

Article Supplementary Materials: PRC1 Prevents Replication Stress during Chondrogenic Transit Amplification

Rybp (RING1 and YY1 binding protein), *Cbx* (chromobox homologs 4 and 6) and of PRC2 genes *Ezh2*, *Eed* and *Suz12*; values in all panels represent mean of triplicates ± s.d. (**B**) Expression analysis of *Sox9* and *Runx2* mRNA in *shcon* and *shBmi1* cells (qRT-PCR; triplicates). (**C**) Confirmation of murine BMI1 mRNA (*mBmi1*) overexpression in ATDC5 cells; empty vector was used as control (*con*; qRT-PCR; triplicates). (**D**) Proliferation curves of ATDC5 cells overexpressing murine BMI1 (*mBmi1*) vs control cells (*con*). (**E**) *Acan* and *Col10A1* expression during differentiation in ATDC5 cells overexpressing murine BMI1 (*mBmi1*) cDNA *versus* control (*con*) cells (qRT-PCR; triplicates); asterisks (*; C-E): p<0.05.

Figure S2. IntraS-phase accumulation during TA in the absence of PRC1. (**A**) Representative IF images showing co-staining for BdrU-incorporation and H3S10 phosphorylation (H3S10ph) in *shcon* and

shBmi1 ATDC5 cells at t=3 days pid; 19 of 100 shcon cells were positive for H3S10ph, of which 7 were brightly stained (G2/M); less than 3% of *shBmi1* cells was weakly positive (late S/G2). BrdU pulse: 45 min. (B) Cell cycle distribution of shcon and shBmi1 ATDC5 cells throughout differentiation (left panel). SubG1 fractions (t=6 days pid) shcon: 0.47% ±0.035, shBmi1: 0.43% ±0.041; asterisks (*): p<0.05; representative cell cycle profiles (of triplicates) of ATDC5 shcon and shBmi1 at 6 days pid (right panels); DNA content was measured by propidium-iodide (PI) staining; values represent percentages S-phase cells of total cells analysed. (C) Representative IF images showing co-staining for PCNA-/chromatin association (green) and BrdU-incorporation (red). Note: methanol-fixation (throughout) ensures detection of only chromatin-associated proteins. The most PCNA-dim nuclei (shcon) represent G1/early S or G2-phase cells; S-phase cells gain PCNA-brightness as they progress through S-phase; in mid-/late S-phase the appearance of conspicuously bright foci signals late nucleolar DNA replication (asterisks; shcon). Of PCNA-positive nuclei (64% and 68%, shcon and shBmi1, respectively) 81% and 43% was also positive for BrdU in shcon and shBmi1 cells, respectively. Arrowheads mark examples of low BrdU-incorporation (green) in PCNA-bright shBmi1 cells, indicative of intraS-phase arrest. (D) Analysis of proliferation rate (Crystal-violet extraction) and (E) cell numbers in S-phase (DNA-profiling; right) of ATDC5 cells expressing shBmi1 and shPhc2 at indicated time-points during differentiation (in days pid). Asterisks (*; D, E): p<0.05.

Figure S3. Increased DDR during TA in the absence of PRC1. (**A**) Representative IF images showing basal, low levels of replication-associated DNA damage in non-differentiating *shcon* and *shBmi1* ATDC5 cells; insets are overexposed to visualize yH2A.X foci. (**B**) Representative IF images showing co-staining active DNA synthesis (BrdU) and enhanced DDR (yH2A.X) in ATDC5 *shcon* and *shBmi1* cells at t=1 day *pid*. (**C**) IF analysis of yH2A.X and H3S10ph; arrowheads indicate examples of large, yH2A.X-bright/H3S10ph-dim nuclei in representative image. Of note: approximately 50% of shBmi1 cells were yH2A.X-positive; 4% of *shBMi1* cells were double bright, late S/G2-phase cells; all double bright *shcon* cells (7% of total cells) were late G2/M-phase cells, during which H2A.X is also phosphorylated. Representative co-staining images for (**D**) yH2A.X and phospho-KAP1, (**E**) yH2A.X and RAD51, and (**F**) yH2A.X and RPA70 in *shBmi1* (*vs shcon*) cultures at t=3 days *pid*. Less than 2% of *shcon* cells (*cf*. Figure 3D).

τ	n	1.1	1.2	1.5	2.0	4.0	
0h	6000	762	380	71	19	0	
2h	5991	679	386	83	11	0	
4h	5931	758	418	91	21	0	
8h	5986	707	375	71	19	0	
1d	6044	2623	2027	660	173	31	
6d	6194	2680	2174	979	413	104	
10d	5985	826	662	248	83	12	
15d	6027	903	623	167	40	5	

Figure S4. Abnormal transcriptional responses in PRC1-deficient cells. (**A**) Fold change (FC) increases during the differentiation-associated proliferative amplification. Table (right panel) indicates for each time point *t* (hours (h) or days (d) *pid*) the number *n* of reporters reaching the expression limit of ²log(100) in either group (*shcon* or *shBmi1*); additional columns: the number fulfilling significance (p<0.05), fold change (FC) \geq 1.1, 1.2, 1.5, 2.0 and \geq 4.0x (up or down) and expression above limit; bars (left) represent the relative values in columns. (**B**) Distribution of fold change (FC): pie charts of all reporters fulfilling \geq 1.1 FC (up (red) or down (blue); expression \geq 2log(100), p<0.05) in *shcon vs. shBmi1* cultures for all time-points *pid*; numbers in pie sections correspond to gene numbers; %[%]: percentage of reporters fulfilling all criteria relative to the total number of reporters]. (**C**) Profile clustering

analysis of the most prominently de-regulated genes identified 4 distinct clusters: a) overall higher (*up in KD*) or, b) lower (*down in KD*) in BMI1-KD cells, c) not regulated during chondrogenesis in control cells, but dramatically deregulated in BMI1-KD cultures (*induced in KD*) during differentiation-associated proliferation, and d) induced at hyperproliferation in control but not in BMI1-KD cells (*down/not induced in KD*). Representative genes are shown for each cluster; values in all panels: mean of triplicates \pm S.D. (**D**) Heatmap of the log-ratios of all reporters fulfilling p<0.05, FC>2 (left) or FC<0.5 (right), expression >2log(100) in either group, at t=1 or 6 days *pid*. Euclidean distance and complete linkage hierarchical clustering were used to cluster and reorder the reporters.

Figure S5. Gene expression changes independently of altered H3K27me3-occupation. Comparative analysis in representative IF images of nuclear (**A**) H3K27me3, (**B**) H3K9me3 in *shcon* and *shBmi1* ATDC5 cells and of (**C**) H3K9me3 in *shBmi1* HAC cells, at t=3 days *pid*. (**D**) Pre-chondrogenic gene expression status depends solely on H3K27me3-enrichment status, independent of *shcon/shBmi1* status or specific genomic location. Density plots of gene expression of all genes (16261) at t=0, for H3K27me3-enrichment of promoter (-3000/-100 base pairs (bp) relative to the TSS; left panels), TSS (-100/+1000 bp; middle panels) and gene body (+1000 bp to end of last exon; right panels) regions are considered separately. Top graphs: *shcon*, bottom graphs: *shBmi1*. (**E**) Comparison of distribution of H3K27me3-occupation between *shcon* and *shBmi1* cultures at any time-point *pid*, in genic and intergenic regions. Genic regions were divided into three regions (*cf*. D): the promoter, the TSS region and the gene body region. The total enrichment for these regions was summarized for all genes and compared to the total enrichment in non-genic regions; numbers in pie sections correspond to gene numbers displaying region-specific enrichment. (**F**) Gene expression boxplots of H3K27me3-enriched and unmarked genes in *shcon* and *shBmi1* cells, each comparing two time-points: t=0 vs 1 day *pid* (left

panels; [t=0 > t=1 day pid]), and t=0 vs 6 days pid (right panels; [t=0 > t=6 days pid]). H3K27me3marking status was consistently determined between t=0 and 3 days pid ([t=0 > t=3]) per condition (*i.e. shcon, shBmi1*). Definition epigenic categories: unmarked (*none*), stably marked (*stable*) at both t=0 and 3 days pid, or loci that acquired (gain) or lost (loss) H3K27me3-marks (t=0 vs t=3 days pid). (see Methods section for further definition of the marker set H3K27me3). Notches in box-plots indicate confidence intervals (5-95%) of the median; non-overlapping notches are an indication of significant differences (p<0.05). (**G**) Matrix display of scatter-plots of log2 gene expression values at indicated time points between *shcon* and *shBmi1* cells, shows deregulation of transcription between t=0 and 10 days *pid*. Symbols: red crosses represent H3K27me3-decorated loci (H3K27me3; n=1909), black triangles H3K27me3-free loci (*unmarked*; n=14352) at t=0 in *shcon* cultures (t=0/shcon). Analyses was based on reporters with expression >log2(100). (**H**) Heatmap of representative marker expression for '*Cell cycle*' (*cf* Table S4) for *shcon* (left panel) and *shBmi1* (right panel) ATDC5 cells. H3K27me3enrichment status was defined based on ChIP-seq data comparison between t=0 and 3 days *pid* in the *shcon* experiment: unmarked (*none*), stably marked (*stable*) or loci that had acquired (*gain*) or lost (*loss*) H3K27me3-marking (see Methods section for further definition of the marker set H3K27me3).

Figure S6. Deregulated nuclear TOP2A and pPOLR2A in the absence of BMI1. (**A**) Sensitivity proliferation assays showing the sensitivity of gain or loss-of-PRC1 function ATDC5 cells to the TOP2A poison etoposide (ETP): effect of loss (*shBmi1*) or gain (*mBmi1*) of BMI1 (top right panel) and (bottom right panel; left panels no ETP controls) of loss of PHC2 or RNF2 on cell proliferation in the presence of 50 µg/ml ETP. (**B**) Immunoblot (IB) analysis of RNAi-mediated knock-down efficiency for indicated PRC1 proteins (*i.e.* BMI1, PHC2, RNF2): shRNAi vectors targeting the indicated murine PRC1 proteins were tested using tagged murine cDNA constructs (*mBmi1-2PY, HA-mPhc2, HA-mRnf2*) expressed in human U2-OS cells; large black arrowheads indicate expected murine PRC1 protein sizes (including tag); BMI1-panel: open arrowheads correspond to the size of human BMI1;

PHC2 and RNF2-panels: small grey arrowheads indicate background bands. (**C**) Quantification of pPOLR2A:tPOLR2A ratios at t=0, 3, and 6 days *pid*; data corresponding to Figure 5C. All proteins levels were normalised to aTUB levels. (**D**) Representative IF images of nuclear co-staining for pPOLR2A and yH2A.X in *shcon* and *shBmi1* ATDC5 cells (arrowheads: examples of yH2A.X-bright/ pPOLR2A-dim nuclei; less than 2 percent of *shcon* cells were positive for yH2A.X. (**E**) Quantification of IF staining for pPOLR2A and BrdU; data corresponding to Figure 5D. (**F**) Representative IF images of nuclear staining for GMNN in *shcon* and *shBmi1* ATDC5 cells; less than 5% and more than 90% of *shcon* and *shBmi1* cells, respectively, were positive for GMNN.

time pid

SA-βGAL

SA-βGAL

Figure S7. Normal and abnormal senescence signalling in chondrogenesis. (**A**) Phase contrast images of *shcon, shBmi1* or *shRnf2* human U2-OS cells. (**B**) Global expression analysis of senescence-associated genes in ATDC5 control and BMI1-KD (*shcon; shBmi1*) cultures during differentiation. Microarrays; values in all panels represent mean of triplicates ± S.D. (**C**) Induction of senescence-associated β-Galactosidase (SA-βGAL/GLB1) activity in ATDC5 cultures under differentiating (*ITS*) *versus* non-differentiating conditions (*cc*). (**D**) Representative microscopic images (one of three repeat experiments) of SA-βGAL activation in differentiating rabbit knee cartilage-derived chondrogenic cells (COP), rabbit periost-derived chondrogenic progenitors (kper), human HAC and SW1353 (chondrosarcoma) cells. (**E**) microarray-based analysis of *Glb1*-expression in control *versus*. BMI1-KD cultures. Asterisks (*): p<0.05. (**F**) SA-βGAL activity in localizes to growth plates of mouse femur and fibula/tibia; brackets mark PZ/HZ zones.

Figure S8. Genome tracks for the (**A**) non-PRC1 target loci *HoxA2, HoxA4* and (**B**) PRC1-target genes *HoxA11* and *HoxA13* loci. The number between brackets is the corresponding Entrez gene ID. In each panel the H3K27me3 enrichment is visualized as peaks at time point t=0 (maintenance conditions; left panels) or t=3 days *pid* (differentiation conditions; right panels). The top tracks for each locus shows data of the *shcon* samples (green); the bottom tracks of the *shBmi1* samples (blue). The solid line with diamond arrow represents the transcription start site (TSS); the second solid line represents the end of the last exonic region of the gene (3'-prime of coding region). All coordinates are given with respect to the forward strand.

Table S1. Activation of DNA repair pathways in shBmi1 cultures. Upregulation of DNA dam	nage
response/repair genes at t=6 days pid presented as log fold change; based on GenMAPP analysis.	

Gene	FC	Description	Processes involved in (GENmapp terms)
Ifi204	4.9	Interferon activated gene 204	Tracri Pol II transport DDR Diff
, Rad54b	4.1	RAD54B homolog	Dre DDR
Brip1	3.5	BRCA1 interact protein C terminal	Nucmet Dre tracri PolII DDR
,		helicase1	
Fancb	2.5	Fanconi anemia complement group B	Dre DDR
Rad9	2.4	RAD9 homolog (S.pombe)	CC checkpoint DDC Dre DDR RadR apop
Pttg1	2.3	Pituitary tumor transforming 1	Dmet Dre DR CC Cseg mit biog
Rad51	2.2	RAD51 homolog	homR Dre Dmet REP DDR mei meiR
Hspa1b	2.2	Heatshock protein 1B	TELm Dre fold anti-apop UPR hs
Xrcc2	2.1	XRay repair complementing defective	Dmet Dre Drec DDR
		repair	
Rad51ap1	2.1	RAD51 associated protein1	homR Dre Drec DDR
Ddb2	2.0	Damage specific DNA binding protein 2	Dre pyrimidinedimerrepair DDR
Exo1	1.9	Exonuclease 1	Nucmet Dre NER MMR Drec DDR mei
Blm	1.9	Bloom syndrome homolog (human)	REP Dre Drec
Eme1	1.8	Essential meiotic endonuclease 1 homolog	Dre Drec DDR
		1	
Chaf1a	1.8	Chromatin assembly factor 1 subunit	REP Dre tracri fold DDR CC
5		A(p150)	
Sgk	1.8	serum/glucocorticoid regulated kinase	Kin apop DDR
Hspa1a	1.8	Heatshock protein 1A	TELm Dre fold UPR hs
Brca2	1.8	Breast cancer 2	homR Dre chrom DDR S-CC mitC tracri
Rad51l1	1.8	RAD51 like 1	Dmet Dre Drec DDR
Cdc2a	1.7	cell div cycle 2 homolog A	Kin anti-apop mit CC G2 Cdiv
Trex1	1.7	Three prime repair exonuclease 1	REP Dre MMR Drec DDR
Fen1	1.7	Flap structure specific endonuclease 1	REP DNA repair
Msh3	1.6	mutS homolog 3	Dmet Dre MMR DDR somH somR
Gtf2h1	1.6	General tracri Factor II H polypept 1	Dre tracri DDR
Clspn	1.6	Claspin homolog	DRC Dre DDR CC
Rad50	1.5	RAD50 homolog	Dmet Dre DDR CC mei
Mank1	1.5	Mitogen activated protein kinase 1	Kin DDR CC ST morf kin cytosine met diff
Topors	1.4	Topoisomerase I binding arginine/serine	Ubc apop DDR met prol tracri trapo
10000		rich	
Lio1	14	Ligase I DNA ATP dependent	REP Dre Drec DDR CC div
Gadd45a	14	Growth arrest & DNA damage induc 45 α	CCprog Pase DDR CC CC arrest
Rfc5	14	Replication factor C (activator1)5	RFP DNA repair
Fef1e1	1.1	Fukarvotic tracri elongation factor 1 s1	CC Dre trala embr apon DDR
Gtf2h2	1.1	General tracri factor IIH polypeptide 2	Dre tracri DDR
Xah?	13	XPA hinding protein 2	Blast Dre TCR tracri R proc
Havrag	1.3	IV radiation resistance associated gene	Dre
Eauca	1.3	Earcon janemia complementation group	Dre DDR male mei Mgon Egon prol
1 инси	1.5		Die DDie indie nich wigon i gon prof
Bre	13	Brain & reprod organ-expressed protein	Libc apop DDR anti-apop
Pold1	13	Polymerase (DNA directed) $\delta 1$ cat subunit	S-CC Dre REP BER
Tonhn1	1.3	Topoisomerase (DNA) 2h binding protein	Dre DDR meiß
Msh5	1.3 1 2	muts homolog 5	Dmet MMR mei Meil syn Fram
Hmahr	1.0	High mobility group box ?	REP Dre BER chrom nucl tracri Pol II
Parn?	1.3 1.2	Poly(ADP) ribose polymerase fam memb	Dre BER ribos
1 uipz	1.5	2	DIC DER 11005
Smc3	1 2	Structural maintenance of chromosome?	Dmet DRE DDR CC spin Coog SCC mit mei
JIIICJ	1.2	Structural manifematice of Chilomosonile 5	SThiog div
Smc5	10	Structural mainton and of shrom assess 5	Drote DPE Droce DDP
SmcS	1.2	Structural maintenance of chromosome 5	Diffet DIRE DIRE DDIK

Table S2. Abnormal transcriptional responses in BMI1-deficient cells. Overrepresented biological pathways based on PathVisio analysis using criteria: p<0.05 *shBmi1 versus shcon*, >2 (upper) or >1.2 FC (bottom) up or down in *shBmi1 versus shcon* cultures, and average group expression ²log(100) in either group at t=1 or 6 days *pid*, as compared to all reporters on the array for which the Affymetrix ID (or Unigene ID) could be mapped to a pathway; for each pathway: (r) number of genes fulfilling criteria, (n) number of genes present in data set.

Pathways all (FC > 2)	(r)	(n)	Total	%	Z Score
Irinotecan pathway	5	10	13	50	7.59
Endochondral ossification	9	56	68	16.1	4.79
Oxidative stress	5	23	29	21.7	4.47
Cytokines and inflammatory response	4	21	25	19.1	3.63
TGF beta signaling pathway	6	41	52	14.6	3.61
Selenium metabolism/selenoproteins	6	43	49	14	3.46
Osteoblast	2	7	11	28.6	3.4
Prostaglandin synthesis and regulation	4	24	31	16.7	3.27
Adipogenesis	10	108	132	9.3	2.97
Osteoclast	2	13	18	15.4	2.16
Complement activation.classical pathway	2	14	16	14.3	2.03
Pathways down (FC > 2)	(r)	(n)	total	%	Z Score
Irinotecan pathway	4	10	13	40.0	10.28
Selenium metabolism/selenoproteins	5	43	49	11.6	5.67
Endochondral ossification	5	56	68	8.9	4.77
Oxidative stress	2	23	29	8.7	2.94
Osteoblast	1	7	11	14.3	2.86
GPCRs.class B secretin-like	1	10	13	10.0	2.28
Osteoclast	1	13	18	7.7	1.9
TGF-beta receptor signaling pathway	4	115	149	3.5	1.89
Pathways up (FC > 2)	(r)	(n)	Total	%	Z Score
Adipogenesis	10	108	132	93	4 48
Prostaglandin synthesis and regulation	4	24	31	167	4 38
TGFbeta signaling nathway	5	41	52	12.2	3.92
Cytokines and inflammatory response	3	21	25	14.3	3.4
Oxidative stress	3	23	29	13	3.19
Endochondral ossification	9	-e 56	68	89	3.04
Notch signaling pathway	1	5	47	20	2.46
Osteoblast	1	7	11	14.3	1.96
Pathways all (FC > 1.2)	(r)	(n)	Total	%	Z Score
Cholesterol biosynthesis	10	13	15	76.9	4.66
Cell cycle	32	70	88	45.7	4.62
TGF-beta receptor signaling pathway	44	115	149	38.3	4.03
Androgen receptor signaling pathway	33	84	108	39.3	3.65
Irinotecan pathway	7	10	13	70.0	3.56
G1 to S cell cycle control	22	51	64	43.1	3.49
Endochondral ossification	23	56	68	41.1	3.29
TGF beta signaling pathway	18	41	52	43.9	3.24
mRNA processing	102	349	552	29.2	3.06
Selenium metabolism/selenoproteins	18	43	49	41.9	3.00
Apoptosis modulation by HSP70	9	17	18	52.9	2.97
TNF-alpha/NF-kb signaling pathway	47	143	177	32.9	2.94
DNA replication	15	36	41	41.7	2.71
Heme biosynthesis	5	8	9	62.5	2.68
One carbon metabolism	10	23	41	43.5	2.37
Eukaryotic transcription initiation	15	39	41	38.5	2.35
Mitochondrial LC-fatty acid beta-oxidation	6	13	16	46.5	2.01
Apoptosis mechanisms	24	74	86	32.4	2.00

Table	S3:	Markers i	n 'End	ochondral o	ssification' r	network (WikiPath	iways).	Gene IDs corr	respond to
NCBI	and	Ensembl	gene	identifiers	(Ensemble	Biomart	(Mouse	genes	(GRCm38.p5)	database).
(www.wikipathways.org/index.php/Pathway:WP474).										

Gene	ID	ID (Ensembl)	Description
	(NCBI)	(,	i
Acan	11595	ENSMUSG0000030607	aggrecan
Adamte1	11504	ENISMI ISC0000022893	a disintegrin-like and metallopeptidase with thrombospondin type
111111151	11504	ENSINE 360000022033	1 motif, 1
Adamtal	240012		a disintegrin-like and metallopeptidase with thrombospondin type
Auumis 4	240915	EIN51/10/3G0000000403	1 motif, 4
A 1	00704		a disintegrin-like and metallopeptidase with thrombospondin type
Aaamts5	23794	EINSMUSG0000022894	1 motif, 5
Akt1	11651	ENSMUSG0000001729	thymoma viral proto-oncogene 1
Alpl	11647	ENSMUSG0000028766	alkaline phosphatase, liver/bone/kidney
Bmp6	12161	ENSMUSG0000039004	bone morphogenetic protein 6
Bmp7	12162	ENSMUSG0000008999	bone morphogenetic protein 7
Bmpr1a	12166	ENSMUSG0000021796	bone morphogenetic protein receptor, type 1A
Cab39	12283	ENSMUSG0000036707	calcium binding protein 39
Calm1	12313	ENSMUSG0000001175	calmodulin 1
Cdkn1c	12577	ENSMUSG0000037664	cyclin-dependent kinase inhibitor 1C (P57)
Chst11	58250	ENSMUSG0000034612	carbohydrate sulfotransferase 11
Col10a1	12813	FNSMUSC0000039462	collagen type X alpha 1
Col2a1	12824	ENSMUSC0000022483	collagen type II alpha 1
Cot201	58214	ENSMUSC0000022405	gystatin 10 (shondrogytas)
Ctcl	12020	ENSMUSC0000021477	cathopsin I
Ddr2	19014	ENSMUSC0000021477	dissoidin domain recentor family, member 2
Durz Emm1	18605	ENSMUSC0000020074	actonucleotido nuronhocinhotoco/nhocinhodiostorece 1
Enpp1 E~19	14172	ENSMUSC0000057570	fibroblock growth factor 18
Fg/10	14172	ENSMUS C0000037987	fibroblast growth factor 18
Fgf2	141/3	EINSIMUSG0000003/225	fibroblast growth factor 2
Fgfr1	14182	EINSIMUSG00000031565	fibroblast growth factor receptor 1
Fgfr3	14184	ENSMUSG0000054252	fibroblast growth factor receptor 3
Frzb	20378	ENSMUSG00000027004	frizzled-related protein
Ghr	14600	ENSMUSG0000055737	growth hormone receptor
Gli3	14634	ENSMUSG0000021318	GLI-Kruppel family member GLI3
Hdac4	208727	ENSMUSG0000026313	histone deacetylase 4
Hmgcs1	208715	ENSMUSG0000093930	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1
Ift88	21821	ENSMUSG0000040040	intraflagellar transport 88
Igf1	16000	ENSMUSG0000020053	insulin-like growth factor 1
Igf1r	16001	ENSMUSG0000005533	insulin-like growth factor I receptor
Igf2	16002	ENSMUSG0000048583	insulin-like growth factor 2
Ihh	16147	ENSMUSG0000006538	Indian hedgehog
Kif3a	16568	ENSMUSG0000018395	kinesin family member 3A
Mef2c	17260	ENSMUSG0000005583	myocyte enhancer factor 2C
Mgp	17313	ENSMUSG0000030218	matrix Gla protein
Mmp13	17386	ENSMUSG0000050578	matrix metallopeptidase 13
Mmp9	17395	ENSMUSG0000017737	matrix metallopeptidase 9
Nkx3-2	12020	ENSMUSG0000049691	NK3 homeobox 2
Plat	18791	ENSMUSG0000031538	plasminogen activator, tissue
Plau	18792	ENSMUSG0000021822	plasminogen activator, urokinase
Prkaca	18747	ENSMUSG0000005469	protein kinase, cAMP dependent, catalytic, alpha
Ptch1	19206	ENSMUSG0000021466	patched 1
Pth	19226	ENSMUSG0000059077	parathyroid hormone
Pth1r	19228	ENSMUSG0000032492	parathyroid hormone 1 receptor
Pthlh	19227	ENSMUSG0000048776	parathyroid hormone-like peptide
Runx2	12393	ENSMUSG0000039153	runt related transcription factor 2
Runx3	12399	ENSMUSG0000070691	runt related transcription factor 3
Scin	20259	ENSMUSG0000002565	scinderin

			Table S3 cont.
Serpinh1	12406	ENSMUSG0000070436	serine (or cysteine) peptidase inhibitor, clade H, member 1
Slc38a2	67760	ENSMUSG0000022462	solute carrier family 38, member 2
Sox5	20678	ENSMUSG0000041540	SRY (sex determining region Y)-box 5
Sox6	20679	ENSMUSG0000051910	SRY (sex determining region Y)-box 6
Sox9	20682	ENSMUSG0000000567	SRY (sex determining region Y)-box 9
Spp1	20750	ENSMUSG0000029304	secreted phosphoprotein 1
Stat1	20846	ENSMUSG0000026104	signal transducer and activator of transcription 1
Stat5b	20851	ENSMUSG0000020919	signal transducer and activator of transcription 5B
Tgfb1	21803	ENSMUSG0000002603	transforming growth factor, beta 1
Tgfb2	21808	ENSMUSG0000039239	transforming growth factor, beta 2
Thra	21833	ENSMUSG0000058756	thyroid hormone receptor alpha
Timp3	21859	ENSMUSG0000020044	tissue inhibitor of metalloproteinase 3
Vegfa	22339	ENSMUSG0000023951	vascular endothelial growth factor A

Table S4: Markers in '*Cell cycle*' network (KEGG). Gene-IDs (ID) correspond to NCBI and Ensembl gene identifiers (Ensemble Biomart (Mouse genes (GRCm38.p5) database).(www.genome.jp/keggbin/show_pathway?mmu04110).

Gene	ID (NCBI)	ID (Ensemble)	Description
Abl1	11350	ENSMUSG0000026842	c-abl oncogene 1, non-receptor tyrosine kinase
Anapc1	17222	ENSMUSG0000014355	anaphase promoting complex subunit 1
, Anapc10	68999	ENSMUSG0000036977	anaphase promoting complex subunit 10
Anapc11	66156	ENSMUSG0000025135	anaphase promoting complex subunit 11
Anapc13	69010	ENSMUSG0000035048	anaphase promoting complex subunit 13
Anapc2	99152	ENSMUSG0000026965	anaphase promoting complex subunit 2
Anapc4	52206	ENSMUSG0000029176	anaphase promoting complex subunit 4
Anapc5	59008	ENSMUSG0000029472	anaphase-promoting complex subunit 5
Anapc7	56317	ENSMUSG0000029466	anaphase promoting complex subunit 7
Atm	11920	ENSMUSG0000034218	ataxia telangiectasia mutated
Atr	245000	ENSMUSG0000032409	ataxia telangiectasia and Rad3 related
Bub1	12235	ENSMUSG0000027379	BUB1, mitotic checkpoint serine/threonine kinase
Bub1b	12236	ENSMUSG0000040084	BUB1B, mitotic checkpoint serine/threonine kinase
Bub3	12237	ENSMUSG0000066979	BUB3 mitotic checkpoint protein
Ccna1	12427	ENSMUSG0000027793	cyclin A1
Ccna2	12428	ENSMUSG0000027715	cyclin A2
Ccnb1	268697	ENSMUSG0000041431	cyclin B1
Ccnb2	12442	ENSMUSG0000032218	cyclin B2
Ccnb3	209091	ENSMUSG0000051592	cyclin B3
Ccnd1	12443	ENSMUSG0000070348	cyclin D1
Ccnd2	12444	ENSMUSG0000000184	cyclin D2
Ccnd3	12445	ENSMUSG0000034165	cyclin D3
Ccne1	12447	ENSMUSG0000002068	cyclin E1
Ccne2	12448	ENSMUSG0000028212	cyclin E2
Ccnh	66671	ENSMUSG0000021548	cyclin H
Cdc14a	229776	ENSMUSG0000033502	CDC14 cell division cycle 14A
Cdc14b	218294	ENSMUSG0000033102	CDC14 cell division cycle 14B
Cdc16	69957	ENSMUSG0000038416	CDC16 cell division cycle 16
Cdc20	107995	ENSMUSG0000006398	cell division cycle 20
Cdc23	52563	ENSMUSG0000024370	CDC23 cell division cycle 23
Cdc25a	12530	ENSMUSG0000032477	cell division cycle 25A
Cdc25b	12531	ENSMUSG0000027330	cell division cycle 25B
Cdc25c	12532	ENSMUSG0000044201	cell division cycle 25C
Cdc26	66440	ENSMUSG0000066149	cell division cycle 26
Cdc27	217232	ENSMUSG0000020687	cell division cycle 27
Cdc45	12544	ENSMUSG0000000028	cell division cycle 45
Cdc6	23834	ENSMUSG0000017499	cell division cycle 6

Table S4cont.

			<i>1uue 54cont.</i>
Cdc7	12545	ENSMUSG0000029283	cell division cycle 7 (S. cerevisiae)
Cdk1	12534	ENSMUSG0000019942	cyclin-dependent kinase 1
Cdk2	12566	ENSMUSG0000025358	cyclin-dependent kinase 2
Cdk4	12567	ENSMUSG0000006728	cyclin-dependent kinase 4
Cdk6	12571	ENSMUSG0000040274	cyclin-dependent kinase 6
Cdk7	12572	ENSMUSG0000069089	cyclin-dependent kinase 7
Cdkn1a	12575	ENSMUSG0000023067	cyclin-dependent kinase inhibitor 1A (P21)
Cdkn1b	12576	ENSMUSG0000003031	cyclin-dependent kinase inhibitor 1B
Cdkn1c	12577	ENSMUSG0000037664	cyclin-dependent kinase inhibitor IC (P57)
Cakn2a	12578	ENSMUSG0000044303	cyclin-dependent kinase inhibitor 2A
Cakn20	12579	EIN5IVIU5G00000073802	cyclin-dependent kinase inhibitor 26 (p15, inhibits CDK4)
Cakn2c Cdkn2d	12580	EIN510105G00000026551	cyclin-dependent kinase inhibitor 2C (p16, inhibits CDK4)
Cukii2u Chek1	12561	ENSMUSG0000090472	checkpoint kinase 1
Chek?	50883	ENSMUSG0000029521	checkpoint kinase 2
Crebbp	12914	ENSMUSG0000022521	CREB binding protein
Cul1	26965	ENSMUSG0000029686	cullin 1
Dbf4	27214	ENSMUSG0000002297	DBF4 zinc finger
E2f1	13555	ENSMUSG0000027490	E2F transcription factor 1
E2f2	242705	ENSMUSG0000018983	E2F transcription factor 2
E2f3	13557	ENSMUSG0000016477	E2F transcription factor 3
E2f4	104394	ENSMUSG0000014859	E2F transcription factor 4
E2f5	13559	ENSMUSG0000027552	E2F transcription factor 5
Ep300	328572	ENSMUSG0000055024	E1A binding protein p300
Espl1	105988	ENSMUSG0000058290	extra spindle pole bodies 1, separase
Fzr1	56371	ENSMUSG0000020235	fizzy/cell division cycle 20 related 1 (Drosophila)
Gadd45a	13197	ENSMUSG0000036390	growth arrest and DNA-damage-inducible 45 alpha
Gadd45b	17873	ENSMUSG0000015312	growth arrest and DNA-damage-inducible 45 beta
Gadd45g	23882	ENSMUSG0000021453	growth arrest and DNA-damage-inducible 45 gamma
Gsk3b	56637	ENSMUSG0000022812	glycogen synthase kinase 3 beta
Hdac1	433759	ENSMUSG0000028800	histone deacetylase 1
Hdac2	15182	ENSMUSG0000019777	histone deacetylase 2
Mad1l1	17120	ENSMUSG0000029554	MAD1 mitotic arrest deficient 1-like 1
Mad2l1	56150	ENSMUSG0000029910	MAD2 mitotic arrest deficient-like 1
Mad2l2	71890	ENSMUSG0000029003	MAD2 mitotic arrest deficient-like 2
Mcm2	17216	ENSMUSG0000002870	minichromosome maintenance complex component 2
Mcm3	17215	ENSMUSG0000041859	minichromosome maintenance complex component 3
Mcm4	17217	ENSMUSG0000022673	minichromosome maintenance complex component 4
Mcm5	17218	ENSMUSG0000005410	minichromosome maintenance complex component 5
Mcm6	17219	ENSMUSG0000026355	minichromosome maintenance complex component 6
Mcm7	17220	ENSMUSG0000029730	minichromosome maintenance complex component 7
Mdm2	17246	ENSMUSG0000020184	transformed mouse 3T3 cell double minute 2
Мус	17869	ENSMUSG0000022346	myelocytomatosis oncogene
Orc1	18392	ENSMUSG0000028587	origin recognition complex, subunit 1
Orc2	18393	ENSMUSG0000026037	origin recognition complex, subunit 2
Orc3	50793	ENSMUSG0000040044	origin recognition complex, subunit 3
Orc4	26428	ENSMUSG0000026761	origin recognition complex, subunit 4
Orc5	26429	ENSMUSG0000029012	origin recognition complex, subunit 5
Orc6	56452	ENSMUSG0000031697	origin recognition complex, subunit 6
Pcna	18538	ENSMUSG0000027342	proliferating cell nuclear antigen
Pkmyt1	268930	ENSMUSG0000023908	protein kinase, membrane associated tyrosine/threonine 1
Plk1	18817	ENSMUSG0000030867	polo like kinase 1

			Table S4cont.
Prkdc	19090	ENSMUSG0000022672	protein kinase, DNA activated, catalytic polypeptide
Pttg1	30939	ENSMUSG0000020415	pituitary tumor-transforming gene 1
Rad21	19357	ENSMUSG0000022314	RAD21 cohesin complex component
Rb1	19645	ENSMUSG00000022105	RB transcriptional corepressor 1
Rbl1	19650	ENSMUSG0000027641	retinoblastoma-like 1 (p107)
Rbl2	19651	ENSMUSG0000031666	RB transcriptional corepressor like 2
Rbx1	56438	ENSMUSG00000022400	ring-box 1
Rbx1-ps	1E+08	ENSMUSG00000049832	ring-box 1, pseudogene
Sfn	55948	ENSMUSG00000047281	stratifin
Skp1a	21402	ENSMUSG0000036309	S-phase kinase-associated protein 1A
Skp2	27401	ENSMUSG00000054115	S-phase kinase-associated protein 2 (p45)
Smad2	17126	ENSMUSG0000024563	SMAD family member 2
Smad3	17127	ENSMUSG0000032402	SMAD family member 3
Smad4	17128	ENSMUSG0000024515	SMAD family member 4
Smc1a	24061	ENSMUSG00000041133	structural maintenance of chromosomes 1A
Smc1b	140557	ENSMUSG0000022432	structural maintenance of chromosomes 1B
Smc3	13006	ENSMUSG0000024974	structural maintenance of chromosomes 3
Stag1	20842	ENSMUSG0000037286	stromal antigen 1
Stag2	20843	ENSMUSG0000025862	stromal antigen 2
Tfdp1	21781	ENSMUSG0000038482	transcription factor Dp 1
Tfdp2	211586	ENSMUSG0000032411	transcription factor Dp 2
Tgfb1	21803	ENSMUSG0000002603	transforming growth factor, beta 1
Tgfb2	21808	ENSMUSG0000039239	transforming growth factor, beta 2
Tgfb3	21809	ENSMUSG0000021253	transforming growth factor, beta 3
Trp53	22059	ENSMUSG00000059552	transformation related protein 53
Ttk	22137	ENSMUSG0000038379	Ttk protein kinase
Wee1	22390	ENSMUSG0000031016	WEE 1 homolog 1 (S. pombe)
Wee2	381759	ENSMUSG0000037159	WEE1 homolog 2 (S. pombe)
Vzuhah	54401	ENISMI ISC0000018326	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
1 whuo	54401	EIN510105G0000010520	activation protein, beta
Vzuhao	22627	ENISMI ISC00000020849	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
1 white	22027	EIN310103G0000020849	activation protein, epsilon
Vzukao	22628	ENISMI ISC0000051391	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
1 whug	22020	ENSW03G0000001391	activation protein, gamma
Vzuhah	22620	ENISMI ISC0000018965	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
1 whun	22029	EIN510105G0000016905	activation protein, eta
Vanhaa	22630	ENISMI ISC0000076432	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
1 wriuy	22030	E1N31VIU3G00000070432	activation protein theta
Ymhar	22631	FNISMI ISC0000022285	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase
1 WI1112	22001	Li (0111000000022200	activation protein, zeta
Zbtb17	22642	ENSMUSG0000006215	zinc finger and BTB domain containing 17

 $\hfill \odot$ 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).