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Simple Summary: Uridine diphosphate (UDP)-glycosyltransferases (UGTs) are significant phase
II detoxification enzymes in insects. In this study, we have utilized CRISPR/Cas9 to generate
SfUGT50A15 knockout strains to explore its possible function in governing sensitivity to chemical
insecticides or benzoxazinoids. The bioassay results indicated that the SfUGT50A15 knockout strains
were significantly more sensitive to chlorantraniliprole, emamectin benzoate, and benzoxazinoids
than the wild-type strains. This finding highlights the involvement of SfUGT50A15 in the resistance
of Spodoptera frugiperda to chlorantraniliprole, emamectin benzoate, and benzoxazinoids. This study
not only presents new molecular targets for controlling S. frugiperda but also establishes a foundation
for the control of lepidopteran pests.

Abstract: UDP-glycosyltransferases (UGTs) are a diverse superfamily of enzymes. Insects utilize
uridine diphosphate-glucose (UDP-glucose) as a glycosyl donor for glycosylation in vivo, involved
in the glycosylation of lipophilic endosymbionts and xenobiotics, including phytotoxins. UGTs
act as second-stage detoxification metabolizing enzymes, which are essential for the detoxification
metabolism of insecticides and benzoxazine compounds. However, the UGT genes responsible for
specific glycosylation functions in S. frugiperda are unclear at present. In this study, we utilized
CRISPR/Cas9 to produce a SfUGT50A15-KO strain to explore its possible function in governing
sensitivity to chemical insecticides or benzoxazinoids. The bioassay results suggested that the
SfUGT50A15-KO strain was significantly more sensitive to chlorantraniliprole, emamectin benzoate,
and benzoxazinoids than the wild-type strains. This finding suggests that the overexpression of the
SfUGT50A15 gene may be linked to S. frugiperda resistance to pesticides (chlorantraniliprole and
emamectin benzoate) as well as benzoxazinoids (BXDs).

Keywords: Spodoptera frugiperda; CRISPR/Cas9; insecticides; benzoxazinoids

1. Introduction

Spodoptera frugiperda (Lepidoptera: Noctuidae) is a notorious invasive pest character-
ized by its broad host range, high fecundity, and high adaptability [1]. It can infest 353 plant
species, including important crops such as maize (Zea mays), rice (Oryza sativus), cotton
(Gossypium hirsutum), and sorghum (Sorghum bicolor) [2]. Spodoptera frugiperda is native to
the tropical and subtropical regions of the Americas [3]. Following its invasion of Africa
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in 2016, it has spread to 44 countries throughout the continent in just two years [4]. Since
invading China in January 2019, it has expanded across 26 provinces [5]. Currently, the
utilization of chemical pesticides is the primary approach for controlling S. frugiperda [6].
However, the widespread use of chemical pesticides has resulted in genetic resistance,
lowering the efficiency of common chemical pesticides. Therefore, understanding the
genetic mechanism of pesticide resistance in S. frugiperda is critical for the efficient chemical
management of this pest [7,8].

UDP-glycosyltransferases (UGTs) are a class of multifunctional enzymes, widely found
in viruses, bacteria, fungi, plants, and animals [9]. UGTs primarily use UDP-glucuronic
acid as a sugar donor in mammals, while UDP-glucose is used as a sugar donor in plants
and insects [10]. Many studies have demonstrated that UGTs are located in various insect
organs such as the fat body, midgut, and antennae [10–12]. Insect UGTs are important
components of the phase II detoxification metabolizing enzymes, which have a crucial role
in the metabolism of exogenous substances, hlorantraniliprole, tebufenozide, indoxacarb,
chlorfenapyr, spinosyns, abamectin, and metaflumizone [13–15]. For instance, the expres-
sion levels of the genes UGT40R3 and UGT46A6 were significantly up-regulated following
insecticide treatment in Spodoptera mauritia [11]. The suppression of the genes UGT40D17,
UGT40F20, and UGT40R18 in S. frugiperda significantly elevates the insensitivity of field
populations to chlorpyrifos and chlorfenapyr [16].

Besides chemical pesticides, it has been reported that UGTs of S. frugiperda can detoxify
the predominant secondary metabolite of maize, benzoxazinoids (BXDs), which have been
reported to suppress the growth of various insect herbivores of maize [17–19]. In maize,
BXDs are constitutively stored in vacuoles as inactive glucosides. Upon insect attack, the
disruption of maize tissues can lead to the exposure of BXD glucosides to their specific
β-glucosidases, causing the release of the active aglucones and their toxic degradation
products [20,21]. In S. frugiperda, SfUGT33F28 and SfUGT40L8 can re-glycosylate toxic
benzoxazinoids into non-toxic stable glucosides to detoxify benzoxazinoids [22].

The UGT50 family is the most conserved among the UGT families and is consid-
ered the ancestor UGT family in insects [10]. However, functional studies on the UGT50
family in insects have not been reported. In this study, a SfUGT50A15 knockout strain
(SfUGT50A15-KO) was developed using CRISPR/Cas9 technology to investigate its func-
tion in tolerance towards chemical pesticides and benzoxazinoids. In the results, the
knockout strain exhibited higher mortality rates than the wild-type in the presence of chlo-
rantraniliprole and emamectin benzoate. This strain also grew slower than the wild-type on
maize tissues, but this difference was absent with a mutated maize genotype with minimal
BXD. These findings indicate that SfUGT50A15 contributes to the detoxification of chemical
pesticides and plant defense metabolites. This provides new insights into the function of
the ancestral UGT gene family UGT50 in insects.

2. Materials and Methods
2.1. Insects

The experimental S. frugiperda colony was collected from Ruili, Yunnan Province,
China, in December 2019 and maintained in laboratory environments since then. The
S. frugiperda larvae were grown on artificial diets [23] under routine laboratory conditions
(a temperature of 27 ± 1 ◦C, humidity of 65 ± 5%, and a photoperiod of 14 h of light and
10 h of darkness). Adults were fed on 10% sucrose solution and were not exposed to any
insecticides or benzoxazinoids during rearing.

2.2. Insecticides and Plants

The insecticides utilized in the bioassay (chlorantraniliprole, emamectin benzoate,
chlorantraniliprole, spinetoram, lufenuron) were purchased from Mannhage (Shanghai,
China) Biotechnology Company, and other reagents employed in the experiments were
analytically pure. Two maize strains were utilized in this study, the BX knockout mutant
BX2 (bx2::Ds) and the wild-type maize strain W22. Plants were grown for two weeks in a
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growth chamber under a controlled photoperiod of 16 h of light and 8 h of darkness, and
180 mm−2/s−1 of photons at a constant temperature of 23 ◦C and 60% humidity. The maize
strains utilized in this study were provided by Dr. Shaoqun Zhou’s lab.

2.3. Characterization and Cluster Analysis of SfUGT50A15 Sequences

The cDNA sequence of the SfUGT50A15 gene was queried based on the transcriptome
and genome databases of S. frugiperda (XP_035437704.2). The UGT50A protein sequences of
other Lepidopteran species (Bombyx mori, Zygaena filipendulae, Tuta absoluta, Plutella xylostella,
Chilo suppressalis, Helicoverpa armigera, and Spodoptera exigua) were retrieved and down-
loaded from the NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 1
December 2023). Multiple alignments were performed for eight UGT50A genes using
MAFFT v7.487 (https://mafft.cbrc.jp/align-ment/soft-ware/, accessed on 1 December 2023)
and the phylogenetic tree was constructed using FastTree v2.1.10 with default parame-
ters [24]. The tree was visualized by EvolView (https://www.evolgenius.info/evolview-v2/,
accessed on 1 December 2023) ProtParam (https://web.expasy.org/protparam/, accessed
on 1 December 2023) was utilized to examine the physicochemical properties of amino
acids. SOPMA (NPS@: SOPMA secondary structure prediction (ibcp. fr)) was utilized
to predict the secondary structure. TMHMM Server 2.0 (https://services.healthtech.dtu.
dk/service.php?TMHMM-2.0, accessed on 1 December 2023) was employed to predict
transmembrane structural domains.

2.4. Extraction of Total RNA and Synthesis of cDNA

The complete body of S. frugiperda individuals across different developmental stages,
various tissues of 5th-instar larvae including fat body (FB), midgut (MG), marsupial tube
(MT), salivary gland (SA), spermathecae (VD), head (H), and epidermis (EP) were obtained,
and total RNA was extracted using the Trizol reagent (Ambion) [25]. The total RNA was
reverse transcribed to produce cDNA using HiScript III 1st Strand cDNA Synthesis Kit
(Vazyme, Nanjing, China, Cat. No. R312-02), following the manufacturer’s instructions.

2.5. Cloning and Analysis of the SfUGT50A15 Gene

To confirm the identity of the full-length sequence of the SfUGT50A15 gene, specific
primers were designed according to the cDNA sequence (Table 1). PCR products were run
on a 1.5% agarose gel, and the bands were recovered and purified through the use of an
AxyPrep™ DNA Gel Extraction Kit (Axygen, Suzhou, China). The purified PCR products
were subcloned into the pEASY-Blunt (pEASY®-Blunt Cloning Kit, TransGen, Beijing,
China, Cat. No. CB101-01) vector for sequencing. Sequence accuracy was characterized by
comparing genomic and cDNA sequences.

Table 1. Primer used in this study.

Primer Name Primer Sequence (5′-3′) Primer Purpose

SfUGT50A15.qF ACAGAGCCCTGAATGCCATC RT-qPCR
SfUGT50A15.qR TGAAGCTCACATTCTTCGCC

SfruActinF TACTCCTAAGCCTGTTGATG RT-qPCR
SfruActinR TTATGTCATGGTGCCGAAT

SfUGT50A15.F1 ACGTAGTAGGGGCAGCCC Cloning the SfUGT50A15 gene
SfUGT50A15.R1 TATGTACATTACATTTTATAAACTGAACATCGATC
SfUGT50A15.sgF GAAATTAATACGACTCACTATAGGACTCCGTCACCCCATTCTT Preparation of sgRNA templates
SfUGT50A15.sgR TTCTAGCTCTAAAACAAGAATGGGGTGACGGAGT
SfUGT50A15.F2 TCAGGAAGGACTTTTGATCTCG

Identification of somatic mutationsSfUGT50A15.R2 CATTCTGGAGTATGAAGCTCACAT

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://mafft.cbrc.jp/align-ment/soft-ware/
https://www.evolgenius.info/evolview-v2/
https://web.expasy.org/protparam/
https://services.healthtech.dtu.dk/service.php?TMHMM-2.0
https://services.healthtech.dtu.dk/service.php?TMHMM-2.0
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2.6. Quantitative Real-Time PCR

To characterize the stage and tissue expression profile of SfUGT50A15, RNA templates
were generated from larval tissues at different developmental stages. The specific primers
(Table 1) for qPCR of the SfUGT50A15 gene were designed using Primer Premier 5.0
software. SfActin was utilized as the reference gene to characterize the period and tissue
expression of SfUGT50A15 by qRT-PCR, and analyzed using triplicate experiments. The
results were analyzed using the 2−(∆∆Ct) method [26].

2.7. Design and Preparation of sgRNA for CRISPR/Cas9

According to the CRISPR/Cas9 target design principle 5′-20bp-NGG-3′, the ORF
region of the SfUGT50A15 gene was used as a specific target with the online software
CRISPOR (http://crispor.tefor.net accessed on 1 September 2023). The sgRNA site sequence
(5′-TACTCCGTCACCCCATTCTTTGG-3′) was constructed and screened on the fifth exon.
The selected sgRNA was compared to the S. frugiperda genome, and no potential off-target
site was identified. A pair of primers (Table 1) was designed that flanked the editing site
for edited allele screening at the genomic level. The sgRNA was synthesized according
to the manufacturer’s instructions and transcribed in vitro using the GeneArt Precision
gRNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA, Cat. No. A29377). The
Cas9 protein (TrueCutTM Cas9 Protein v2) was acquired from Thermo Fisher Scientific.

2.8. Egg Collection and Microinjection

Fresh eggs within 1 h of laying were rinsed and treated with sterile water and attached
to slides using double-sided adhesive tape. Samples of 8 µL of 300 ng/µL SfUGT50A15
sgRNA, 1 µL of 5mg/mL Cas9 protein, and 1 µL of phenol red solution were combined
(a total 10 µL system), and 2 nL of the mixture was injected into each egg via microinjec-
tion (Nanoject III, Drummond, NC, USA). The microinjected eggs (G0 generation) were
maintained at a temperature of 27 ± 1 ◦C and a humidity of 65 ± 5% until hatching.

2.9. Phenotypic Observation and Mutation Analysis

The G0 generation of S. frugiperda was counted for hatching and mutation rates. One
of the midfeet was removed at the adult stage, and genomic DNA was extracted using
the PURELINK Genomic DNA Kit (Invitrogen, Waltham, MA, USA, Cat. No. K182001)
following the product instructions, and gene fragments containing sgRNA targets were
amplified with gene-specific primers (Table 1). The amplification conditions were estab-
lished as one cycle of 98 ◦C for 3 min, followed by 35 cycles of 98 ◦C for 10 s, 56 ◦C for
15 s, and 72 ◦C for 15 s, and ultimately a final extension period at 72 ◦C for 10 min. The
quality of amplification products was examined using agarose gel electrophoresis. The PCR
products were sequenced, and mutant individuals were identified according to the double
sequencing peaks. Following the screening of heterozygous mutants in the G1 generation,
individuals of the G2 generation were obtained through mating. Subsequently, homozy-
gous mutants of the G2 generation underwent screening. These homozygous mutants from
the G2 generation serve as the basis for population expansion. Individuals homozygous
for mutants in the G4 generation and beyond are designated for bioassay experiments.

2.10. Fitness Cost Analysis

Egg masses laid on the same day by the wild-type strain and the SfUGT50A15-KO
strain were harvested and maintained in the same environment to hatch. Each strain was
selected as a group of 30 first-hatched larvae, repeated in three groups. Each first-hatched
larva was caged individually in a small box and reared on artificial feed until pupation.
After fledging, five pairs of adults were randomly chosen from each strain for pairing. The
number of eggs laid and the number of eggs hatched were counted. During the experiment,
the larval stage, pupal weight, eclosion time, lifespan of adult, egg production and hatching
rate were observed and counted.

http://crispor.tefor.net
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2.11. Insect Bioassay

The toxicity of five pesticides towards wild-type S. frugiperda and the SfUGT50A15
knockout strain were characterized by dosing the artificial diet [27]. The pesticide-dosed
diet was sectioned into approximately 5 mm3 cubes and placed in 24-well plates, with
one third-instar larva kept in each well. Mortality was identified after two days, and the
larvae were considered dead if they did not respond to gentle touching with a brush, or
if there were obvious symptoms of poisoning (e.g., deformities, convulsions). Mortality
data were used to compute the insecticide concentration killing 50% of the larvae and the
corresponding 95% confidence limits. LC50 values were considered significantly different if
the confidence limits did not overlap [28].

Toxicological treatments were performed using the feed mixing method, where the
pesticides were sequentially diluted in sterile water to four concentrations (1 µg/g, 2 µg/g,
4 µg/g, 8 µg/g), and mortality was documented after 48 h. Four sets of biological replicates
for each concentration were employed, with each replicate containing 48 3rd-instar larvae
that hatched on the same day.

Both W22 and bx2::Ds maize seedlings were planted. Fourteen days following seedling
emergence, neonates of wild-type S. frugiperda and the SfUGT50A15 knockout strain were
gently placed on seedling leaves (three neonates per seedling), and caged with a plastic
box. Each larva was weighed after seven days of feeding.

2.12. Statistical Analysis

Biological data were analyzed using IBM SPSS Statistics 23.0 software (IBM Corp.,
Armonk, NY, USA). Data are presented as mean ± standard error. Two treatments were
compared using Student’s t-test with normal distributions. Statistical significance was
determined using one-way ANOVA with LSD post-test (p ≤ 0.05 was considered significant)
in different treatments [29]. Figures were prepared using GraphPad Prism 8.0 (https://www.
graphpad.com, accessed on 1 December 2023).

3. Results
3.1. Sequence and Phylogenetic Analysis of the UGT Gene

The SfUGT50A15 gene sequence is 1635 bp in length and encodes 544 amino acids. In
the generated phylogenetic tree of UGT, S. frugiperda was more homologous with S. exigua,
with a high homology and close affinity, followed by a somewhat close affinity with
H. armigera, supported by a good self-expansion value (100%), indicating a short differentia-
tion time and lower variation (Figure 1a). The predicted secondary structure of SfUGT50A15
showed that the protein contained 35.29% random coils, 47.98% alpha helixes, 3.68% beta-
turns, and 13.05% extended strands (Figure 1b). This protein is predicted to contain
two transmembrane domains (Figure 1c).

3.2. Expression Profiles of SfUGT50A15

We employed quantitative real-time PCR to examine the expression pattern of
SfUGT50A15 across various developmental stages and tissue types. The mRNA levels
of SfUGT50A15 increased gradually from the egg stage to the third-instar larvae, were
reduced from the third to the sixth instar, and significantly increased following the pupal
stage in adult females (Figure 2a). In the tissue expression profile of the larvae, SfUGT50A15
expression was highest in the Malpighian tube (Figure 2b).

3.3. Generation of the SfUGT50A15-KO Line

A strain with a 3 bp deletion and a 2 bp insertion was selected from the mutations
detected (Figure 3). The G1 generation larvae obtained by crossing G0-generation moths
with the wild-type strain were reared to adulthood, and the midfeet of the adults were
harvested for sequencing. Three hundred G1-generation adults of the same mutation type
(3 bp deletion and a 2 bp insertion) were obtained. These adults were harvested and crossed
with wild-type individuals to obtain the G2 generation. Three hundred individuals from

https://www.graphpad.com
https://www.graphpad.com
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the G2 group were genotyped using target genomic sequencing, of which 45.3% (136/300)
were homozygous. These homozygous adult individuals were maintained in the same cage
and mated to generate the SfUGT50A15 knockout strain (SfUGT50A15-KO).
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3.4. No Fitness Costs Were Associated with the Knockout

We examined the cost of the adaptation of the SfUGT50A15 knockout strain. As a
result, there were no significant differences in the larval period, eclosion time, pupae weight,
adult lifespan, fecundity, or egg hatching rate between the two genotypes (Figure 4).
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3.5. Effect of SfUGT50A15 Knockout on the Susceptibility of S. frugiperda Larvae to Insecticides

The susceptibility of third-instar larvae to chlorantraniliprole and emamectin benzoate
in the SfUGT50A15-KO line was significantly elevated (according to non-overlapping
confidence limits) by 5.67 and 5.00 times, respectively (based on LC50 values). The results
of the bioassays using other insecticides exhibited no significant change in the susceptibility
of the SfUGT50A15-KO larvae compared to the wild-type larvae (Table 2).

The bioassay findings indicated that the greatest difference in the mortality between the
wild-type strain and SfUGT50A15-KO strain was found after treatment with chloramectin
benzoate, followed by emamectin benzoate. For chlorantraniliprole, the mortality rate
of SfUGT50A15-KO was consistently higher than that of the wild-type (Figure 5a). For
emamectin benzoate, SfUGT50A15-KO had a similar mortality rate as that of the wild-type
at 1 µg/g. However, at higher concentrations, the mortality rate of the SfUGT50A15-KO
larvae was significantly higher than that of the wild-type (Figure 5b).

3.6. Susceptibility of Larvae to Benzoxazinoids Following SfUGT50A15 Knockout

To characterize the role of SfUGT50A15 in the detoxification of benzoxazinoids, we
performed bioassays using a BXD-deficient mutant line, bx2::Ds, and its wild-type progeni-
tor, W22. Whereas the wild-type larvae grew similarly on the W22 and the bx2::Ds plants,
the SfUGT50A15-KO larvae grew significantly better on the bx2::Ds plants than the W22
plants (Figure 6). This indicates that the SfUGT50A15 gene is important in the tolerance of
S. frugiperda to benzoxazinoids.



Insects 2024, 15, 314 9 of 13

Table 2. Sensitivity of 3rd-instar larvae of SfUGT50A15 knockout strain of S. frugiperda and wild-type
strain to five pesticides.

Insecticide Strain LC50 (µg/g) a 95% FL b N c Toxicity Ratio d

Chlorantraniliprole WT 19.305 11.08–33.636 192
5.67 e

SfUGT50A15-KO 3.402 1.919–6.032 192

Emamectin benzoate
WT 15.988 7.803–32.757 192

5.00 e
SfUGT50A15-KO 3.196 1.046–6.228 192

Spinetoram WT 0.244 0.244–8.815 192
3.87SfUGT50A15-KO 0.063 0.063–8.601 192

Lufenuron
WT 0.137 0.137–5.097 192

1.28SfUGT50A15-KO 0.107 0.107–3.737 192

Chlorfenapyr WT 4.081 4.081–31.146 192
1.12SfUGT50A15-KO 3.642 3.642–27.171 192

a Lethal concentration that kills 50% of S. frugiperda. b The 95% fiducial limits of LC50.
c Number of larvae used in

the bioassay. d Toxicity Ratio = LC50 value for wild-type strain (WT) divided by LC50 value for knockout strain
(SfUGT50A15-KO). e The LC50 of the wild-type strain of the same pesticide was significantly higher than that of
SfUGT50A15-KO.
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4. Discussion

Glucuronidation is a major reaction catalyzed by the UGT family, which is associated
with the detoxification process and that is reported in many insect genomes, like Bemisia
tabaci [18], P. xylostella [19], S. exigua [30], S. litura [31], and S. frugiperda [32]. The function
of UGTs in drug resistance in insects has attracted increasing attention, as UGT genes
are associated with insects’ detoxification of exogenous substances. However, functional
studies on the tolerance of the UGT50 family are limited. The UGT50 family is the most
conserved UGT family in insects, and UGT50A from Lepidoptera is a single-copy gene [10].
Therefore, whether the UGT50A in Lepidoptera could evolve to develop the ability to
detoxify plant secondary metabolites and pesticides is the big question in this study.

Previous studies have indicated that UGTs enhance catalytic activity leading to the
resistance of Musca domestica to insecticides [33]. Through bioassays and transcriptome se-
quencing, it has been observed that certain UGT mRNAs have shown an upregulation trend,
suggesting the potential involvement of UGT in resistance to other classes of insecticides,
including pyrethroids, carbamates, and neonicotinoids [34,35]. In Lepidoptera, the role of
UGTs has been demonstrated to correlate with detoxification tolerance to insecticides. For
instance, chlorantraniliprole significantly induced the expression of UGT2B17 in susceptible
P. xylostella. RNA interference with this UGT increased the toxicity of chlorantraniliprole
to P. xylostella larvae [36]. The inhibitor of UGTs, 5-nitrouracil, heightened the toxicity of
indoxacarb against S. litura. Additionally, the knockdown of UGT33J17 and UGT41D10
reduced the viability of Spli-221 cells and increased the S. litura larval susceptibility to
indoxacarb [31]. In Myzus persicae, the overexpression of UGT344P2 significantly enhanced
field populations’ resistance to sulfoxaflor [34]. Similarly, the overexpression of UGT genes
(UGT386H2, UGT386J2, UGT386N2, and UGT386P1) in N. lugens was associated with
resistance to both chlorpyrifos and clothianidin [37].

Many studies have shown that plant secondary metabolites are partially metabolized
by UGTs via glycosylation for host adaptation. For example, UGT41B3 and UGT40D1 from
H. armigera facilitate the glycosylation of gossypol, primarily resulting in the formation of
the diglycosylated gossypol isomer [38]. Additionally, the depletion of four UGTs, namely,
UGT330A3, UGT344D5, UGT348A3, and UGT349A3, resulted in a notable increase in the
susceptibility of M. persicae to nicotine [39]. Furthermore, the UGT33 and UGT40 families
in S. frugiperda, particularly UGT33F28 and UGT40L8, have demonstrated resistance to
the benzoxazines of maize, and the homologous gene UGT33F28 exhibits conservative
functionality in the closely related species S. littoralis [22].

In our study, we observed similar findings, in which the knockout of SfUGT50A15
elevated the toxicity of chlorantraniliprole and emetamectin benzoate towards S. frugiperda
larvae. We speculate that S. frugiperda larvae without the SfUGT50A15 gene are unable
to efficiently excrete chlorantraniliprole, emetamectin benzoate, and benzoxazinoids, re-
sulting in the accumulation of exogenous substances in their bodies and enhancing the
susceptibility of SfUGT50A15 knockout strains. Hormesis is a toxicological phenomenon
whereby exposures to low doses of stress results in biological stimulation [40]. In a bioassay,
we observed that under low concentrations of chlorantraniliprole treatment, the mortality
rate of the wild-type strains was higher than that of the knockout strains. This may be
attributed to the induction of a hormetic dose response in the knockout strain of S. frugiperda
by low concentrations of chlorantraniliprole. The specific mechanisms underlying this
phenomenon warrant further investigation.

The CRISPR/Cas9 system has been successfully utilized globally across various fields,
enabling the manipulation of multiple target genes in diverse non-model species, such as
S. frugiperda [41,42]. In this study, the editing frequency of the target site reached 28.2%
in the G0 generation. The efficiency of gene editing can be measured by the mutation
frequency, but it may be impacted by various factors, including the target gene, the concen-
tration of sgRNA or Cas9, the injection location, and the depth of injection [43,44].

SfUGT50A15 was highly expressed in the larval Malpighian tube, while its ortholog in
S. exigua displayed a different tissue-specific expression pattern. The Malpighian tube is the
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primary organ of excretion in insects. The high expression of SfUGT50A15 in the Malpighian
tube may indicate its involvement in the metabolism and detoxification of xenobiotic
substances (insecticides) [45]. Furthermore, the SfUGT50A15 gene may also be associated
with morphogenetic processes linked to the Malpighian tube, and further investigation
into biochemical and physiological changes following knockdown is warranted.

A statistical analysis was conducted on the biological characteristics of homozygous
knockout strains of S. frugiperda SfUGT50A15. The results revealed no significant differences
between the SfUGT50A15 knockout homozygous strains and the wild-type strain in terms
of larval duration, eclosion time, pupal weight, adult lifespan, adult oviposition quantity,
and egg hatching rate. These findings suggest that SfUGT50A15 may not be involved in the
growth and development of S. frugiperda, or its deletion may have led to the compensatory
upregulation of other growth-regulating genes [46,47]. Further research is needed to
elucidate the specific regulatory mechanisms.

5. Conclusions

The results of this study offer new functional evidence that SfUGT50A15 can participate
in the metabolism and detoxification of exogenous substances like chlorantraniliprole,
emamectin benzoate (insecticides), and benzoxazinoids, offering a new molecular target
for the greening and control of global pests.
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