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Simple Summary: There is increasing interest in the study of how the ongoing climate change is
affecting insect populations. However, most research has been focused on a limited number of groups
that are particularly charismatic or expected to respond more clearly to climate change. Moreover,
most research has been developed in a few areas (especially northern and central European countries),
while others (such as the Mediterranean basin) have been largely overlooked. Therefore, more
empirical research is needed, particularly on less charismatic species, groups that are expected to
react less dramatically to climatic change, and key areas that are still poorly investigated. This study
investigates changes in distributional and activity patterns in a common, ecologically tolerant, forest
tenebrionid beetle in a region (central Italy) within the Mediterranean biodiversity hotspot, an area
strongly subjected to the ongoing climate change, but for which research is still limited. By analyzing
changes in elevation, latitude, longitude, and seasonal activity between 1900–1980 and 1981–2022,
the results provided insights into the potential effects of climate change on this species. The beetle’s
average values of elevation and latitude were found to have been increased in the second period.
In response to rising temperatures, the species became more frequent at higher elevation and in
northern places. No strong evidence was found for an earlier species seasonal activity, but this could
be due to the inclusion in the analysis of likely overwintering individuals. The findings suggest that
even thermally tolerant species can undergo distributional shifts in elevation and latitude, even at a
relatively small scale.

Abstract: There is an increasing volume of literature on the impact of climate change on insects.
However, there is an urgent need for more empirical research on underrepresented groups in key
areas, including species for which the effects of climatic change may seem less evident. The present
paper illustrates the results of a study on a common forest tenebrionid beetle, Accanthopus velikensis
(Piller and Mitterpacher, 1783), at a regional scale within the Mediterranean basin. Using a large set
of records from Latium (central Italy), changes in the median values of elevation, latitude, longitude,
and phenology between two periods (1900–1980 vs. 1981–2022) were tested. Records of A. velikensis
in the period 1981–2022 showed median values of elevation and latitude higher than those recorded
in the first period. Thus, in response to rising temperatures, the species became more frequent at
higher elevation and in northern places. By contrast, A. velikensis does not seem to have changed
its activity pattern in response to increased temperatures, but this might be an artifact due to the
inclusion of likely overwintering individuals. The results obtained for A. velikensis indicate that even
thermally euryoecious species can show changes in their elevational and latitudinal distribution, and
that poleward shifts can be apparent even within a small latitudinal gradient.

Keywords: Accanthopus velikensis; Apennines; Coleoptera Tenebrionidae; global warming; insect
conservation; Italy; mountains
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1. Introduction

Due to anthropogenic causes, the ongoing climate change is occurring at a rate un-
precedented in the history of Earth, representing one of the most important drivers of
ecological change worldwide [1–4]. Although the impacts of climate change on species dis-
tributions may show considerable variation (including no or counterintuitive effects) [5–11],
the most commonly documented patterns in response to increasing temperatures are range
expansions/shifts upslope (i.e., to higher elevations) and poleward (i.e., to higher lati-
tudes) [9,10,12–30]. Species that cannot track their thermal niches through upslope and
poleward movements because of their low dispersal capabilities or geographical constraints
(e.g., species that are already on mountain tops cannot move further uphill), and that cannot
adapt to the new climatic conditions, are subject to population decline and even local or
global extinction if their environment becomes climatically unsuitable [30–36]. As seasonal
activities such as breeding and flowering are profoundly influenced by climatic conditions,
climate change also affects species phenology (i.e., the timing of seasonal events in their
life cycles) [37,38]. For example, several studies have documented earlier flowering in
many plant species in response to rising temperatures [10,39–41] and many birds have
advanced their breeding phenology [10,42–44] and spring migration [45]. The advance-
ment of phenology has also been observed in other vertebrates, such as amphibians [10,46],
reptiles [10,24], and mammals [47], and in invertebrates [10,15,43,48,49].

There is an increasing amount of literature on the impact of climate change on insect
distribution and phenology. Empirical evidence indicates that, with increasing tempera-
tures, insects tend to track their climatic niche by moving upslope [10,17,28,30,35,50–60]
and poleward [17,50,61–71]. Changes in phenology are also documented in many in-
sects, with a shift toward earlier seasonal activity being the most commonly recorded
pattern [38,49]. However, current studies on insect responses to climate change suffer
from many limits: (1) empirical studies have been progressively outweighed by predictive
work [28,30,36,72–83], which has led to a substantial scarcity of empirical data; (2) most
work has been focused on a few, usually charismatic taxa such as butterflies and drag-
onflies [19,30,35,51,52,55,59–61,65,66,68,71,73,84,85], while responses in most insect taxa
remain unknown; (3) most research has been conducted in relatively few areas, with a
strong preponderance of studies conducted in Europe, especially in central and northern
countries [9,10,17,23,26,50,53,59–61,68,70,71,86,87], while the impacts in other contexts re-
main poorly investigated; (3) attention has mostly been paid to species expected to respond
more dramatically to climate change (e.g., thermal specialists living at high elevations
and latitudes), while responses in species assumed to be less vulnerable/responsive are
overlooked [28,30,32]; (4) research on latitudinal shifts has been focused on relatively large
scales, usually at country level or even at broader scales [17,23,50,61,68,70,71,87], while
responses at smaller scales are substantially unexplored. Given the enormous diversity
of insects, this calls for more empirical research expanding the taxonomic, geographical,
and ecological scope of current work on the impact of climate change on these animals.
In particular, there is an urgent need for more empirical research on underrepresented
groups in key areas, including species for which the effects of climatic change may seem
less evident.

To contribute toward reducing these gaps, the present paper illustrates the results
of an empirical study on the effects of climate change on a generalist, forest tenebrionid
beetle, Accanthopus velikensis (Piller and Mitterpacher, 1783), at a regional scale within the
Mediterranean basin.

The Mediterranean basin is one of the global hotspots of biodiversity [88–91] whose
conservation is strongly threatened by the global change. The Mediterranean region is
warming 20% faster than the global average, and precipitations are expected to drop
dramatically (with 2 ◦C global warming, precipitation will be reduced by ~10 to 30% and
maximum daytime temperatures will likely increase by 3 ◦C; 4 ◦C of global warming will
make nearly all nights tropical, with almost no cold days) [92].
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Tenebrionids are one of the largest families of Coleoptera, comprising about 30,000 known
species [93]. Most tenebrionids (both adults and larvae) are saprophagous insects, feed-
ing on a variety of decaying matter [94–96]. Several species, however, feed on fungi,
algae, lichens, and mosses; a few are predators or semipredators feeding on other insects;
and many ground-dwelling larvae feed on living plant roots, stems, or seedlings [94–96].
Tenebrionids occur in the most diversified ecosystems: although these beetles are mostly
known to be particularly speciose in arid and semiarid environments, being a conspicuous
component of coastal and desert faunas, many species are associated with forests [94–98].

Accanthopus velikensis (also known as Enoplopus dentipes (Rossi, 1790), especially in
the past, and sometimes as Enoplopus caraboides (Petagna, 1786) in the older literature) is a
European tenebrionid distributed in mainland Italy (Piedmont [99], Lombardy [99–103],
Trentino-Alto Adige [99,104], Veneto [99,104], Friuli-Venezia Giulia [99,105], Liguria [106],
Emilia-Romagna [99,107,108], Tuscany [109–112], Umbria [113], Marche [114–116],
Latium [117–132], Campania [115,133], Abruzzi [134,135], Molise [136], Basilicata [115,137–
142], Calabria [113,115,133,142–146], Apulia [115,133,142,147,148]), Sicily [115,149–151],
Sardinia [152], Elba Island [153], Salina Island [154], southwestern France (Alpes-de-Haute-
Provence, Alpes-Maritimes, Var) [155–158], Corsica [158,159], Switzerland [159–161], Al-
bania [162], Slovenia [105], Croatia [113,160,162], Dalmatian Islands [105,160], Bosnia-
Herzegovina [113,162], Montenegro [113,160,162], Serbia [163,164], Greece [165–168], Bul-
garia [169–173], Romania [162,174–176], Poland [177–179], Hungary [180,181], and Euro-
pean Turkey [182,183]. Köhler and Klausnitzer [184] indicate its presence in Germany as
erroneous, but citations from some places in Bavaria (Munich environs, Landsberg am Lech,
Wildbad Kreuth, Wasserburg am Inn) are authoritative [137]. A citation from Austria [185]
might refer to areas that were once within the Austrian territory, but that belong now to
Croatia or Italy; thus, the presence of this species in Austria is possible [186], but needs
confirmation [182]. The species is also generically quoted from North Macedonia [187].

The species has wide ecological preferences and is found in a variety of forest types,
especially broadleaves, from the sea level to about 1200 m elevation, being associated
with beeches (Fagus sylvatica) [104,133], chestnuts (Castanea sativa) [133,158], oaks (Quercus
sp.) [104,119,133], cork oaks (Quercus suber) (Fattorini, pers. obs.), birches (Betula) (Fattorini,
pers. obs.), elms (Ulmus sp.) [133], hazels (Corylus avellana) [104], plane trees (Platanus
sp.) [153], silver firs (Abies alba) [110], Aleppo pines (Pinus halepensis) [158], Calabrian pine
(Pinus nigra laricio) [133], eucalypts (Eucalyptus sp.) [125], and acacias (Acacia sp.) [125].
In Friuli-Venezia Giulia, it is reported as common in humid deep valleys with mixed
broadleaved forests around the city of Trieste [105]. In Tuscany, it has also been found
in wet zones [111]. In Apulia, it has been found in an ecotonal zone between maquis
and broadleaved forests, in beech forests, and in pinewoods [148]. In Latium, it has
been collected in hygrophilous woods [119,121], holm oak forests [119], pinewoods [122],
beechwoods, chestnut groves, mixed forests, and Mediterranean maquis (Fattorini, pers.
obs.). In northern Greece, Schawaller [167] found the species in a Fagus/Quercus forest, a
Quercus/Carpinus forest, and in a bush forest with Quercus, Castanea, and Fagus. In Bulgaria,
it was found in large numbers in chestnut forests [172], and it was also commonly found
in the chestnut forests of Alban Hills (Latium) (Fattorini, pers. obs.). In Turkey, it was
found in a Fagus/Quercus forest [182]. In France, it was reported to occur in small humid
valleys [158], and, in Corsica, it was found in a riparian forest rich with chestnuts [159].

The species (which is indicated as feeding on lichens [183]) is usually found under
bark [104,120,158,167], but it can be also found in a variety of other microhabitats, includ-
ing under stones [108,120,159,160], in the debris of old trees [160], in the litter of forest
habitats (Fattorini, pers. obs.), on hedges [160], in tree holes (Abies alba [110]), and even in
carcasses [188].

The species is nocturnal and frequently gregarious, which can lead to many torpid and
inactive individuals being aggregated in the same microhabitat during the day; at sunset,
they become active, walking on the trees or at their base [119]. Adults of A. velikensis can be
observed all year round [119,121,158]. In central Italy, it is usually present in large numbers,
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being one of the most abundant tenebrionids of forest communities, even in fragmented
landscapes, including urban green spaces [120,121,123,125–127,131,189]. A. velikensis is,
therefore, a species with a wide geographical distribution, a broad elevational range, wide
ecological preferences, and usually abundant populations. These characteristics make
it an excellent model organism to investigate the effects of climate change on generalist
forest beetles.

I focused on the response of A. velikensis to climate change in central Italy based
on data collected from the Latium region, as this area has been intensively sampled by
entomologists since the beginning of the 20th century [124]. To test whether the ongoing
climate change impacted A. velikensis ecology, I divided the data into two periods: a first
period (1900–1980), which should reflect climatic conditions before the effects of the ongoing
climate change, and a second one (1981–2002) that was characterized by increased average
temperatures. Because of the opportunistic nature of the data, I focused on the spatial
and temporal frequency distribution of A. velikensis records, as the sampling sites differed
between periods and the use of numbers of individuals would have been more strongly
subject to collecting biases (for example, the use of pitfall traps in certain sites in some years
might have led to the collection of very large numbers of individuals, compared to those
commonly collected by hand searching).

On these bases, I hypothesized that—as a consequence of increasing temperatures—in
the second period, A. velikensis became more frequent at higher elevations (H1) and at
higher latitudes (H2). Moreover, I hypothesized that the species advanced its phenology
(H3) in the second period.

These hypotheses led to the following predictions:

1. Prediction 1: Based on H1, the average elevation records of A. velikensis should be
higher in the second period.

2. Prediction 2: Based on H2, the average latitude records of A. velikensis should be
higher in the second period.

3. Prediction 3: If changes predicted by Predictions 1 and 2 are really due to climate
change and not to increased sampling at higher elevations or latitudes in the sec-
ond period, the localities in the second period should have current temperatures
similar those that characterized the localities in the first period (isotherm tracking
hypothesis [11]). If we assume that the species did not change its thermal optimum
between the two periods, in the second period, it should have been recorded more
frequently in localities that, based on their position (elevation and latitude), have, on
average, temperatures similar to those that the species experienced in the localities
from which it was found in the first period, and which are now less suitable because
of temperature increases. If, on the contrary, the records from the second period
were characterized by substantially lower temperatures than those of the first period,
this would indicate that the changes in the species’ average elevation and latitude
were biased by increased sampling at higher elevations and latitudes. In this case,
the results in accordance with Prediction 1 and 2 would not necessarily support H1
and H2.

4. Prediction 4: If the changes predicted by Prediction 1 are really due to climate change
and not to increased sampling at higher elevations, no longitudinal effect should be
deduced. As the mountain areas prevail eastward, a significant increase in records
eastwards would indicate that a higher frequency of records from higher elevations
might have been biased by increased sampling in more mountainous sectors of the
study area.

5. Prediction 5: Based on H1 and H2, in the second period, A. velikensis should have been
more frequently found in localities with phytoclimatic conditions indicating lower
temperature and lower aridity. Phytoclimatic approaches classify areas integrating
climatic and vegetational characteristics [190]. Using a phytoclimatic classification
based on data for the first period, and assuming that conditions have now changed,
in the second period, A. velikensis should have been recorded more frequently in



Insects 2024, 15, 242 5 of 22

phytoclimatic units that were originally classified as expressing colder and more
humid conditions.

6. Prediction 6: Based on H3, the frequency of records in the second period should
exhibit an advanced average value for the month or day of collection.

2. Materials and Methods
2.1. Study Area

The study involved the distribution and phenology of Accanthopus velikensis in Latium
(central Italy) (Figure 1). This region extends for 17,232 km2, of which 20% is flat, 54%
hilly, and 26% mountainous [191]. Coasts are mainly represented by sandy beaches (with
sparse relicts of dune vegetation), with rocky coasts being limited to small areas in the
southernmost part of the region. Coastal plains are represented by the Maremma Laziale in
the northern sector of the region (a formerly mostly malarial marshland), the Campagna
Romana in the middle (a large alluvial plane whose characteristics reflect the millenary
agricultural and pastoral activities associated with the presence of the city of Rome), and
the Agro Pontino in the southern part (another formerly swampy area that was largely
reclaimed to extirpate the malaria). These lowland areas are mainly occupied by cultivated
fields, interspersed with remnants of natural vegetation mostly represented by Mediter-
ranean shrublands and maquis, with rare fragments of hygrophilous woodlands. The
mountainous territory of the region includes both pre-Apennine and Apennine mountains.
The pre-Apennines comprise groups of mountains of volcanic origin (Volsini, Cimini, Tolfa,
and Sabatini mountains), mainly characterized by mixed broadleaved forests; the Alban
Hills (also of volcanic origin), which are characterized by chestnut (Castanea sativa) woods;
and, in the southern part, the Lepini, Ausoni, and Aurunci Mountains (calcareous), where
typical evergreen broadleaves (Quercus ilex and Quercus suber) prevail. The Apennines of
Latium are a continuation of the Apennines of Abruzzo, and include the Reatini, Cicolani,
Sabini, Prenestini–Tiburtini–Ruffi, Simbruini–Catari, and Ernici–Mainarde Mountains,
which are mainly characterized by the presence of deciduous oak woods (Quercus cerris,
Quercus pubescens) and beech woods (Fagus sylvatica). For further details on the geography
and vegetation of Latium, see, for example, [192–195]. Because of its complex topography
(the highest peak is Mount Gorzano at 2458 m, on the border with the Abruzzi region), the
region shows a wide variety of climates, ranging from typically Mediterranean climates
along the coasts (with average annual temperatures around 17 ◦C, less than 1000 mm of
annual precipitation, and a distinct period of summer aridity) to subalpine climates on
the highest peaks (with average annual temperatures < 10 ◦C, about 1500 mm of annual
precipitation, and a lack of a period of summer aridity) [190,196].

2.2. Data Sources

The data used in this paper were mainly obtained from the examination of material
preserved in public and private collections (1409 examined specimens) supplemented with
literature information, for a total of 404 records. I considered any data that differ in terms
of location, elevation, and/or date of collection as separate records. These data spanned
from 1900 to 2022 and, because of the variety of sources used, they form a random sample
not affected by biases due to collector preferences for certain areas or habitats. The insects
were collected using a variety of methods, including hand searching (on the ground, under
stones and fallen trees, on trees, under bark, etc.), pitfall traps, Malaise traps, and soil
examination (with sand and litter sieving), in both open and forest vegetation from sites
distributed through the whole elevational gradient of the species.
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Figure 1. Study area (Latium, central Italy). (A) Main orographic systems. The inset shows the
location of Latium (in red) within the Italian territory. (B) Distribution of records of Accanthopus
velikensis (each dot is a locality for which one or more records are available). Circles: Data for the
period 1900–1980. Squares: Data for the period 1981–2022. Pink squares indicate data omitted from
the analyses conducted with the reduced dataset. Image generated using Google Earth Pro (version
7.3.6.9750). The inset shows an adult individual of A. velikensis in its habitat.

Where label data included elevation and geographical coordinates, I used this original
information for the analyses. Otherwise, I deduced the elevation and geographical coor-
dinates of records from locality names reported on the label with the maximum allowed
precision. For material obtained from pitfall traps, if the period of trap activity was between
two months, I assumed that individuals were collected during the month in which the trap
was more active (for example, individuals collected from 24 September to 24 October 1985
were assumed to be collected in October 1985). Julian calendar dates (1 January = day 1,
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etc.) were calculated only when the day of collection was known. Each record was assigned
to a phytoclimatic unit using the classification proposed by Blasi [190]. These phytoclimatic
units integrate information on climate and vegetation using data on average monthly
rainfalls, averages of minimum and maximum monthly temperatures, and plant (mostly
tree) associations. Following the original scheme, the phytoclimatic units were numbered
from 1 to 14 reflecting increasing temperatures and aridity (unit 15 was exclusive to the
Pontine Islands, and, hence, absent in the study area; Table S1). All data are reported in
Table S2.

To depict variations in the average annual temperatures from 1990 to 2022 over the
study region, I used data from [197] (Table S3, Figure S1). To model variations in the annual
temperatures in response to elevation, latitude, and longitude in the study area, I used a
dataset of climatic data for the period 1955–1985 [190] (Table S4). This dataset included data
from 108 meteorological stations, from which I excluded those of Ponza and Pratolungo as
they were from an insular station and a locality out of the Latium region, respectively. As
for the elevation of the meteorological stations, I used those reported by Blasi [190]. The
coordinates of the meteorological stations were deduced from their location, as shown in
the map provided in this reference, because they were not explicitly given.

2.3. Data Analysis

To assess shifts in the frequency distribution of elevation, latitude, longitude, phy-
toclimate, month, and day of A. velikensis records, I divided the data into two periods:
1900–1980 and 1981–2022. I adopted this division because the rapid climate warming in
Italy in general and in the study area in particular started around the 1980s [198–201]
(see Figure S1). I used a one-tailed t-test with correction for unequal variances to test the
significance in the difference in the average annual temperatures between the two periods
using the data from Table S3.

Differences in the median values of elevation (Prediction 1), latitude (Prediction 2),
longitude (Prediction 4), phytoclimate (Prediction 5), and month and day (Julian date)
(Prediction 6) in A. velikensis records between the two periods were tested using one-tailed
Wilcoxon rank sum tests with continuity correction. For phenology, I used both month and
Julian date, as, for many records, only the month of collection was known.

To test Prediction 3, I modeled how the average annual temperatures in the study
area varied with elevation, latitude, and longitude using a multiple linear regression with
the data given in Table S4. Based on the multiple regression model with these climatic
data, I calculated the thermal optimum of A. velikensis for the first and second periods by
introducing into the model the values of median elevation, latitude, and longitude of A.
velikensis records calculated for the two periods, respectively. Then, the resulting optima
were compared, assuming an increase of 0.9 ◦C (as this was the average increase observed
in the study region—see Results) in all localities for the second period. If, taking into
account this correction, the two optima were similar in the two periods, changes in the
median values in the distribution of records in the second period are assumed to reflect an
increasing frequency of collection in places that were close to the thermal optimum of the
species, as deduced from the data from the first period.

Because of the opportunistic nature of the data, they might be affected by some biases
toward higher elevations and latitudes, if sites at higher elevations and latitudes were
more accessible in the second period. To reduce this risk, I repeated the analyses by
excluding records for the second period that were located in areas far from any records of
the first period.

All statistical analyses were performed in R [202] with the packages stats and ggplot2.
In all cases, statistical significance was set at α = 0.05. Figure 1A was constructed in ArcGIS
Pro 3.1.3 [203] with the function Hillshade using data from TINITALY [204].
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3. Results

The mean of the average annual temperatures for the period 1981–2022 (14.12 ◦C) was
significantly higher than the mean for the period 1900–1980 (13.23 ◦C) (t = 8.904, df = 62.543,
p < 0.0001), with an average increase of 0.89 ◦C.

A multiple regression model indicated that the average annual temperatures decreased
with elevation and latitude, whereas longitude did not have a significant effect (Table 1).

Table 1. Results of multiple regression between average annual temperature (◦C) and elevation,
latitude, and longitude from 106 meteorological stations in Latium (central Italy) (years: 1955–1985).
R2 = 0.895, F(3,102)= 289.5, p < 0.00001. SE = Standard Error, t = Student’s t.

Estimate SE t p

Intercept 50.068 12.410 4.035 0.0001
Elevation (m) −0.005 <0.001 −21.431 <0.00001
Latitude (◦ N) −0.756 0.255 −2.963 0.004

Longitude (◦ E) −0.182 0.162 −1.125 0.263

The records of Accanthopus velikensis changed their median elevation from 393 m in
the period 1900–1980 to 550 m in the period 1981–2022 (W = 10,278, p = 0.002) (Figure 2A).
This means an uphill shift of about 157 m between the two periods. Using the mid-points
of the two recording periods (i.e., 1940 and 2002, respectively; hence, a period of 62 years),
this corresponds to an average upward shift of about 2.5 m per year.

A significant change was also observed in the median latitude, from 41.892◦ N in
1900–1980 to 42.153◦ N in 1981–2022 (W = 8610, p < 0.0001) (Figure 2B). This means a
northward shift of about 0.26◦ latitude (i.e., about 30 km) of the median (which means an
average poleward shift of 484 m per year).

No significant change was detected for the median longitude between the first period
(12.490◦ E) and the second period (12.447◦ E) (W = 13,312, p = 0.769) (Figure 2C).

Based on the multiple regression model with climatic data for the 1955–1985 period,
the thermal optimum of A. velikensis in the first period (i.e., for an elevation of 393 m, a
latitude of 41.892◦ N, and a longitude of 12.490◦ E) was an average annual temperature of
14.16 ◦C, whereas for the second period (i.e., for an elevation of 550 m, a latitude of 42.153◦

N, and a longitude of 12.447◦ E), it was 13.43 ◦C. This means an increase of records in the
second period from localities that (in 1955–1985) were, on average, 0.7 ◦C colder than those
of the first period. These localities are expected to be now, on average, 0.9 ◦C warmer than
in the 1955–1985 period used as reference. Thus, the true thermal optimum of A. velikensis
in the second period would be estimated at around 14.3 ◦C (i.e., 13.4 + 0.9 ◦C), which is
extremely close to that calculated for the first period (14.2 ◦C). This suggests that changes
in the median values in the distribution of records reflected an increasing frequency of
collection in places that were close to the thermal optimum of the species.

Accanthopus velikensis also showed a significant increase in records from localities with
colder phytoclimates in the second period (W = 16,554, p-value < 0.00001) (Figure 2D).
In the first period, the median value corresponded to the phytoclimatic unit 11, whereas
the median value in the second period corresponded to the phytoclimatic unit 4. This
means that, in the second period, the species was more frequently collected in habitats
characterized by vegetation associated with colder and more humid climates. Overall, the
species was not recorded from phytoclimatic units 1, 5, and 8.
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Figure 2. Violin plots illustrating changes in elevation (in m) (A), latitude (◦ N) (B), longitude (◦ E) (C),
phytoclimate (increasing values indicate warmer and drier climates) (D), month (E), and day (Julian
date) (F) of records of the tenebrionid Accanthopus velikensis in Latium (central Italy) in two periods
(1900–1980 and 1981–2022). Kernel densities, medians, quartiles, ranges, and outliers are represented.
Results obtained with the full dataset.

No significant change was detected for the median month between the first and the
second period, which was July in both cases (W = 11,652, p = 0.760) (Figure 2E). A certain
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shift toward earlier dates in the frequency of records was observed in the second period, as
the median was 22 July in the first period and 7 July in the second period, but the difference
was not significant (W = 2926.5, p = 0.145) (Figure 2F).

When the analyses were replicated with the reduced dataset, records of A. velikensis
changed their mean elevation from 393 m to 520 m (i.e., a 127 m uphill shift, which means
an average shift of about 2 m per year), and the difference was marginally significant
(W = 9099, p = 0.060) (Figure 3A).
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Figure 3. Violin plots illustrating changes in elevation (in m) (A), latitude (◦ N) (B), longitude (◦ E) (C),
phytoclimate (increasing values indicate warmer and drier climates) (D), month (E), and day (Julian
date) (F) of records of the tenebrionid Accanthopus velikensis in Latium (central Italy) in two periods
(1900–1980 and 1981–2022). Kernel densities, medians, quartiles, ranges, and outliers are represented.
Results obtained with a reduced dataset.
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The median latitude of the species records also changed from 41.892◦ N to 41.933◦ N
(W = 8460, p = 0.019), which means a northward shift of about 0.04◦ latitude (i.e., about 5 km)
in the median values (which means an average shift of about 81 m per year) (Figure 3B).

No significant change was detected for the median longitude between the first period
(12.490◦ E) and the second period (12.403◦ E) (W = 10,563, p = 0.765) (Figure 3C).

Based on the multiple regression model with climatic data for 1955–1985, the thermal
optimum of A. velikensis in the second period (i.e., for an elevation of 520 m, a latitude of
41.933◦ N and a longitude of 12.403◦ E) was 13.51 ◦C. This means an increase in records in
the second period from localities that (in 1955–1985) were, on average, 0.7 ◦C colder than
those of the first period, as observed for the whole dataset. Thus, using the reduced dataset,
the thermal optimum of A. velikensis in the second period would, again, be around 14.4 ◦C.

Accanthopus velikensis also showed a significant increase in records from localities
with colder phytoclimates in the second period (W = 12,045, p < 0.001) (Figure 3D), with a
median value for the second period (1981–2022) corresponding to the phytoclimatic unit 8.
This means that, in the second period, the species was more frequently collected in habitats
characterized by vegetation of colder climates, although less profoundly than obtained
using the whole dataset.

No significant change was detected for the median month between the first and the
second period, which was July in both cases (W = 9321, p = 0.718) (Figure 3E). A certain
shift toward earlier dates in the frequency of records was observed in the second period, as
the median for the second period was, again, 7 July, but the difference was not significant
(W = 2800.5, p = 0.159) (Figure 3F).

4. Discussion

The results obtained in this study indicate that, in the last 41 years, the tenebrionid
beetle Accanthopus velikensis was found more frequently at higher elevations, from northern
localities, and in colder and more humid habitats, compared to pre-1981 data, whereas no
significant change was detected in its median phenology in central Italy.

Various studies have documented elevational range shifts in insects (especially but-
terflies) due to climate change [10,17,28,30,35,50–60]. In accordance with these previous
findings, A. velikensis showed an increase in the median elevation from the first (1900–1980)
to the second (1981–2022) period (as expected according to Prediction 1), whereas the
elevational range of the species (0–1200 m) did not change between the two study periods.
This pattern is consistent with one of the basic patterns identified in insect elevational
shifts: a shift in average elevation with range limits unchanged [28]. The lack of change
in the range limits suggests that the species continues to find suitable conditions through
its whole elevational range, but its thermal optimum shifted uphill. This uphill shift is
consistent with increased temperatures; in other words, because of increasing temperatures,
the optimum shifted uphill, making the species more frequently found at higher elevations.
The increase in the median elevation of records from the second period might be artifactual
if, for any reason, higher elevational areas were more accessible in the second period than
in the first one. For example, higher elevational areas might have become easier to reach by
entomologists in the second period because of road development, improvements in public
transportation, and increased use of personal vehicles. However, I found that the same
pattern was also revealed when remote sites in the second period were excluded. Moreover,
in the study region, elevation tends to increase eastwards; thus, if the increased median
elevation for the second period were an effect of better exploration of eastern sectors, this
would have produced an increase in the median longitude of the records, which, however,
was not observed (Prediction 4). Thus, the easier accessibility of higher elevation sites does
not seem to have played a substantial role (if any) in determining an increased median value
of the elevation at which the species was found. Interestingly, the elevational distribution
of records in the second period shows a certain concentration not only around the median,
but also at very low elevations, a pattern less accentuated in the first period. This might
be due to increased sampling efforts in lowland forest areas, including reserves (Circeo
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National Park [121], Castel Porziano Estate [119,129], Castel Fusano Park [120,122]). Using
the full dataset, the elevational shift in the median value was of 157 m uphill, whereas it
was of 127 m when the reduced dataset was used, which means an average uphill shift of
about 2–3 m per year. Previous research on elevational shifts in insects produced variable
results depending on the taxon, the study area, the considered period, and the methods
used. For example, recorded velocities were up to ~22 m/year for butterflies [30] (although,
in most cases, the velocities were of a few meters per year [10,17,35,50–52,56,58–60,205]);
between 0.3 and 2.5 m/year for odonates [10,17]; 0.2–4.7 m/year for orthopterans [10,17];
4–8 m/year for dung beetles [10]; and up to 0.5 m/year in ground beetles, 1.56 m/year
in cerambycid beetles, 2.48 m/year in soldier beetles, and 1.3 in aquatic bugs [17]. Thus,
the recorded velocity for the elevational shift observed in A. velikensis is within the range
typically observed for other insects in a variety of contexts. However, it is important to
stress that this shift indicates a higher frequency of findings at higher elevations, which
does not necessarily imply a true migration, but might be due to increased abundance at
higher elevations. In other words, the shift in the elevation corresponding to the species’
thermal optimum might have generated an increase in the relative abundance of individu-
als at higher elevations, thus increasing their probability of being found by entomologists.
Although the two explanations (immigration and local increase in abundance) are not mu-
tually exclusive, the second appears more reasonable given the low dispersal capabilities
of this flightless insect.

Poleward shifts are documented in various insect groups, such as odonates [68,70],
lepidopterans [50,61,62,65–67,69,71], orthopterans [17], hemipterans [17,63,64], and beetles
(including carabid beetles, longhorn beetles, and soldier beetles) [17], and other arthropods,
such as woodlice and spiders [17]. Consistent with these previous findings and our
Prediction 2, records of A. velikensis showed an increase in the median latitude from
the first (1900–1980) to the second (1981–2022) period. Using the full dataset, this result
might be due to the presence of records in northern places where the species was found in
the second period, whereas there were no records at similar latitudes for the first period.
This translated into an ostensible range extension towards northern latitudes. While it is
possible that the species has become more frequent there, it surely occurred in these areas
before 1981, as it is widely distributed through the Italian peninsula (see Introduction).
However, an increase in the median latitude from the first to the second period was also
revealed after the exclusion of these northern records, which suggests that the species really
did increase its frequency in northern areas, albeit still being present in the southern ones.
As already discussed for elevation, a possible bias might be represented by an increased
accessibility to northern areas during the second period, for example by improvements in
road development, public transportation, and the use of private vehicles. However, while
these improvements have certainly allowed entomologists to reach remote localities, there is
no reason to suppose that this should have facilitated entomological exploration in northern
areas more than in the southern ones. Using the full dataset, the latitudinal shift in the
median value was of about 30 km poleward, whereas it dropped to 5 km when the reduced
dataset was used, which means, on average, a northward shift of about 0.08–0.48 km per
year. This large discrepancy reflects the high incidence of the northernmost sites from
which the species was recorded in the second period, but which was not paralleled by
sites at similar latitudes in the first period. Previous findings on poleward shifts in insects
showed a high variability, again depending on the taxon, the study area, the considered
period, and the methods used. For example, the recorded velocities were up to 1.8 km/year
for butterflies [17,50]; between 1.4 and 11.5 km/year for odonates [17,70]; 0.4–1.36 km/year
for orthopterans; and up to 2.2 km/year in ground beetles, 1.72 km/year in cerambycid
beetles, 3.64 km/year in soldier beetles, and 4.2 km in aquatic bugs [17]. Thus, the recorded
velocity for the poleward shift observed in A. velikensis is within the range observed for
other insects in different contexts, but possibly close to the lower values. As discussed for
the elevational shift, also in this case, the increase in records at higher elevations is probably
due to an increase in local abundance (and, hence, detectability by entomologists) rather
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than migration. It is important to note that studies on poleward shifts in insects have so far
been conducted at relatively large scales, while the current research suggests that effects
can be deduced even at a smaller scale (the entire investigated latitudinal gradient was less
than 180 km), although caution is needed in accepting this finding because of the very small
geographical distance and possible biases in data collection. Although to a lesser extent
compared with the elevational shift, the latitudinal shift contributed to maintaining the
species in the second period more frequently in places with the same climatic conditions
that characterized those in which it was more frequent in the first period (Prediction 3).

Overall, the species was found in all phytoclimatic units occurring in mainland Latium,
excluding phytoclimatic units 1, 5, and 8. This is consistent with the high euryoecy of the
species. Phytoclimatic unit 1 is the coldest and is restricted to the highest elevations of the
region (mountain summits near the border with the Abruzzi region) out of the elevation
range of the species. The lack of records from phytoclimatic units 5 and 8 is likely due to
their concentration in the Sacco valley and adjacent hills (foothills of Ernici and Mainarde,
Lepini, and Ausoni and Aurunci Mountains), an area from which tenebrionid records are
typically rare (see map in [206]). The wide distribution of A. velikensis across phytoclimatic
units indicates that it is a rather euryoecious species. However, the record frequencies in
different units changed significantly between the two periods, with an increase in records of
colder phytoclimatic units in the second period (Prediction 5). This is consistent with results
concerning elevation, since colder and more humid phytoclimatic units are typical of higher
elevations. The high concentration of records in phytoclimatic units 4 and 11 is a reflection
of their presence on the Alban Hills, a hilly area (~300–950 m) covered with chestnut forests
where the species seems to be very abundant. All of these findings indicate that A. velikensis,
albeit euryoecious, was affected by the ongoing climate change, becoming more frequent at
higher elevations and latitudes, and illustrate how climate change distinctly affects even
species with broad niche widths.

Based on its distribution in Apulia, Marcuzzi [148] found that the distribution of A.
velikensis was unrelated to the climatic conditions summarized by Lang’s pluviofactor
and concluded that, being associated with subcortical spaces, which are a protective
microhabitat, the species is more influenced by the microclimate than by the macroclimate.
The results of the present study show that, in fact, A. velikensis is influenced by macroclimatic
conditions and it is sensitive to changes in temperatures and precipitations. It must be
stressed that subcortical spaces may only represent a relatively stable environment within
the bioclimatic conditions of a certain site, and that adults are exposed to these conditions
when they are active on trunk surfaces during the night.

Given the strong impact of the ongoing climate change in the Mediterranean basin [92],
these results illustrate how even common and eurythermic species may be affected by
climate change in this biodiversity hotspot. A. velikensis is a common species in terms of
geographical distribution (it is widely distributed in southern Europe), ecological needs
(it occupies a variety of habitats), and population size (it may be locally abundant), three
criteria that are used to evaluate species vulnerability [207], yet it is not immune to the
ongoing climatic change. Although A. velikensis continues to be frequent at lower elevations,
the elevational shift observed in this species is particularly alarming, as it might be unable
to efficiently track its thermal optimum because of its low dispersal capabilities. This
might lead to a reduction in its lowland populations. As previous research has been mostly
focused on butterflies [10,17,30,35,50–53,55,56,58–62,65,66,69,71], which have generally
good dispersal capabilities, these findings call for more research on more sedentary insects.

Changes in phenology are one of the best known aspects of insect response to climate
change [49]. For example, many insects (especially among lepidopterans) have substantially
advanced their appearance [10,84,205,208–211] and extended their flight period [84,87].
Some bark beetles, butterflies, and moths have also increased the number of generations per
year [86,212]. However, increased temperature may also change overwintering strategies.
A delay in the winter diapause induction might lead to a complete or partial additional
generation in the autumn that cannot survive or enter diapause [213,214]. As adults of
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A. velikensis are known to be present all year round, we could not expect a phenological
extension, but an advance of the median activity was hypothesized (Prediction 6). However,
contrary to expectations, there was no significant shift in A. velikensis phenology. In both
periods, the species showed a unimodal phenology extending all year round and centered
in July. In fact, an advance in the median day (from 22 July to 7 July) was observed, but
significance was not reached. However, these results might have been influenced by the
large dispersion of data, which is at least in part due to collection modalities (hand searching
under bark might have led to the collection of likely overwintering individuals in winter,
when the species might be not active). Data from pitfall traps and personal observations
indicate that the species is mainly active between May and September. For a more reliable
phenological reconstruction, careful pitfall trapping and possibly dissections to evaluate
the fertility and fecundity of females and males and other parameters of the gonadal
status would be helpful. A direction for future research might be to perform phenological
surveys at different elevations, to also take in account the effect of the habitat features
on the population density of this tenebrionid (a detail that is impossible to extrapolate
from collection materials), and a space-for-time approach, in which future trajectories are
inferred from contemporary spatial patterns [215,216].

In summary, the results obtained in this study supported the hypotheses that A.
velikensis became more frequent at higher elevations (H1) and at higher latitudes (H2), but
not the hypothesis that the species advanced its phenology (H3) in the second period.

5. Conclusions

Records of Accanthopus velikensis from Latium (central Italy) in the period 1981–2022
became more frequent at higher elevations and latitudes compared to their distribution
in the period 1900–1980. These shifts do not seem to be imputable to an intensification of
sampling at higher elevations and latitudes, but are consistent with an increase in average
temperatures. By contrast, A. velikensis does not seem to have changed its activity pattern
in response to increased temperatures, but this might be an artifact due to the inclusion
of likely overwintering individuals that inflates data dispersion. The results obtained for
A. velikensis indicate that even thermally euryoecious species can show changes in their
elevational and latitudinal distribution, and that poleward shifts can be apparent even
within a small latitudinal gradient.
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data reported in [190]).
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