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Simple Summary: Functional redundancy, the coexistence of species with similar functional roles, is
of critical importance for ecosystem function stability. However, drivers of functional redundancy
remain relatively poorly understood. Here, we analyzed four traits of British butterflies and aimed to
identify the biotic and abiotic factors that affect the spatial patterns of functional redundancy. The
most important factor was taxonomic diversity, with species-rich communities having the highest
level of functional redundancy. Temperature was associated with redundancy and with different
facets of taxonomic and functional diversity. However, although warmer areas hosted species-rich
communities, redundancy was greatest in areas of intermediate mean annual temperature and
declined at higher temperatures. This might imply that despite the positive effect of increased
temperature on butterfly diversity, warmer and species-rich areas are vulnerable, perhaps due to the
land uses dominating in these regions. Landscape heterogeneity promoted species richness, func-
tional redundancy and variation in species and functional composition of the butterfly assemblages,
underscoring the importance of maintaining diverse landscapes.

Abstract: Biodiversity promotes the functioning of ecosystems, and functional redundancy safe-
guards this functioning against environmental changes. However, what drives functional redundancy
remains unclear. We analyzed taxonomic diversity, functional diversity (richness and β-diversity)
and functional redundancy patterns of British butterflies. We explored the effect of temperature and
landscape-related variables on richness and redundancy using generalized additive models, and on
β-diversity using generalized dissimilarity models. The species richness-functional richness relation-
ship was saturating, indicating functional redundancy in species-rich communities. Assemblages did
not deviate from random expectations regarding functional richness. Temperature exerted a signifi-
cant effect on all diversity aspects and on redundancy, with the latter relationship being unimodal.
Landscape-related variables played a role in driving observed patterns. Although taxonomic and
functional β-diversity were highly congruent, the model of taxonomic β-diversity explained more
deviance than the model of functional β-diversity did. Species-rich butterfly assemblages exhibited
functional redundancy. Climate- and landscape-related variables emerged as significant drivers of
diversity and redundancy. Taxonomic β-diversity was more strongly associated with the environ-
mental gradient, while functional β-diversity was driven more strongly by stochasticity. Temperature
promoted species richness and β-diversity, but warmer areas exhibited lower levels of functional
redundancy. This might be related to the land uses prevailing in warmer areas (e.g., agricultural
intensification).

Keywords: functional diversity; taxonomic diversity; species richness; functional richness; redundancy;
β-diversity; abiotic drivers; climate warming

1. Introduction

Through their activities such as land-use change, habitat degradation and resource
overexploitation, humans have transformed the biosphere, with scientists warning that
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we are on the verge of crossing, or we have already crossed, the planetary boundaries [1].
Our planet has drastically changed, with for example frequent extreme weather events,
drought, and severe floods and the global warming that is felt almost daily as in the last
100 years, average temperature increased by 0.7 ◦C, and further increase is expected in the
foreseeable future [2,3]. The biodiversity loss is unprecedented and evidence suggests that
ecosystem functioning and delivery of ecosystem services is destabilized [4]. Therefore, the
urgency to comprehend diversity patterns and underlying processes driving them is crucial
to ensuring ecosystem functioning and resilience in order to secure a better future [4,5].

Taxonomic diversity is the most widely studied facet of diversity and has been exten-
sively used to explore the biodiversity-ecosystem functioning relationship [6,7]. However,
consequences of biodiversity loss on ecosystems depend on facets of biodiversity other
than merely species richness, such as functional diversity [8]. Functional diversity, i.e., the
diversity of behavioral, physiological and morphological traits within a community, reflects
the role of species within ecosystems and their responses to environmental changes [9].
Thus, functional diversity metrics are more strongly associated with ecosystem functioning
than taxonomic diversity [6] and can provide unique insights into biodiversity responses
to changes and subsequent impacts on ecosystem functioning [10]. However, functional
diversity patterns at large spatial scales (but see [11–14]) and the environmental drivers
(e.g., climate, landscape factors) shaping them are not fully elucidated [15].

Biodiversity promotes ecosystem functioning and safeguards it through insurance
effects against environmental changes and disturbances. In this context, species-richer
communities have more species that perform similar functional roles, ensuring that loss of
ecosystem functions by biotic erosion is mitigated [16]. This concept is defined as functional
redundancy. Specifically, functional redundancy refers to the presence of multiple distinct
species that share functional traits and perform similar, and thus interchangeable, ecosystem
functioning in the community. In other words, functional redundancy reflects the functional
roles’ overlap within the ecosystem. Consequently, even if the contribution of some species
to ecosystem processes decreases or collapses, e.g., in case of abundance decrease or
extinction, other species will fill in the “gap”, i.e., compensate for the losses and retain
ecosystem functioning levels [17]. Given that species with similar functional roles respond
differently to environmental changes, functional redundancy contributes to the temporal
stability of ecosystems [18].

The coexistence of functionally similar species within a community might signal
that abiotic conditions act as environmental filters selecting species with traits adapted
to the local conditions [19]. Mapping patterns and drivers of variation in taxonomic and
functional β-diversity can shed light on the underlying mechanisms shaping community
assembly. Taxonomic β-diversity quantifies the variation in species composition [20],
while functional β-diversity is defined as the trait diversity among species from different
communities. The simultaneous consideration of taxonomic and functional β-diversity
allows us to understand how communities respond to environmental and spatial gradients
and disturbances [21]. A considerable amount of knowledge on taxonomic β-diversity
across environmental gradients at different spatial and temporal scales has been gained, but
the patterns of functional β-diversity (especially at coarse geographic scales and for most
taxa) and their linkage to ecosystem functioning has not yet been entirely revealed [22].

The biotic impoverishment underpins the need to understand the role of functional
redundancy that might act as the “life-boat” of ecosystem functioning (at least in the short
term). Butterflies, a well-studied diverse group of invertebrates of importance for pollina-
tion, are sensitive to and reflect environmental changes that are imprinted on ecosystem
functioning due to their short life cycle [23,24]. Butterflies are threatened by human-induced
disturbances such as land-use intensification and global warming, and are declining world-
wide [25,26]. Here, we aim to assess the patterns and drivers of different facets of diversity,
and of functional redundancy, using data from the butterfly atlas of Great Britain for the
time period of 2005–2009 [27]. We estimated functional redundancy and vulnerability
following Mouillot et al. [28] as well as taxonomic and functional richness and β-diversity.
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We explored the relationship between diversity and redundancy metrics and the effect of
temperature, land-use cover, human population and landscape-related variables in shaping
the observed patterns of butterfly communities.

2. Materials and Methods
2.1. Data and Sampling

We used presence/absence data of butterflies of Great Britain for the time period
2005–2009 [27]. British butterfly data are appropriate for this analysis, as the country is
exceptionally well explored [29–33]. The data were collected in accordance with the British
and Irish National grid of 10 km × 10 km (100 km2). We included in our analyses data
for 57 butterfly species. We used only mainland Britain grid cells with more than 50%
terrestrial land cover with available environmental data (i.e., 2402 grid cells). Finally, in
the beta-diversity analyses, we included 2274 grid cells as the functional β-diversity index
requires at least five species to be estimated.

2.2. Environmental Data

To explore the effect of climate on butterfly diversity and redundancy, we included in
all analyses the mean annual temperature. The mean annual temperature was estimated
using the monthly climatic data retrieved from the HadUK-Grid Gridded Climate Observa-
tions dataset [34] for the time period 2005–2009, i.e., the years that butterfly distribution
was collected, and 2000–2004, i.e., five years before the collection period to take into account
time-lag effects of temperature on diversity and redundancy patterns. Additionally, we
estimated the percentage of different land use per grid cell. To do so, we obtained gross land
cover data from the HILDA maps [35] for the year 2010 (spatial resolution of 1 km2). The
extracted data included the following land cover classes: (i) forest, (ii) cropland, (iii) grass-
land, (iv) other (sparsely vegetated areas, beaches and bare soil) and (v) water. Using
these data, we estimated the Shannon diversity index of land uses per grid cell to quantify
heterogeneity of land uses. The total human population per grid cell was calculated using
the Global Human Settlement Layer [36] for the year 2010. Finally, a digital surface model
created under the EU GMES/Copernicus program’s reference data access (RDA) action [37]
was used to calculate the mean and standard deviation of elevation per grid cell.

2.3. Diversity and Redundancy Metrics

We estimated species richness and functional richness per grid cell. To estimate func-
tional richness, we selected four traits that have been linked to responses of butterflies
to environmental changes [23,38]: (a) body size quantified by the average wing span
of males and females (continuous, mm), (b) voltinism (continuous, number of genera-
tions per year), (c) overwintering stage (egg, larvae, pupae, adult) and (d) diet preference
(monophagous, broad oligophagous, polyphagous). Trait data were retrieved from the
European & Maghreb Butterfly Trait Database [39]. Continuous traits were transformed
into categorical traits. Specifically, we used the following categories for (i) body size: 20–30,
31–40, 41–50, 51–60 and >60 and (ii) voltinism: 1, 2, 3, 4 and 5. We estimated Gower species
distance and implemented principal coordinates analysis (PCoA) on the distance matrix,
and then we estimated the functional richness (FRic) using the dbFD function of the R pack-
age FD [40]. Additionally, we estimated the standardized effect size of functional richness
using the null model permatswap of the R package vegan [41], which shuffles the species
presences within the species by site matrix, keeping the row and column sums constant.
We performed 1000 randomizations and SES was estimated by subtracting the mean value
of the functional diversity index of the randomized communities from the observed value
and dividing by the standard deviation of the value of randomized communities.

We estimated functional redundancy (FR) and functional vulnerability (FV) per grid
cell following Mouillot et al. [28]. The estimation of functional redundancy and functional
vulnerability is based on the functional entities defined as the unique combination of
functional traits within an assemblage. First, species were assigned to functional entities
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according to the functional traits used to estimate functional richness, i.e., body size,
voltinism, overwintering stage and diet preference. Then, the functional redundancy
and functional vulnerability indices were estimated with the following formulae [28]:

Functional Redundancy = ∑FE
i=1 ni
FE = S

FE and Functional Vulnerability =
FE−∑FE

i=1 min(ni−1,1)
FE ,

where FE is the total number of functional entities, S the total number of species in a
community and ni the number of species in a functional entity. By definition, functional
redundancy is the mean number of species per functional entity and functional vulnerability
is the proportion of FEs with one species. Thus, functional redundancy quantifies the
mean number of species sharing identical combinations of functional traits within the
community, while functional vulnerability quantifies the mean number of species with
unique combinations of functional traits within the community. Functional redundancy
takes values between 1, in the case where all functional entities include only one species,
and the value of species richness when all the species present in the community belong to
one functional entity, i.e., all species have identical functional traits. Functional vulnerability
varies between 0, in the case where all functional entities include more than one species,
and 1 when all functional entities include only one species. The assignment of species to
functional entities and the estimation of functional redundancy and vulnerability were
performed using the functions provided in Mouilot et al. [28]. Finally, we estimated
the taxonomic and functional pairwise Jaccard dissimilarity index using the betapart R
package [42].

2.4. Statistical Analysis

We explored the relationship of (taxonomic and functional) diversity, functional re-
dundancy and functional vulnerability using generalized additive modeling (GAM) [43].
We explored the relationship of all pairwise combinations of the diversity, redundancy
and vulnerability metrics. We assumed a Gaussian error distribution and used penalized
thin plate regression splines with k set to 3. Next, we implemented GAMs predicting
species richness, functional richness, functional redundancy and functional vulnerability
as functions of temperature and land cover, land use heterogeneity, elevation (mean value
and variability) and human population (Gaussian error distribution; penalized thin plate
regression splines k = 3). Given that environmental variables might by highly correlated,
we tested for multi-collinearity issues among predictors by estimating variance inflation
factor (VIF) with the function vifstep (with criterion VIF < 10) of the usdm R package [44].
The analysis showed multi-collinearity among variables, and grassland-cover was excluded
by any subsequent analyses. We built a separate model for species richness, functional
richness, functional redundancy and vulnerability. In all GAMs, we included coordinates of
grid cell’s centroid as smooth predictor to account for spatial autocorrelation. Additionally,
we built models predicting functional richness, functional redundancy and functional
vulnerability as function of the grid cells’ coordinates solely to relatively quantify abi-
otic factors’ contribution (spatial GAM). The modeling was performed using the mgcv R
package [43].

In the next step, we explored the relationship between the taxonomic and functional β-
diversity, both quantified by Jaccard pairwise dissimilarity index with GAMs, and included
in the model geographical distance between sites to account for spatial autocorrelation.
To examine the contribution of environmental variables and geographical distance in
shaping taxonomic and functional β-diversity, we performed generalized dissimilarity
modeling (GDM) with the package GDM [45]. GDM is a non-linear regression matrix
approach that fits I-spline basis functions for each predictor, and the coefficients of the
functions are estimated by the maximum-likelihood approach. The coefficients’ sum
represents the relative contribution of each predictor in shaping β-diversity (with all
other variables constant) and the shape of the curve indicates how the rate of β-diversity
changes along the environmental and geographical gradient, allowing us to pinpoint
which predictors’ range has a more significant impact on the differences in species and
functional composition [45,46]. We used as response variables the taxonomic and functional
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β-diversity (one GDM for each β-diversity facet) and as predictors (modeled with the three
I-spline basis functions per predictor) the mean annual temperature, land-cover uses, the
human population, the elevation (mean and standard deviation) and geographical distance.
Following this, to disentangle the contribution of environmental variables and geographical
distance, we partitioned the deviance explained by GDM into the deviance explained solely
by environmental variables, solely by geographical distance and their shared effects. The
partitioning was performed with the gdm.partition.deviance of the GDM R package. Finally,
to explore the spatial patterns of taxonomic and functional β-diversity, we generated red-
green-blue (RGB) color maps. To do so, we applied principal coordinate analysis (PCoA)
with the package ape [47] on the predictions of GDM of taxonomic and functional β-
diversity and visualized the first three ordination axes with red, green and blue color scales,
and their combination, into one map. In these maps, wider differences in species and
functional composition are highlighted by greater differences in color.

All analyses were performed with the R version 4.3.0, R Foundation for Statistical
Computing, Vienna, Austria [48].

3. Results

Temperature followed the latitudinal gradient, with lower temperatures observed in
the northern part of the island, while there was no clear longitudinal gradient
(Supplementary Material, Figure S1a). Croplands dominated in the south-eastern part
(Supplementary Material, Figure S1b), forest cover was higher but patchily distributed in
northern Great Britain, i.e., in the areas of higher elevation or exhibiting elevation vari-
ability (Supplementary Material, Figure S1c,j,k), while grassland cover was higher in the
north and south-west (Supplementary Material, Figure S1d). Other land uses (sparsely
vegetated areas, beaches and bare soil) were detected in the higher elevation areas of
northern Great Britain (Supplementary Material, Figure S1e). Settlements were patchily
distributed (Supplementary Material, Figure S1f), while water was uniformly distributed
(Supplementary Material, Figure S1g). Heterogeneity of land uses was primarily lower in
the central part of the island (Supplementary Material, Figure S1h).

We detected a relatively strong longitudinal and latitudinal gradient in species and func-
tional richness and metrics of functional redundancy and vulnerability (Figure 1). The basic
relationships of species richness have been previously reported [31,32]. Specifically, higher
values of species (mean value = 20.52 ± 8.51) and functional (mean value = 0.77 ± 0.16)
richness, were observed in the southern and eastern part of Great Britain where the com-
munities were more functionally redundant (mean value = 1.19 ± 0.11). On the other hand,
communities were more vulnerable in the northern part (mean value = 0.84 ± 0.08).
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Figure 1. The spatial patterns of taxonomic diversity quantified by (a) species richness, (b) functional
diversity quantified by functional richness, (c) functional redundancy and (d) vulnerability of British
butterflies for the time period 2005–2009.
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There was strong evidence, taking into account spatial autocorrelation, that functional
richness was related to species richness (p < 0.001, deviance explained = 83.88%). Specifi-
cally, functional richness increased with species richness up to approximately 27 species and
then reached a plateau (Figure 2a). The deviance explained of GAM with predictors being
only the coordinates of grid cells (spatial GAM) was equal to 35.20%. Functional redun-
dancy tended to increase with both diversity aspects (species richness: p < 0.001, deviance
explained 69.60%, Figure 2b; functional richness: p < 0.001, deviance explained 61.80%,
Figure 2d). The spatial GAM for functional redundancy explained the 57.70% of functional
redundancy’s deviance. Thus, in the case of the functional redundancy—functional rich-
ness relationship, given also the scattered relationship, the deviance explained was mainly
due to the contribution of spatial variables. The functional vulnerability decreased with
species richness (p < 0.001, deviance explained = 58.9%, Figure 2c) and functional richness
(p < 0.001, deviance explained = 51.60%, Figure 2e). In this case, spatial GAM exhibited
deviance explained equal to 47.10%. Regarding the SES of functional richness, the majority
of SES values were equal or close to zero; thus, observed functional diversity does not
deviate from random expectations, given the species richness (Figure 2f).
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Figure 2. The relationships between species richness and functional metrics: (a) richness, (b) re-
dundancy, (c) vulnerability, and between functional richness and (d) functional redundancy and
(e) functional vulnerability, after accounting for spatial autocorrelation, along with the deviance
explained and the partial residuals (points) of the formulated generalized additive models, along
with (f) the histogram of mean standardized effect size of functional richness of butterflies of Great
Britain in the time period 2005–2009.

The GAMs predicting diversity and redundancy metrics as a function of abiotic
variables—including coordinates of grid cells as predictors—exhibited a relatively high
explanatory power in all cases. The relationships (shape and strength) between diver-
sity, functional redundancy and functional vulnerability with predictors that primarily
affect the majority of diversity and redundancy are illustrated in Figure 3. Additionally,
Supplementary Material Figure S2 presents the relationships’ form and strength with all
predictors. Temperature exerted a significant and strong effect on all metrics. Taxonomic
richness and functional richness increased with temperatures up to 9 ◦C and then reached
a rough plateau. Functional redundancy had a unimodal relationship with temperature,
and vulnerability showed the inverse relationship with temperature. Additionally, both
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diversity facets increased with heterogeneity of land uses. Species richness had a unimodal
relationship with forest cover, other uses cover, settlements cover and elevation variability,
while it increased with water cover. Functional richness had a U-shaped relationship with
cropland, and increased (non-linearly) with elevation variability. Functional redundancy
increased with other uses cover (linearly) and elevation variability (non-linearly), and
decreased with forest cover—beyond a threshold equal approximately to 0.4—as well as
with elevation variability. Finally, vulnerability increased with forest cover and decreased
with elevation variability.
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Figure 3. Partial residual plots showing the results of the generalized additive models (shape and sig-
nificance) predicting taxonomic diversity (species richness), functional diversity (functional richness)
and redundancy metrics (functional redundancy and functional vulnerability) of butterflies of Great
Britain in the period 2005–2009 as function of temperature, land cover and elevation variability. In
the figure, the predictors affecting the majority of diversity and redundancy metrics are presented.

Taxonomic and functional β-diversity, quantified by the Jaccard pairwise dissimilarity
index, exhibited similar mean values (Figure 4a). The two facets were highly congruent
(Figure 4b). The generalized dissimilarity model explained approximately 49% and 24%
of βtaxonomic and βfunctional, respectively. Thus, variation in species composition was more
strongly driven by abiotic factors than variation in functional composition, although the
two diversity aspects respond similarly to the examined abiotic factors (Figure 5a–e). The
most important drivers of taxonomic and functional β-diversity were temperature and
geographical distance (Table 1). The taxonomic and functional dissimilarity increased
linearly with geographical distance (Figure 5a), while they increased with temperatures up
to about 9 ◦C and then reached a plateau (Figure 5b). Additionally, forest cover promoted
taxonomic and functional dissimilarity (Figure 5c). Functional dissimilarity increased
steeply with human population in sparsely populated areas (Figure 5d), and taxonomic
dissimilarity increased with moderate to higher levels of elevation variability (Figure 5e).
The unique effects of the environmental variables explained the bulk of variation in species
and functional composition (Figure 5f). The predicted spatial patterns of taxonomic and
functional β-diversity showed differentiations of composition along the longitudinal and
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latitudinal gradient (Figure 5g,h). Furthermore, differences in species composition were
related to the environmental gradient, primarily to temperature and secondarily to land
cover (Figure 5g,h).
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Figure 5. Summary plot showing the results of the generalized dissimilarity models (GDMs) of
taxonomic and functional composition of British butterflies for the time period 2005–2009: (a–e) the
fitted I-splines of the GDMs, (f) the percentage of deviance explained from geographical distance,
environmental variables (including temperature, land cover, human population and elevation (mean
value and variability) and their shared effects and spatial patterns of (g) taxonomic and (h) functional
dissimilarity as derived from GDM predictions.
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Table 1. Summary of the generalized dissimilarity model of species composition and functional
composition of butterflies of Great Britain in the time period 2005–2009. The relative importance of
predictor variables was assessed by summing the coefficients of the three I-splines of the generalized
dissimilarity models.

Taxonomic β-Diversity Functional β-Diversity

Deviance Explained 49.13% 25.40%

Variable Importance

Geographic Distance 0.76 0.54
Temperature 1.13 1.59

Cropland 0.02 0.01
Forest 0.18 0.20
Other 0.01 0.18

Settlement 0.01 0.02
Water 0.00 0.02

Human Population 0.23 0.31
Elevation 0.00 0.00

Elevation Variability 0.43 0.07

4. Discussion

Our results showed that functional richness increased with species richness, but
approached a plateau in the most species-rich communities. This saturating relationship
suggests a degree of overlap in the functional roles of species, i.e., a higher level of functional
redundancy in the more diverse communities. According to Petchey and Gaston [49], the
relationship between species richness and functional richness depends on the number
of used traits included in the estimation of functional diversity, with the relationship
transforming from saturating to positive when the number of traits used increases. Thus,
it remains an open research question whether analyzing more traits or traits with more
detailed classification schemes would lead to lower levels of functional redundancy. The
shape of the relationship between species richness and functional richness depends on the
spatial scale and on environmental heterogeneity (for a review, see [50]), while topological
complexity might favor butterfly species richness. At large spatial scales and across taxa
and regions, studies showed that the relationship can be positive [51–53], negative [52] or
saturated [54–56].

Functional redundancy increased approximately linearly with species richness for but-
terflies of Great Britain, with species-richer communities being less functionally vulnerable.
The functional richness-functional redundancy and functional richness-functional vulnera-
bility relationships were similar with the ones observed in the case of species richness, but
weaker. The increase in functional redundancy with species richness, as the one observed
here, has been reported for other taxa [57–59]. Such a positive relationship suggests that the
loss of species can impact functional composition of species-poorer communities. Ecosys-
tem functioning is often assumed to rely mostly on common species (widely distributed and
abundant species), and not on rare species (narrowly distributed and of low abundance)
that are more prone to extinction [60]. Thus, one could speculate that the loss of rare species
would not affect ecosystem functioning. However, recent studies demonstrate that the
contribution of rare species to functional diversity through their unique combinations of
traits, and to ecosystem functioning and services, is of immense significance [28,59,61–63].

Temperature was a significant predictor of (taxonomic and functional) richness and
redundancy metrics. Temperature promoted species richness and functional richness up to
approximately 9 ◦C and then the relationships reached a plateau. Butterflies as ectotherms
depend on temperature to ensure normal activity [64]. Temperature strongly influences
butterfly diversity, both directly by affecting the physiology of every stage in their life
cycle and indirectly by influencing resource availability [64,65]. However, the association
between temperature and redundancy was different; it was unimodal. Thus, warm areas
may have species-rich butterfly assemblages, but these assemblages appear to have lower
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functional redundancy than cooler areas of similar richness. Furthermore, communities of
warmer regions seem to be more vulnerable. Although butterflies are anticipated to benefit
from the climate warming, especially in temperate regions such as Great Britain, it seems
that the positive climate warming effect is counterbalanced by the negative effect of habitat
loss and fragmentation [66]. Therefore, a possible explanation of the saturating relationships
of (taxonomic and functional) richness with temperature, accompanied by a decrease in
functional redundancy, could be attributed not to a temperature effect per se, but to the
linkage between temperature gradient and land uses distribution. The warmer southern
parts of Great Britain experienced greater land use conversion, habitat deterioration and
habitat fragmentation [67] which have resulted in a loss of suitable habitats for some
butterfly species and the prevailing of species with specific traits (e.g., generalists) [26]. In
England, 47% of semi-natural grasslands were lost in the period of 1960–2013, with the
majority of these areas converted to arable land or improved grasslands [68] and this loss
resulted in abundance decline and range contraction of specialized butterflies [69]. But it is
not only the specialized butterflies that are impacted by habitat loss and fragmentation,
as distance between suitable habitats has surpassed the dispersal capacity of moderate
generalist (regarding resource utilization) butterfly species [70]. For example, parts of
south-eastern Great Britain were dominated by croplands and exhibited low heterogeneity
of land uses, and also lower-level functional redundancy than expected by the observed
species richness.

Taxonomic and functional richness did not decline in warmer areas, but we observed
higher vulnerability in these regions. In other words, we detected that more unique com-
binations of functional traits were represented by one species, resulting in lower levels
of functional redundancy. Therefore, generalists might have prevailed, but specialized
functional groups were still present, but represented by fewer species. This finding implies
that land-use changes in warmer areas may have a disproportional impact on community
functional composition. Taking into account that in warmer areas such as the Mediter-
ranean region, land-use changes, climate change and its effect on water availability act
synergistically and negatively affect butterfly diversity, one fears for the future of butterflies
and the implications on ecosystem functioning. However, within this fast-changing world,
butterflies have adapted to survive, e.g., exhibited shifts in their phenology and thermal
adaptations as a response to environmental change [71–74]. Butterflies have already shifted
their range margin towards northern regions as a response to climate change and changes
in land uses, even in this temperate region [75]. Phenological shifts and northwards range
shifts hopefully might lead to an increase in the species richness of British butterflies,
rendering the communities functionally more redundant and thus less vulnerable. Addi-
tionally, a potential colonization, triggered by climate change, of butterfly species from
continental Europe could further safeguard butterfly communities. However, one should
bear in mind that no successful colonization has been reported for a long time period [32]
as well as the lag response of species richness of British butterflies to climate change [76].

Environmental heterogeneity, quantified either by land-use heterogeneity or elevation
variability, emerged as an important predictor of diversity and redundancy metrics. The
positive effect of land use heterogeneity has been previously reported for butterfly diversity
in other regions [77], and also for the stability of butterfly populations in Great Britain [78].
At coarse spatial scales, greater environmental heterogeneity, perhaps due to an increase in
available niche space and the diminishing strength of competition, allows the coexistence of
more species that are also more functionally dissimilar [50,79]. Our results confirmed that
heterogeneity promotes functional redundancy, rendering the communities less vulnerable.

The percentage of different land-uses was also a significant predictor of diversity and
redundancy metrics. Species richness initially increased with forest cover, but decreased
in areas with high forest cover. Given the positive relationship between species richness
and functional redundancy and the fact that in most communities functional diversity
did not deviate from random expectations, not surprisingly, functional redundancy also
decreased with forest cover. The majority of British butterflies prefer open habitats such
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as grasslands [80]. Areas with higher forest cover are also areas of higher elevation, while
forests are related to the presence of edges and clearings, and these conditions might favor
specific species with certain functional traits. Finally, land use intensification which poses
a major threat on diversity and functional redundancy [81,82] might not be adequately
quantified by the HILDA land cover dataset.

Taxonomic and functional β-diversity patterns were highly congruent, indicating that
communities with different species compositions tend to also have functionally dissimilar
species, as has been previously reported for butterflies [83,84] and for other taxa [85,86].
This congruency might suggest that taxonomic and functional composition might be driven
to some degree by similar processes. The two facets of diversity responded similarly to the
environmental variables and geographical distance. However, the functional β-diversity
was more weakly associated with environmental variables and geographic distance, as
was indicated by the performance of the generalized dissimilarity model. Perhaps func-
tional β-diversity is driven more strongly by stochasticity, as has been reported for British
birds [87,88], or by other factors that were not taken into account in this study. Temperature
was the strongest driver of both taxonomic and functional β-diversity, with unique effects
of environmental variables explaining the most significant variation of both facets of β-
diversity. Temperature is a major driver of butterfly taxonomic and functional β-diversity as
it significantly affects their physiology [83,84,89]. Additionally, processes such as dispersal
limitation and evolutionary history seem to play a role, albeit weaker than environmental
filtering, in shaping butterfly communities as was indicated by the relative importance of
geographical distance and its unique effects. Therefore, British butterfly taxonomic and
functional diversity result from a combination of deterministic and stochastic processes, as
very often observed in other taxa [90–92].
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mdpi.com/article/10.3390/insects14090722/s1, Figure S1: The spatial distribution of temperature,
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