic drug discovery is that proteins acting on the epigenome
often have either enzyme active centers that catalyze modification and de-modification or
intramolecular concavities that selectively recognize specific modifications. Therefore, in
many cases, their structure and function can be controlled by small molecular compounds,
and chemical inhibitors of lysine demethylases have garnered interest as potential thera-
peutic agents against cancer and other diseases. In this review, we introduce the functions
of each member of the lysine demethylase families and list the small molecular inhibitors
of these families that have therapeutic potential in diseases.

2. Inhibitors of FAD–Containing Lysine Demethylases

In humans, the flavin adenine dinucleotide (FAD)–containing lysine demethylases
include KDM1A and KDM1B, which demethylate monomethyl and dimethyl methylated
lysines (Kme1, Kme2) [24]. The KDM1 family enzymes are characterized by an amine
oxidase-like domain that is responsible for the catalytic activity of demethylation [25].
Demethylation proceeds with the oxidation of the substrate methylated lysine by cofac-
tor FAD, followed by an imine formation, and hydrolysis to demethylated lysine and
formaldehyde (Figure 1A). Because a lone pair of electrons on the Nζ is necessary for the
reaction, trimethylated lysine is not demethylated by this enzyme [26]. KDM1A demethy-
lates monomethyl or dimethyl of histone H3K4 or H3K9 depending on the binding factor
and isoform. Methylation of H3K4 and H3K9 generally acts to activate or repress gene
transcription, respectively. Therefore, the regulatory mechanism of transcriptional activity
by KDM1A is complex, and the genes subject to its regulation may vary from cell to cell.

Known KDM1A inhibitors include those that covalently inactivate FAD (e.g., ORY-
1001 [27]) and those that non-covalently bind inside the enzyme active center (e.g., CC-
90011 [28]) or peripheral to the binding pocket [24,29,30]. Clinical trials are underway for
some of these inhibitors for the treatment of cancers including acute myeloid leukemia
(AML) and small cell lung cancer (SCLC), solid tumors, myelofibrosis, non-Hodgkin’s lym-
phomas, and Alzheimer’s disease [31,32]. Chemical inhibition experiments have shown
that KDM1A is not only involved in the control of cancer, but also in the modulation of
metabolic properties by regulating the expression of genes involved in cellular energy
expenditure and oxidative metabolism [33–35]. In an obese mouse model, systemic ad-
ministration of a KDM1A inhibitor results in reduced food intake and body weight, and
improves nonalcoholic fatty liver disease [36]. Representative KDM1A inhibitors include
the examples described below and are shown in Figure 1B and Table 1.

ORY-1001 inhibits KDM1A enzymatic activities with an IC50 of 18 nM and induces
AML differentiation [27]. Currently, it is in clinical trials for AML (NCT05546580) and
SCLC (NCT05420636). ORY-1001 is a tranylcypromine-based inhibitor that inhibits KDM1A
by forming a covalent bond with FAD, thereby arresting the demethylation reaction. The
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substituted amine group is dissociated during the reaction, as confirmed by mass spectrom-
etry [27]. The structure of the resultant complex or adduct with FAD is expected to be the
same as that of trans-(1R,2S)-2-phenylcyclopropylamine (PDB ID: 2XAJ; [37]; Figure 1C).

Recently, a dual KDM1 inhibitor S1024, which inhibits KDM1A and KDM1B at 0.094
and 8.4 µM, respectively, was developed [38] (Figure 1B). S1024 markedly increased the
level of intracellular histone H3K4me2 more than the selective inhibitors against KDM1A,
which should lead to further studies on the effects of a full blockade of FAD–containing
KDMs on normal and diseased cells.
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Figure 1. Inhibitors of the FAD–containing lysine demethylases. (A) Mechanism of the demethylation
by KDM1A using FAD as a cofactor. (B) Representative inhibitors. (C) Structure of trans-(1R,2S)-2-
phenylcyclopropylamine (PDB ID: 2XAJ) bound to KDM1A [37]. The adduct structure formed by this
compound and FAD was assumed to be the same as the one formed by ORY-1001. The inhibitor–FAD
adduct and KDM1A are colored in cyan and blue, respectively. The residues close to the adduct are
drawn in sticks. (D) Structure of CC-90011 bound to KDM1A (PDB ID: 6W4K) [28]. The inhibitor and
KDM1A are colored orange and blue, respectively, and FAD is colored cyan. The residues close to the
adduct are drawn in sticks. Hydrogen bonds are shown by black dashed lines.

IMG-7289 is another irreversible tranylcypromine-based inhibitor for KDM1A (Figure 1B).
In mouse models of myeloproliferative neoplasms, it normalizes blood cell counts, reduces
spleen volumes, restores normal splenic architecture, and reduces bone marrow fibrosis.
Importantly, it lowers the Jak2V617F mutant allele burden and improves survival [39]. Phase
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II clinical trials are underway for the treatment of myeloid-related diseases [40]. Addition-
ally, a Phase IIb clinical trial is ongoing where IMG-7289 has shown promising results in
reducing platelets and improving symptoms in essential thrombocythemia patients who
are resistant or intolerant to at least one standard treatment (NCT04254978), leading to
plans for a Phase III study [41].

ORY-2001 is a brain-penetrant inhibitor of KDM1A and monoamine oxidase B (MAO-
B). It is a tranylcypromine-based covalent inhibitor, having IC50 values of 101 nM for
KDM1A and 73 nM for MAO-B. It improves memory deficit and behavior alterations in
the senescence accelerated mouse model, and social avoidance in the rat rearing isolation
model [42]. It has been tested in a Phase IIa clinical trial for mild to moderate Alzheimer’s
disease (NCT03867253) [31].

CC-90011 was developed as a non-covalent-type KDM1A inhibitor. CC-90011 inhibits
KDM1A with an IC50 of 0.3 nM and induces cellular differentiation in the AML and SCLC
cell lines. The crystal structure of the KDM1A/CC-90011 complex (PDB ID: 6W4K) shows
that the molecule binds to the catalytic pocket with the aminopiperidine moiety interacting
with D555 and the benzonitrile in a hydrophobic pocket, with the nitrile forming a hydrogen
bond with K661, a key residue in the demethylation reaction. The 2-F-anisole ring is also in a
hydrophobic pocket (Figure 1D) [28]. A Phase I clinical trial is underway for the treatment of
patients with advanced or unresectable solid tumors including neuroendocrine neoplasms
and relapsed/refractory non-Hodgkin lymphoma (NCT02875223) [43].

In addition to the demethylase activity, KDM1A interacts with transcription factors
that contain an N-terminal Snail/growth factor independent 1 (GFI1) (SNAG) domain such
as GFI1, GFI1B, or insulinoma-associated protein 1 (INSM1), which has a homologous
amino acid sequence with that of histone H3 [44–48]. In AML, GFI1B interaction with
KDM1A recruits KDM1A and corepressor complexes to their cognate genome-binding
sites such as GFI1B target enhancers, thus repressing their activity. The drug-mediated
disruption of a KDM1A–GFI1B complex induces the activation of GFI1B-target genes and is
sufficient to block AML proliferation [48]. Similarly, in SCLC cells, KDM1A interacts with
INSM1 and GFI1B to facilitate neuroendocrine-mediated transcription and cell prolifera-
tion [47]. Therefore, the critical role of the tranylcypromine-based KDM1A inhibitors in the
treatment of AML [45,48] and SCLC [47] are presumably not only due to the inhibition of
demethylation activity, but rather to the disruption of protein–protein interactions between
KDM1A and interacted transcription factors.

Because tranylcypromine is an MAO inhibitor, tranylcypromine-based KDM1A in-
hibitors may react with FAD in MAO or other flavoenzymes. Therefore, the specificity of
inhibition to KDM1A by the compound is important to avoid undesired off-target effects.
In addition, disruption of the KDM1A–GFI1B complex by KDM1A inhibitors causes hema-
tological toxicity such as thrombocytopenia. TAK-418, another tranylcypromine-based
KDM1A inhibitor, avoids the disruption of KDM1A–GFI1B by forming a compact adduct
with FAD through the degradation of an intermediate adduct form [49].

Table 1. Representative chemical inhibitors targeting the FAD–containing lysine demethylases.

Inhibitor Target Substrate Potency Application/Feature Reference

ORY-1001 KDM1A H3K4me2 0.0086 µM 1,2 Clinical trials for the treatment of AML
(Phase Ib) and SCLC (Phase IIa) [27]

S1024 KDM1A/1B H3K4me2 0.094 µM 1
Chemical probe as a dual inhibitor of
KDM1A and KDM1B for the study of
H4K4me2 demethylation inhibition

[38]

IMG-7289 KDM1A H3K4me2 0.25 µM 1,2
Clinical trials for the treatment of

myeloid-related diseases (Phase II) and
essential thrombocythemia (Phase IIb)

[39–41]



Epigenomes 2023, 7, 7 5 of 17

Table 1. Cont.

Inhibitor Target Substrate Potency Application/Feature Reference

ORY-2001 KDM1A H3K4me2 0.10 µM 1 Clinical trial (Phase IIa) for mild to
moderate Alzheimer’s disease [31,42]

CC-90011 KDM1A H3K4me2 0.017 µM 1,2

Clinical trial (Phase I) for the treatment of
neuroendocrine neoplasms and

relapsed/refractory non-Hodgkin
lymphoma

[28,43]

1 Half-maximal inhibition concentration (IC50) using horseradish peroxidase–coupled assay. 2 Assayed under the
same experimental conditions [50].

3. Inhibitors of JmjC Domain–Containing Lysine Demethylases

A family of histone lysine demethylases distinct from the FAD–containing enzyme
family is the enzyme family containing a catalytic JmjC domain, which demethylates
monomethyl, dimethyl, and trimethyl methylated lysines (Kme1, Kme2, and Kme3) [51,52].
The enzymatic mechanism involves the oxidation of a methyl group using two co-factors,
Fe(II) and 2-oxoglutarate (2-OG), which react with dioxygen to form a highly active oxo-
ferryl (Fe(IV)=O) intermediate, and ultimately releases the methyl group from nitrogen
in the form of formaldehyde [53] (Figure 2A). The JmjC domain–containing enzymes can
be divided into seven subfamilies (i.e., KDM2 to KDM8). This family is known to include
33 proteins in humans, of which 18 are reported to function as histone demethylases [54,55].
Target residues for the demethylation of histone include H3K4 (KDM5 family), H3K9
(KDM3 family), H3K27 (KDM6 family), H3K36 (KDM2 and KDM4 families), and H4K20
(KDM7 family).

Due to the widespread upregulation across cancers and other diseases, the JmjC
domain–containing family demethylases represent potentially good targets as epigenetic
drugs for therapeutic purposes. Although many inhibitors of this family of demethylases
are reported, the majority of them are 2-OG competitors that coordinate with Fe2+ ions
in the catalytic center and sometimes compete with the histone substrate(s). However,
most of these inhibitors are not specific only to the JmjC domain–containing demethylase,
and the mechanisms of actions in cellular studies are poorly defined [56,57]. Moreover,
the genome-wide effects of most of the inhibitors on methylated histones and in vivo
specificities remain largely unclarified. In this section, we mainly focus on more potent
inhibitors that have therapeutic potential (Figure 2B and Table 2).

3.1. Inhibitors of KDM2

KDM2 is the first JmjC domain–containing histone demethylase including two proteins
(KDM2A and KDM2B), which demethylate H3K36me1/me2 [52]. Additionally, mammalian
KDM2B can demethylate H3K4me3 [58]. In some cancers such as adenocarcinoma and
lymphoma, KDM2B is highly expressed and acts as a putative proto-oncogene [59]. Many
studies indicate that KDM2B has dual effects in cancer development. On the positive side,
it stimulates the p15Ink4b pathway [60], raises oxidative phosphorylation, and elevates
KDM5A/MYC protein expression [61], resulting in increased cancer cell proliferation [62].
Alternatively, KDM2B hinders ribosomal RNA genes, MYC protein, and induces c-Fos
ubiquitylation, leading to reduced cancer cell proliferation [62]. Due to the similarity in the
catalytic domain of the KDM2 and KDM7 subfamilies, a potent and selective first-in-class in-
hibitor of KDM2A/7A, compound (S,S)-6, has been developed. Compound (S,S)-6 displays
more than 75-fold selectivity toward KDM2A/7A versus other JmjC domain–containing ly-
sine demethylases and has been demonstrated to reduce H3K36me2 demethylation within
the cells [63].
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Figure 2. Inhibitors of the JmjC domain–containing lysine demethylases. (A) Mechanism of demethy-
lation using 2-OG and Fe(II) as cofactors. (B) Representative inhibitors. (C) Structure of CPI-455
bound to KDM5A (PDB ID: 5CEH) [64]. The inhibitor and protein are colored orange and blue,
respectively. The metal ion (Ni2+) and a coordinating water molecule are drawn in spheres, colored
purple and red, respectively. Hydrogen bonds and metal coordination are shown by black dashed
lines. (D) Structure of GSK-J1 bound to KDM6B (PDB ID: 4ASK) [65]. The inhibitor and protein
are colored as in (C). The metal ion (Co2+) and coordinating water molecules are drawn in spheres,
colored purple and red, respectively. Hydrogen bonds and metal coordination are shown as in (C).
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3.2. Inhibitors of KDM3

This group of mammalian demethylases includes KDM3A (also known as JMJD1A)
and two homologues of KDM3A: KDM3B (also known as JMJD1B) and KDM3C (also
known JMJD1C). KDM3A is specific for the demethylation of H3K9me1/me2 [66] and has
been shown to be important for spermatogenesis in mice [67,68]. It facilitates hypoxic gene
expression, which enhances tumor growth in human renal and colon carcinoma cells [69]
and multiple myeloma [70].

Two members of the KDM3 group, KDM3A and KDM3C, represent the most promising
therapeutic targets for colorectal cancers (CRC) [71,72] and a subtype of acute leukemia,
respectively [73]. KDM3A has been implicated in CRC progression via Wnt signaling where
KDM3A coactivates downstream Wnt target genes including c-Myc and cyclin D1 [71,72].
A carboxamide-substituted benzhydryl amine, CBA-1, has been developed that acts as a
KDM3A/3B inhibitor (mostly inhibiting KDM3A) and selectively induces elevated levels
of H3K9me2, which in turn inhibits the Wnt targets (Auxin2, c-Myc, and Cyclin B1) and
curtails in vitro CRC cell proliferation [72]. After the screening of thousands of compounds,
the JmjC domain inhibitors JDI-4, JDI-12, and JDI-16, which share a common structural
backbone, showed modest affinity with KDM3C and its family homologue KDM3B. In vivo
demethylation assays indicated that compounds JDI-4 and JDI-12 could induce a global
increase of H3K9 methylation. JDI-4 and JDI-12 can inhibit the growth of mixed lineage
leukemia rearranged acute leukemia and other malignant hematopoietic cells, but not
leukemia cells resistant to KDM3C depletion or cord blood cells. Importantly, compound
JDI-16 exhibits a superior growth inhibition of malignant hematopoietic cells compared to
JDI-4 or JDI-12 [73].

3.3. Inhibitors of KDM4

In mammals, there are four KDM4 demethylases that demethylate H3K9me2/me3
and H3K36me2/me3: KDM4A (also known as JMJD2A), KDM4B (also known as JMJD2B),
KDM4C (also known as JMJD2C), and KDM4D (also known as JMJD2D, [51,74–76]. Sev-
eral reports indicate that KDM4 family members are over-expressed in various cancers:
KDM4A, KDM4B, and KDM4C are over-expressed in prostate cancer [74]; amplification
of KDM4B is shown in medulloblastoma [77]; and KDM4C is required for the growth of
breast carcinoma [78] and diffuse large B cell lymphoma [79]. These family members are
involved in diverse biological pathways linked to cancer such as Akt-mTOR signaling
for KDM4A, Wnt signaling for KDM4B, targeting pluripotency factors for KDM4C, and
hypoxia-inducible factor 1 signaling for KDM4D [23]. Although the cellular functions of
KDM4 demethylases are yet to be fully characterized, studies show that the demethylation
of, for example, H3K9me3 at promoter regions, correlates with the activation of associated
genes [80]. Given that these KDM4 demethylases, especially KDM4B and KDM4C, are
involved in an array of cancers, targeting the catalytic activity of these demethylases could
have therapeutic potential.

A recent study highlights the potential KDM4 inhibitors with their functions and
therapeutic applications [81]. For instance, KDM4D-IN-1 is a specific inhibitor of KDM4D
with an IC50 of 0.41 µM and shows anti-proliferative and anti-angiogenic effects on renal cell
carcinoma cells both in vitro and in vivo [82]. IOX1 (also known as 5-c-8HQ, a derivative of
8-hydroxyquinoline) is another broad-spectrum inhibitor of the JmjC domain–containing
demethylases (2-OG-dependent) including KDM3A, KDM4A, KDM4C, KDM4D, and
KDM6B (also known as JMJD3) [83]. Subsequent in vitro and in vivo studies have shown
that IOX1 acts as a potent inhibitor of KDM4D [84–86]. Another inhibitor, JIB-04, appears
to chelate iron in the catalytic site and to disrupt histone substrate binding, thus inhibiting
the demethylation activity of KDM4A, KDM4B, KDM4C, KDM4E, and KDM6B. JIB-04
shows anticancer activity and prolongs the survival of mice bearing orthotopic mammary
tumors [87]. A later study indicated that along with chelating the metal center, JIB-04
disrupts the binding of O2 and histone substrates in the KDM4A active site by interacting
with K241 and Y177 through hydrogen bonding [88]. By structure-based drug design,
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Celgene developed a novel KDM4 inhibitor, QC6352 (IC50 = 35−104 nM, for KDM4A–
D), which potently suppresses the proliferation, sphere formation, and in vivo tumor
growth of breast cancer and also reduces the tumor-initiating cell population in breast
cancer [89]. A pan inhibitor of KDM4, TACH101, exhibits high inhibitory efficacy on all
KDM4 isoforms (A-D) and demonstrates a potential therapy for gastrointestinal cancers.
Currently, TACH101 is in a Phase I clinical trial for the treatment of gastrointestinal and
high microsatellite instability metastatic colorectal cancers (NCT05076552) [90].

Another KDM4C-specific inhibitor, EPZ020809 (Ki = 31 nM), has been established that
binds in a 2-OG-competitive fashion, where the nitrogen of the pyridine and a nitrogen
of the pyrazole ring chelate the metal ion [91]. Regarding the specificity and potency
of the in vivo antitumor activity, SD70, a derivative of 8-hydroxyquinoline, specifically
inhibits KDM4C (IC50 = 30 µM) and reduces the tumor size in a mouse xenograft model
of prostate cancer [92]. A clinical trial is ongoing to investigate the efficacy of caffeic acid
(3,4-dihydroxycinnamic acid) for the treatment of esophageal cancer (NCT03070262) [93].
Caffeic acid was identified as an inhibitor of KDM4C and KDM6A (also known as ubiqui-
tously transcribed X chromosome tetratricopeptide repeat protein, UTX) with IC50 values
of 13.7 µM and 5.5 µM, respectively [94]. Specifically, KDM4C is upregulated in the tumor-
initiating cells isolated from patient samples of esophageal squamous cell carcinoma, and
caffeic acid treatment suppresses the demethylation activity of KDM4C [95]. Additionally,
as a polyphenol, caffeic acid is found in coffee and it has been shown to be non-toxic, even
at high doses of 0.5–1 g of daily consumption [96]. Furthermore, the inhibition of KDM4C
with caffeic acid efficiently suppresses the human glioma xenograft tumors [97].

3.4. Inhibitors of KDM5

This demethylase family consists of KDM5A (also known as JARID1A), KDM5B (also
known as JARID1B), KDM5C (also known as JARID1C), and KDM5D (also known as
JARID1D), which catalyze the demethylation of H3K4me2/me3 [98–100]. Of the fam-
ily members, KDM5B is overexpressed in an array of cancers including prostate [100],
breast [101], and bladder carcinoma [102], and is also expressed in slow-growing cancer
stem cells in melanoma [103]. KDM5C has been implicated in the repression of neu-
ronal genes [104], and KDM5C knockdown in primary rat granule neurons hampers neu-
ronal morphogenesis [99]. These findings suggest that KDM5 family members, especially
KDM5B/5C, have therapeutic potential in cancers and neuronal disorders.

CPI-455 was reported as the first KDM5 inhibitor [64]. The crystal structure of the
KDM5A/CPI-455 complex reveals that the inhibitor occupies the binding site of 2-OG, with
the nitrile group interacting with the active site metal ion, the carbonyl oxygen forming
a hydrogen bond with Nδ of N575, and the central aromatic core forming stacking with
the side chains of Y472 and F480 [64] (Figure 2C). With the inhibition of KDM5B, CPI-455
reduces the stem-like properties of oral squamous cell carcinomas [105]. It also inhibits
KDM5A. KDM5A is highly expressed in drug-resistant cells such as temozolomide (TMZ)-
resistant glioblastoma cells, and CPI-455 is more effective in TMZ-resistant glioblastoma
cells than in TMZ-native cells [106].

Compared with CPI-455, a derivative of cyclopenta[c]chromen named compound
1 exhibits higher potency against KDM5A (23.8 nM) and much higher selectivity for
KDM5A over both KDM4A and other KDM5 family members (KDM5B and KDM5C) [107].
Compound 1 promotes the accumulation of p16 and p27 by inhibiting KDM5A-mediated
H3K4me3 demethylation, leading to cell cycle arrest and the senescence of breast cancer cell
lines [107]. Recently, one pyrazole derivative, compound 27 ab [1-(4-methoxyphenyl)-N-(2-
methyl-2-morpholinopropyl)-3-phenyl-1H-pyrazole-4-carboxamide], has been discovered
as a potent KDM5B inhibitor with an IC50 of 0.0244 µM [108]. A biological study revealed
that compound 27 ab is a potent KDM5B inhibitor that accumulates H3K4me2/3 without
affecting H3K4me1, H3K9me2/3, or H3K27me2 and can inhibit the proliferation and
migration of a gastric cancer cell line [108]. In multiple myeloma, KDM5B acts as an
oncogenic factor. Treatment with another KDM5 inhibitor, KDOAM-25M, in multiple
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myeloma cells inhibits cell proliferation and increases the global H3K4 methylation level
at transcription sites [109]. However, to date, there are no KDM5-specific inhibitors in
clinical trials.

3.5. Inhibitors of KDM6

In mammals, the KDM6 family consists of KDM6A, KDM6B, and UTY, which demethy-
late H3K27me2/me3 [110]. Mutated KDM6A has been implicated in multiple tumor types
including multiple myeloma [111], renal cell carcinoma [111], and chronic myelomonocytic
leukemia [112]. It is also overexpressed in breast cancer [113]. KDM6B is overexpressed
in an array of cancers including lung, liver carcinoma, several hematological malignan-
cies [114,115], and in primary Hodgkin’s lymphoma [116]. KDM6B is also involved in
stress-induced gene transcription and is likely upregulated in activated macrophages [117].

One of the inhibitors developed with the most potential is GSK-J1, which is a spe-
cific inhibitor of KDM6B and KDM6A with an IC50 of 60 nM for KDM6B. GSK-J1 binds
competitively to 2-OG, with its propanoic acid mimicking 2-OG binding and the pyridyl-
pyrimidine biaryl chelating the active site metal [65] (Figure 2D). Such chelation is critical
for the binding of the inhibitor very deep into the catalytic site of the substrate. Later, the
potent cell-permeable analog GSK-J4 (the ethyl ester of GSK-J1) was developed. With the
inhibition of KDM6B, GSK-J4 induces H3K27 methylation and shows potent antitumor
efficacy in several cancers including glioma and leukemia [118,119], where GSK-J4 might
be involved in the downregulation of cyclic-AMP response element–binding protein [120].
GSK-J4 suppresses the KDM6B-mediated proinflammatory response in macrophages [121],
reduces tumor volume in mice xenografts of an ovarian cancer model [122], and reduces
T-ALL xenograft growth in a mouse model [123]. These studies in mice xenograft models
suggest that GSKJ1/4 could have therapeutic potential.

Table 2. Representative chemical inhibitors targeting the JmjC domain–containing lysine demethy-
lases.

Inhibitor Target Substrate Potency Application Reference

Compound
(S,S)-6

KDM2A,
KDM7A H3K36me2 0.16 µM 1 Inhibits KDM2A-catalyzed

demethylation in HeLa cells. [63]

CBA-1 KDM3A/3B H3K9me2 3.9 µM 1

Inhibits KDM3A
overexpression in colon

cancer cells and colon cancer
organoids.

[72]

JDI-16 KDM3C H3K9
methylation 0.82−6.12 µM 1

Represses multiple
KDM3C-dependent

leukemia cell lines and
patient-derived primary

leukemic cells; shows
substantial growth

inhibitory abilities against
multiple

hematopoietic malignant cells.

[73]

KDM4D-IN-1 KDM4D H3K9
methylation 0.41 µM 1

Suppresses proliferation,
induces apoptosis, and

promotes angiogenesis of the
renal cell

carcinoma cells.

[82]
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Table 2. Cont.

Inhibitor Target Substrate Potency Application Reference

JIB-04 KDM4A/4B/4C/4E,
KDM6B H3K9me3 5.0 µM 1

Shows anti-cancer activity
across several tumor types
and in vivo mouse tumor

xenografts;
JIB-04 treatment induces

cancer survival in an
aggressive breast cancer

model.

[87]

QC6352 KDM4A/4B/4C/4D H3K9me3,
H3K36me3

35−104 nM
(KDM4A−4D) 1

Shows efficacy in
patient-derived xenograft
models of breast and colon

cancers.

[89]

EPZ020809 KDM4C H3K9
methylation 31 nM2 No information available.

TACH101 A pan inhibitor
of KDM4

No information
available

0.004−0.072 µM
(in gastric cancer

cell lines) 1,
1–150 nM (in

colorectal cancer
cell lines) 1

A Phase I clinical trial is
ongoing for the

treatment of gastrointestinal
and high

microsatellite instability
metastatic colorectal cancers.

[90]

SD70 KDM4C H3K9me2 30 µM 1

Inhibits the proliferation of
prostate cancer cells and

shows inhibition of tumor
growth in vivo.

[92]

Caffeic acid KDM4C H3K9me2/me3 13.7 µM 1

Effective against esophageal
cancers; a Phase III clinical

trial is ongoing for the
treatment of esophageal

squamous cell cancer; shows
suppression of human glioma

xenograft tumors.

[93–95,97]

CPI-455 KDM5A/5B H3K4me3 10 nM 1

Attenuates the sphere
formation of oral

squamous cell carcinomas;
effective against

glioblastoma cells; effective
against several

KDM5-mediated
drug-tolerant cancer cells such
as HeLa, Colo829, and U2OS.

[64,105,106]

Cyclopenta[c]
chromen

derivative,
compound 1

KDM5A H3K4me3 23.8 nM 1

Shows efficacy against several
KDM5A-

overexpressing breast cancer
cell lines such as

MDA-MB-231, MCF-7, and
MCF-10A.

[107]

Pyrazole
derivative,

compound 27 ab
KDM5B H3K4me2/me3 0.0244 µM 1

Inhibits proliferation and
migration abilities of MKN45,

a gastric cancer cell line
[108]

KDOAM-25 KDM5A/5B/5C/5D H3K4me3

71 nM (KDM5A),
19 nM (KDM5B),
69 nM (KDM5C

and 5D) 1

Impairs proliferation of
multiple myeloma cell.s [109]
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Table 2. Cont.

Inhibitor Target Substrate Potency Application Reference

GSK-J1/J4 KDM6A/6B H3K27me2/me3 60 nM1

Shows antitumor efficacy in
several cancers, such as
glioma and leukemia;

effective to
reduce tumor volume in mice

xenograft
models; suppresses
KDM6B-mediated

proinflammatory responses in
macrophages.

[118–123]

Caffeic acid KDM6A Not studied 5.5 µM 1 No information available. [94]
1 Half-maximal inhibition concentration (IC50). 2 Inhibition constant (Ki).

3.6. Inhibitors of KDM7

The KDM7 family is also known as the PHF (plant homeodomain finger protein)
family and consists of KDM7A (also known as JHDM1D), PHF2 (also known as JHDM1E),
and PHF8 (also known as JHDM1F). KDM7A demethylates both H3K9me1/me2 and
H3K27me1/me2, PHF2 demethylates H3K9me1, and PHF8 catalyzes the demethylation of
H3K9me1/me2 [124–126]. Among the KDM7 demethylases, PHF8 has been involved in
the regulation of X-linked mental retardation genes including KDM5C [127], and KDM7A
has significant roles in the neuronal differentiation of mouse embryonic stem cells [128].
There is no potent and specific inhibitor reported for the KDM7 family of demethylases.

3.7. Inhibitors of KDM8

This family of lysine demethylases includes KDM8 (also known as JMJD5), JMJD6,
NO66, and LOXL2. The substrate-specific catalytic activities of this family have not been
confirmed in cellular studies; however, JMJD6 is reported to be a histone arginine demethy-
lase (H4R3me1/me2 and H3R2me1/me2; [129]). Of the other members, NO66 catalyzes
the demethylation of H3K4me2/me3 and H3K36me2/me3, which is overexpressed in
non-small-cell lung cancer [130]. Although a couple of potent JMJD6 inhibitors such as
SKLB325 [131] and 7p [132] have been discovered, an extended discussion on them was
outside the scope of this review because they demethylate both lysine and arginine.

4. Conclusions

In this review, we introduced representative inhibitors of proteins belonging to the
different categories of lysine demethylases in epigenetic drug discovery. The development
of lysine demethylase inhibitors for therapy is challenging due to concerns about target
selectivity, potential off-target effects, side effects, and toxicity. For instance, the JmjC
domains in isoforms of the KDM4 family are structurally similar and shared molecular
mechanisms make it difficult to design an isoform-specific inhibitor [133]. Moreover,
the development of small-molecule inhibitors for the JmjC domain–containing lysine
demethylases has been hindered by their polar 2-OG binding pocket and the lack of
commercially available inhibitors [23]. Despite advances in understanding the catalytic
domains of histone lysine demethylases, the role of non-catalytic domains is still limited
and needs further study to fully understand the mechanisms controlling their demethylase
activity. Because the lysine demethylase activity can affect transcriptional outputs in
different ways depending on the cell types and target genes, the roles of lysine demethylases
may vary among diseases [20]. The challenge in predicting the transcriptional and cellular
outcomes of demethylase inhibition requires a fine balance to maximize the functional
activities and to minimize the potential side effects. Epigenetic drug discovery often
targets intractable diseases such as cancer, and to date, examples of practical applications of
inhibitors of histone methyltransferases, histone deacetylases, and DNA methyltransferases
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are those for intractable cancer. Regarding lysine demethylases, inhibitors of KDM1A are
in clinical trials for refractory cancers and Alzheimer’s disease, while inhibitors of KDM4
and KDM4C are only being studied for refractory cancers, and drug discovery in this field
may be realized in the near future. Furthermore, an increasing number of clinical trials for
epigenetic drug discovery have also been conducted for diseases other than cancer such
as cardiovascular disease, diabetic kidney disease, and atherosclerosis [134–136]. Future
epigenetic drug discovery is expected to develop therapeutics for an even wider range of
diseases than is currently the case.
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