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Simple Summary: The red palm weevil is an exotic and highly endangered pest that is extremely
harmful to palm plants. In order to effectively control this pest, we propose an algorithm to automati-
cally detect and count adult red palm weevils in traps. Previously, the trapping and counting of adult
red palm weevils was done manually. The population density and damage level were then inferred
from the number of adults trapped to guide control efforts. However, the efficiency of this method is
very low. The algorithm proposed in this paper solves the drawbacks of manual counting, and the
recognition accuracy reaches 93.8%, which also improves the efficiency of agricultural monitoring.

Abstract: The red palm weevil (RPW, Rhynchophorus ferrugineus) is an invasive and highly destructive
pest that poses a serious threat to palm plants. To improve the efficiency of adult RPWs’ management,
an enhanced YOLOv5 object detection algorithm based on an attention mechanism is proposed in
this paper. Firstly, the detection capabilities for small targets are enhanced by adding a convolutional
layer to the backbone network of YOLOv5 and forming a quadruple down-sampling layer by splicing
and down-sampling the convolutional layers. Secondly, the Squeeze-and-Excitation (SE) attention
mechanism and Convolutional Block Attention Module (CBAM) attention mechanism are inserted
directly before the SPPF structure to improve the feature extraction capability of the model for
targets. Then, 2600 images of RPWs in different scenes and forms are collected and organized for
data support. These images are divided into a training set, validation set and test set following a ratio
of 7:2:1. Finally, an experiment is conducted, demonstrating that the enhanced YOLOv5 algorithm
achieves an average precision of 90.1% (mAP@0.5) and a precision of 93.8% (P), which is a significant
improvement compared with related models. In conclusion, the enhanced model brings a higher
detection accuracy and real-time performance to the RPW-controlled pest pre-detection system, which
helps us to take timely preventive and control measures to avoid serious pest infestation. It also
provides scalability for other pest pre-detection systems; with the corresponding dataset and training,
the algorithm can be adapted to the detection tasks of other pests, which in turn brings a wider range
of applications in the field of monitoring and control of agricultural pests.

Keywords: red palm weevil; YOLOv5; attention mechanism; detection

1. Introduction

The Red Palm Weevil (RPW, Rhynchophorus ferrugineus) is an internationally recognized
and highly hazardous quarantine pest that targets palm trees (Arecaceae). The RPW is
widely distributed and has infested several countries. In China, especially in Hainan
and other regions, extensively cultivated palm plants with an annual production value
in the billions of dollars face immeasurable potential economic losses from a widespread
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infestation. It is known for its extensive distribution and destructive burrowing behavior,
making its control extremely challenging [1]. As a result, scientists at home and abroad have
conducted numerous studies on the RPW. For example, the distribution and bioecology of
the RPW are characterized in [2], where it is shown that the RPW and its ability to spread
easily, with a theoretical uninterrupted flight distance of up to 1.5 km, leads to an even
greater destructive potential. In addition, the challenges posed by the RPW necessitate the
implementation of more comprehensive control measures to mitigate its impact on major
palms worldwide [3]. Therefore, in order to effectively control the RPW, some studies on
common monitoring methods were analyzed in [4]. The general methods for monitoring
larvae inside the tree are physical detection, such as CT scanning, and radar. On the other
hand, the most common and effective method for monitoring adults outside the tree is
pheromone trap technology, which is discussed in [5–7].

However, relying solely on trapping techniques is not sufficient to prevent the continu-
ous spread of this pest in a timely manner. To address this issue, scientists have found that
the period when the adults are briefly exposed to the tree is a critical time for monitoring
and control. Adults can be monitored in order to grasp the population density and take
appropriate measures. As for the monitoring method of the early stages of the adult RPW,
pheromone trap monitoring technology is more mature both at home and abroad. This
technique utilizes pheromones to specifically attract adult RPWs to the trap. According
to the number of trapped adults, the population density and damage level within the
monitoring area can be inferred to guide the control. However, counting the number of
adults in the traps set up for the purpose of monitoring the population density of adults
mostly relies on manual counting on a regular basis, which is a less efficient and intelligent
method. A method of automatic detection and counting is required to improve efficiency.

Currently, the common automatic counting systems that can be integrated into field
insect trapping devices include several approaches. Firstly, there are counting systems
based on traditional image processing algorithms. However, these methods exhibit limited
effectiveness in complex field scenarios with significant target variations, leading to false
positives or missed detections [8]. Secondly, there are sensor-based counting systems, but
they lack sufficient precision in counting densely distributed or small targets. It is evident
that traditional field-deployed counting systems still have certain drawbacks, making it
challenging to detect and count the RPW accurately in different scenarios [9].

Deep learning-based target detection techniques have been widely used in the field
of plant pest and disease identification. By using target detection algorithms, automated
pest detection can be realized, and detection efficiency can be improved. Target detection
techniques can quickly process large amounts of image data and accurately identify targets,
thus avoiding time-consuming and costly manual detection. Target detection algorithms
can be broadly categorized into two types: the first type is the two-stage target detection
algorithm represented by R-CNN (Region-CNN) [10], which includes Fast R-CNN [11],
Faster R-CNN [12], and other similar models. These algorithms generate candidate frames
and then execute convolutional networks to identify the detected objects. Due to the
high computational complexity of this type of algorithm, it is not suitable for real-time
detection. The second type is the one-stage target detection algorithm represented by the
SSD (Single Shot MultiBox Detector) [13] and YOLO (You Only Look Once) [14–17] series.
This type of algorithm directly generates the class probability and position information
of the object, which can directly obtain the final detection result after a single detection.
Compared to the two-stage algorithm, this type of algorithm is faster, but there may be
a loss of accuracy. Among the first stage detection algorithms, the YOLO family serves
as a representative framework for single-stage detection, which is faster and more stable
compared to SSD neural networks [18]. YOLO is a high-performance general-purpose
target detection model. YOLOv1 [14] uses a single-stage detection algorithm to accomplish
the two tasks of localizing a target and classifying target objects. Subsequently, YOLOv2 [15]
improved the algorithm in three aspects: more accurate prediction, faster speed, and more
targets identified compared to YOLOv1. YOLOv3 [16] accelerated the implementation
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of object detection by introducing multi-scale prediction, core network optimization, and
loss function improvement. YOLOv4 [17] presented an efficient and fast object detection
model that significantly reduced the computational number of parameters, making it easier
to deploy on general-purpose and hardware devices. Compared to YOLOv4, YOLOv5
has a smaller and more flexible architecture, faster image inference, and is closer to the
natural production life. In addition to this, it has been widely applied due to its advantages,
such as fast average detection, flexibility, and rapid deployment [19]. In recent years,
YOLOv5 has been commonly used in research on pest and disease detection. For example,
a target detection system based on YOLOv5 for detecting crop hazardous pests and their
classification was proposed in [20]. A YOLOv5 model with 100% detection accuracy was
created for detecting rice foliar pests in [21]. In addition, a novel pest detection method
based on improved YOLOv5 was analyzed in [22], which achieves high accuracy pest
detection, among others. It is shown that the method can be applied to the rapid real-time
detection of RPW in complex natural environments due to the high real-time nature of the
YOLOv5 target detection model, which facilitates the efficiency of monitoring equipment.

However, the actual environment in which RPW lives is complex. The main problems
are: (1) small target objects, with the whole target taking up a smaller proportion of the
whole image; (2) severe object occlusion, with individuals obscuring and overlapping
each other; and (3) complex backgrounds, increasing the difficulty of feature target ex-
traction [17]. At the same time, considering YOLOv5’s fast speed, which leads to some
loss of accuracy, it performs poorly on the information of small targets and suffers from
poor accuracy and low recall in identifying object locations [18]. Therefore, the addition
of a quadruple down-sampling layer to the backbone network of YOLOv5 is proposed
to improve the semantic information of small targets and, thus, make the prediction of
the model more accurate. In addition to this, YOLOv5 suffers from insufficient bounding
box localization as well, and has difficulty distinguishing between overlapping detection
objects, especially objects such as insects that are heavily occluded [23]. However, the
presence of an attention mechanism can effectively solve these problems. When processing
information, the attention module resembles the human visual attention mechanism by
scanning the global image to obtain the target area that needs to be focused on and then
devoting more attention resources to this area to obtain more detailed information related
to the target while filtering out the secondary data to improve the model’s effect. With the
development of machine learning, the combination of attention mechanism and deep learn-
ing has become more and more extensive, and adding the attention mechanism to a model
can be used as a means to improve performance. Accordingly, Squeeze and Excitation Net
(SE Net) [24] and Convolutional Block Attention Module (CBAM) [25] were integrated
into the convolutional module of YOLOv5 to implement the learning of target features
and location features in the channel dimension and global spatial dimension, respectively.
By adding a down-sampling layer combined with a feature fusion network and adding
an attention mechanism for multi-dimensional feature learning, the problem of difficult
feature extraction due to occlusion and complex backgrounds is skillfully solved, ultimately
improving the detection performance.

In order to detect and control the RPW more accurately and efficiently, an enhanced
YOLOv5 target detection algorithm is proposed in this paper. Firstly, the dataset of RPW
is collected. At the same time, the dataset is subjected to different levels of luminance
conversion to make the pest target detection model independent from the light diversity
of the field environment. Then, the contrast of the RPW’s image is increased by different
magnitudes to better represent the clarity, gray scale, and texture details. Additionally, the
images are randomly rotated at multiple angles to enrich the multiple morphologies of
the insect. Multiple data enhancement methods are used to greatly enrich the number of
samples for RPW recognition in complex backgrounds. Next, an enhanced YOLOv5 neural
network model was constructed in PyTorch. The main improvements are (1) enriching the
semantic information of small targets by adding quadruple down-sampling layers and
improving the feature pyramid structure to improve the model’s detection ability for small



Insects 2023, 14, 698 4 of 14

targets, and (2) introducing the attention mechanism to enhance the feature extraction
ability of the model. Then, the dataset is divided into a training set and test set in the ratio
of 7:1. The enhanced model is subjected to comparative experiments, and the experimental
results are evaluated using commonly used machine learning algorithm evaluation metrics,
such as Precision (P), Recall (R), and mAP. Finally, the evaluation results show that the
enhanced algorithm has the highest detection accuracy and enhances the real-time detection
of RPW in complex environments.

The remainder of the paper is organized as follows: Section 2 describes the structure
of YOLOv5 and the rationale for improving the content. Section 3 describes the dataset
acquisition and enhancement process as well as the experimental procedure. Section 4
presents the experimental results and discussion. Section 5 summarizes the paper.

2. Materials and Methods
2.1. YOLOv5

YOLOv5 is a one-stage target detection algorithm with a network structure consist-
ing of inputs, trunks, necks, and outputs. It includes four network models: YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x, listed in order of increasing network depth and
weight file size [20]. To realize high performance on real-time detection, we chose the
YOLOv5s model for experimental training from the perspective of minimizing computa-
tional cost and network weighting in this paper. The network structure of the YOLOv5s
model is depicted in Figure 1.
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 Figure 1. YOLOv5s network structure.

2.1.1. Input

The input part of the network structure in Figure 1 contains an image preprocessing
stage that scales the input image to the input size of the network and performs operations,
such as normalization, including mosaic data enhancement operations, adaptive anchor
frame calculation, and adaptive image scaling methods [18]. Mosaic data enhancement
increases the complexity of the data by combining and arranging our images. In addition,



Insects 2023, 14, 698 5 of 14

an adaptive anchor frame calculation is used to derive the best anchor frame values best
suited for different training sets and the adaptive image scaling is used to automatically fill
the images with black borders, scale them uniformly to the standard size, and finally feed
them into the detection network.

2.1.2. Backbone

The backbone network part in Figure 1 consists of CSPDarknet53, which is responsible
for extracting features from target objects [26]. It mainly consists of the CBS module and
the SPPF (Spatial Pyramid Pooling Fast) module. The CBS module includes the Conv2d
module, BN (Batch Normalization) layer, and SiLU activation function [27]. SPPF is
a modified version of the SPP (Spatial Pyramid Pooling) structure, in which the input
features are passed through a series of maximum pooling layers, and the input as well as
the output feature layer sizes are spliced and fused in the channel direction. SPPF differs
from SPP in that its output after each pooling becomes the input of the next pooling, and
then they are stitched and fused together. This modified structure allows SPPF to address
the target multi-scale problem to some extent, while also being faster than SPP.

2.1.3. Neck Network

In Figure 1, the neck part mainly consists of Feature Pyramid Network (FPN) and
Path Aggregation Network (PAN), which is the feature fusion network of the model. In
convolutional neural networks, different convolutional layers yield feature maps with
distinct target features. Shallow convolutions produce feature maps with high resolution
and relatively rich positional information, but less prominent semantic information. Deep
convolutions, on the other hand, generate feature maps with lower resolution but rich
semantic information, at the cost of losing significant positional details. Consequently,
shallow convolutional layers are capable of distinguishing simple objects, while deep
convolutional layers excel in discerning complex objects. The fusion of information between
shallow and deep convolutional layers is advantageous for object detection, which is the
principle of feature fusion networks [23]. As shown in Figure 2, the FPN transfers strong
semantic features from top to bottom and the PAN conveys the strong positioning features
of the target from bottom to top. By fusing top-down and bottom-up feature information,
the model can learn features better and improve the accuracy of the model for small
target detection.

2.1.4. Output

In Figure 1, The output part is responsible for generating the detection results for
the target objects. It employs the Generalized Intersection over Union (GIoU) loss func-
tion to compute the bounding box loss. In addition, the Non-Maximum Suppression
(NMS) operation is used to eliminate duplicate detections and achieve the final output
detection results.

2.2. The Improved Network Model
2.2.1. Introduce the Quadruple Down-Sampling Layer

The backbone network of YOLOv5 focuses on multi-scale prediction of the input
images, where images of different scales are fed to the input and down-sampled by factors
of 8, 16, and 32 to obtain feature images of three different scales, which are then fed to a
feature fusion network for target recognition. The process of feature fusion is depicted in
Figure 2. It is known within the idea of a feature pyramid network [28] that the feature
pictures obtained after multiple convolutions contain rich semantic information, however,
due to the process of down-sampling, some target location information may be lost, which
makes it difficult to detect small target objects successfully [23]. This issue is particularly
relevant in complex field environments where targets like RPW are too small, so to address
this challenge, the addition of a quadruple down-sampling layer to the backbone network
of YOLOv5 is presented, which can enhance the detection capability of small target features,
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and the network structure is illustrated in Figure 3. By adding a quadruple down-sampling
layer, the original image is fed into a feature fusion network to obtain a feature map in a
new dimension. The feature map has a small perceptual domain and relatively rich position
information, which improves the detection of small targets [29].
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2.2.2. Introduce the Squeeze-and-Excitation Net

Based on the YOLOv5 framework, the Squeeze-and-Excitation Net (SE Net) is intro-
duced into the backbone network. SE Net belongs to channel attention [24], whose process
mainly consists of two parts: squeezing and stimulation, as illustrated in Figure 4. Firstly,
the input image features are compressed, followed by feature learning of the compressed
feature map to obtain learning weights, and finally the original feature map is multiplied
by the learned weights to obtain the final features. This technique allows the model to
prioritize the most informative and distinctive features while ignoring less relevant and
secondary features. The complex field environment and the presence of other insects can
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potentially interfere with RPW’s feature detection abilities, while the SE channel attention
module can enhance the feature extraction capability of the current task.
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2.2.3. Introduce the Convolutional Attention Module

Based on the YOLOv5 framework, the Convolutional Block Attention Module (CBAM)
is introduced into the backbone network as well. CBAM consists of channel attention and
spatial attention modules, as shown in Figure 5, and this structure can better extract the
weight distribution in feature learning and improve the feature extraction ability of the
model for small target samples [25]. As can be seen from Figure 5, for the input feature F,
firstly, the average pooling and maximum pooling operations are performed by the channel,
and the one-dimensional channel attention Mc is obtained after aggregating the spatial
information of the feature map. Secondly, Mc is multiplied with the input elements to obtain
the adjusted feature map F′, and then the pooling operation is performed on F′ by space to
obtain two two-dimensional vectors, stitching them together and performing a convolution
operation to generate two-dimensional space note Ms. Finally, Ms is multiplied with F′ by
element to obtain the fused feature F′′. The CBAM process of generating attention can be
described as:

F′ = Mc(F)⊗ F (1)

F′′ = Ms(F′)⊗ F′ (2)

where ⊗ denotes the corresponding element multiplication.
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The large number and variety of insects in the field often result in stacks. However,
since the RPW is tiny in size and hidden from the target, making it difficult to detect after
generating individual stacking. Therefore, the CBAM module can enhance the feature ex-
pression of the obscured RPW and improve the recognition performance of target samples.
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2.3. An Improved RPW Detection Model Based on YOLOv5

Finally, the overall network structure is enhanced based on the YOLOv5s network,
as illustrated in Figure 6. The red boxes in the figure indicate the improved parts. This
network improves the detection of small targets by adding a quadruple down-sampling
layer to the backbone network, and also extracts useful location information with the
introduction of the SE and CBAM attention modules. Through the above improvements,
the overall detection performance is enhanced.
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3. Experiment
3.1. Data Acquisition and Enhancement

The dataset is collected manually using the rear camera of a phone, with an image
resolution of 3024 pixels× 3024 pixels. To ensure compatibility with different deep learning
frameworks, the images are uniformly processed to a size of 640 pixels × 640 pixels, such
that images of different sizes are converted to the same size to create a consistent training
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dataset. The final dataset consists of 305 images of the RPW, taken from different angles
and in different scenes, and the examples of images from the dataset are shown in Figure 7a.
However, the current dataset cannot meet the demand of practical detection; to improve the
model training, the dataset needs to be enriched. The common means of data enhancement
are: (1) flipping: randomly flipping the images (0–180◦); (2) adding noise: adding noise
to the original image; common noises are pretzel noise, Gaussian noise, etc; (3) rotating:
randomly rotating the picture from 0–360◦; (4) scaling: changing the size of the image
according to the proportions; and (5) brightness and contrast changes: adjusting brightness,
contrast, etc. [18]. Finally, 2600 images of RPW samples are obtained after data expansion,
after which, these images are divided into a training set, validation set, and test set in the
ratio of 7:2:1, where the training set has 1520 images, the validation set includes 520 images,
and the test set includes 260 images [30], and some of the images are shown in Figure 7b.
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3.2. Evaluation Indicators

To ensure the accuracy of the experimental results, this paper employs several metrics
to evaluate the training outcomes of the RPW experiment. The commonly used evaluation
metrics include Intersection over Union (IoU), Precision (P), Recall (R), and mean Average
Precision (mAP), which can be calculated as follows:

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

AP =
∫ 1

0
P(R)dR (5)

mAP =

N
∑

i=1
APi

N
(6)

IoU =
Ba ∩ Bb
Ba ∪ Bb

(7)

where TP denotes the number of positive samples that are correctly detected as positive,
FP denotes the number of negative samples that are mistakenly detected as positive, FN
denotes the number of positive samples that are missed and wrongly detected as negative.
AP value refers to the area of the P-R curve, and in Equation (6), the value of mAP is



Insects 2023, 14, 698 10 of 14

obtained by averaging all categories of AP, and N represents the total number of types
detected. The larger the value of mAP in this experiment, the better the algorithm detected
and the higher the recognition accuracy. Ba denotes the area of the predicted frame, while
Bb denotes the area of the ground truth frame. The IoU ratio indicates the degree of overlap
between the predicted and ground truth frames. A higher IoU value suggests greater
accuracy of the prediction. The mAP at an IoU threshold of 0.5 (mAP@0.5) signifies that
non-maximum suppression (NMS) is applied with an IoU threshold greater than or equal
to 0.5, and mAP@0.5:0.95 indicates that the IoU threshold was varied from 0.5 to 0.95 in
increments of 0.05, and the resulting average value is computed [31].

3.3. Experimental Implementations and Settings

In this paper, a small-target detection layer is added to the network, while the SE Net
and CBAM modules are also incorporated into the backbone architecture of YOLOv5s.
Furthermore, comparative experiments are conducted with the original YOLOv5s, all of
which are performed using the PYTORCH deep learning framework [32]. The model is
trained on a hardware platform consisting of an NVIDIA GeForce GTX 1070 graphics
card, and the operating system used for training is Windows 10. To ensure experimental
rigor, consistent parameter settings are used for all ablation experiments, and experimental
platforms and the model training parameters are set as follows: learning rate = 0.01,
momentum = 0.937, weight decay = 0.0005, batch size = 8, and number of iterations = 1000.

4. Experimental Results and Discussion

The detection performance of the improved model is compared with the original
model, and the RPW dataset is used to evaluate the performance of the above models with
the following evaluation metrics: Precision, mAP@0.5 and mAP@0.5:0.95.

Table 1 summarizes the various models and their corresponding descriptions as well
as comparative results of the ablation experiments. Among them, YOLOv5s-4x represents
the YOLOv5s model with an additional four-fold down-sampling layer. YOLOv5s-4x-SE
indicates the inclusion of both a four-fold down-sampling layer and SE attention mecha-
nism. YOLOv5s-4x-CBAM includes a four-fold down-sampling layer and CBAM attention
mechanism. Lastly, YOLOv5s-4x-SE-CBAM signifies the model with all three components:
a four-fold down-sampling layer along with SE and CBAM attention mechanisms. Through
comprehensive analysis, the ablation experiments in Table 1 show that the detection accu-
racy P tends to increase with the improvement of the algorithm. Compared to the original
YOLOv5 algorithm, adding a small-target detection layer can improve the accuracy and
average precision of detection, so the subsequent experiments are improved on this basis.
In addition, the addition of the attention mechanism can also improve the detection accu-
racy. From the results, it can be seen that the two attention mechanisms are comparable in
improving the detection accuracy. However, it is worth noting that although the CBAM
network has a higher accuracy than the SE network, it does not improve the average
accuracy of mAP@0.5. Nevertheless, the algorithm proposed in this paper greatly improves
the detection accuracy compared to the original network, and the precision improves by
2.5% and the mAP@0.5 improves by 1.3%. This gives the present algorithm a significant
advantage over the unimproved YOLOv5s.

Table 1. Results of ablation experiments.

Model Precision Recall mAP@0.5 mAP@0.5:0.95

YOLOv5s 0.913 0.828 0.888 0.485
YOLOv5s-4x 0.923 0.813 0.893 0.486

YOLOv5s-4x-SE 0.928 0.811 0.878 0.454
YOLOv5s-4x-CBAM 0.932 0.795 0.849 0.437

YOLOv5s-4x-SE-CBAM 0.938 0.834 0.901 0.489
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In complex natural environments, a variety of insects are mixed together and the
phenomenon of multiple insect stacking is produced. This leads to the obscuring of the
physical signs of a single individual, which causes the individual features to become less
obvious. As a result, the detection network cannot accurately detect the features, causing
the detection accuracy of the model to decrease. The algorithm proposed in this paper, on
the other hand, adds a quadruple down-sampling layer to the original YOLOv5s algorithm,
which is combined with a feature fusion network to make the features of small targets easier
to extract. At the same time, the SE, and CBAM attention mechanisms are added to extract
features from the multi-channel dimension, which solves the problem of difficult extraction
of features caused by the individual stacking occlusion problem. Compared to the original
YOLOv5s network, the detection accuracy of the model is improved. To evaluate the
effectiveness of the proposed model in this challenging scenario, three representative RPW
images from the test set are selected, which include a variety of realistic scenarios that are
difficult to detect. These three images are, in order, a field environment with a complex
background and occluded insects, insects with localized features occluded by leaves, and
an image that is poorly lit at night, resulting in features that are not obvious. Then these
three sets of images under the original algorithm and the improved algorithm in this paper
are tested, and the detection results of the two models are shown in Figure 8 [33]. As
a consequence, our data analysis and detection results demonstrate that the proposed
algorithm in this paper achieves significantly higher detection accuracy compared to the
YOLOv5s network. Specifically, in the case of mixed and obscured environments, as can
be seen from Figure 8a, the accuracy of the original YOLOv5s network reaches up to 89%,
while the proposed algorithm achieves an accuracy of 92%, which is a 3% improvement
in the actual detection accuracy compared to the original algorithm. Furthermore, our
findings indicate that the original model fails to detect the obscured RPW, whereas the
improved algorithm successfully identifies the sample in Figure 8b. Notably, our nightly
detection accuracy reaches 93% in Figure 8c, which is a 1% improvement compared to the
original model’s detection accuracy. In summary, the improved model outperforms the
original model in terms of detection effectiveness.
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5. Conclusions

Given the challenges associated with early-stage detection and control of the RPW,
this paper proposes an improved algorithm for YOLOv5. The YOLOv5s model is adopted
as the basic framework, and the detection capability of small targets is improved by adding
a quadruple down-sampling layer to the backbone network; an attention mechanism-based
feature extraction module is designed, and the SE and CBAM attention mechanism are
added to improve the feature extraction capability of the model. Through the valida-
tion experiments of the sample data on different models, the detection accuracy P of the
proposed algorithm reaches 93.8% and the average accuracy mAP@0.5 reaches 90.1% on
the dataset, and mAP@0.5 and mAP@0.5:0.95 are improved by 1.4% and 0.8%, respec-
tively, compared with the original network. The experimental results demonstrate that
the proposed algorithm achieves high accuracy in detection and can effectively support
field monitoring efforts. These findings underscore the potential value of the proposed
algorithm in real-world agricultural applications.

In addition, the proposed algorithm has a wider application prospect in terms of
practicality and generalization. Currently, in regions like Pakistan, pesticide usage is the
primary method for managing RPWs, whereas in South America and Brazil, pheromone-
based trapping is the main approach. However, the RPW trapping and detection system
proposed in this study can be applicable to areas where host plants are distributed in
remote locations, making manual counting inconvenient. It can also be utilized in regions
with extensive and expansive monitoring areas, resulting in low efficiency in manual
surveillance. In the meantime, to enhance the applicability of the algorithm in other
pest management systems, we will extend the dataset to cover more species and targets.
Given the high morphological similarity between this pest and closely related species,
current models may face challenges in accurately categorizing and detecting these insects.
Therefore, strategies for integrating additional modal information, such as images, will need
to be further investigated to enhance the accuracy of insect classification and detection.
This involves collecting supplementary data from various modalities and conducting
preprocessing and feature fusion to enable the model to learn richer representations from
multiple sources. Ultimately, we will use deep learning models to train and optimize
the fused data to improve the performance of the algorithm for morphologically similar
species recognition.
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