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Simple Summary: The tea aphid, Toxoptera aurantii, is one of the most damaging pests of tea plants
and substantially affects tea yield. Thus, understanding T. aurantii’s adaptability to various tea
germplasms is critical for screening resistant materials. Here, we used EPG technology combined
with an age-stage two-sex life table to assess T. aurantii’s adaptation to six tea germplasms. The
findings revealed that various tea germplasms substantially impacted T. aurantii feeding behavior.
Compared with other hosts, T. aurantii exhibited increased pathway activities and reduced phloem
sap ingestion on ZK. Life table parameters indicated that the growth rate of T. aurantii was the slowest
on ZK, and it also significantly affected the longevity and fecundity of T. aurantii. Thus, ZK was the
least favorable host plant for T. aurantii population establishment among the six germplasms based
on measurements of feeding behavior and population dynamics.

Abstract: Aphids are typical phloem-sucking insect pests. A good understanding regarding their
feeding behavior and population dynamics are critical for evaluating host adaptation and screen-
ing of aphid-resistant resources. Herein, the adaptability of Toxoptera aurantii (Boyer) (Hemiptera:
Aphididae) to different hosts was evaluated via electropenetrography and an age-stage, two-sex life
table on six tea germplasms: Zikui (ZK), Zhongcha108 (ZC108), Zhongcha111 (ZC111), Qianmei419
(QM419), Meitan5 (MT5), and Fudingdabaicha (FD). Our findings revealed that the feeding activities
of T. aurantii differed considerably among the host plants. T. aurantii exhibited significantly more
pathway activities on ZK and FD than on the other hosts. However, the duration of feeding of
T. aurantii on ZK phloem considerably decreased compared with those of the other germplasms. Life
parameters indicated that T. aurantii exhibited the highest intrinsic rate of increase (r), net reproduc-
tive rate (R0), and finite rate of increase (λ) on MT5, and the maximum values of total longevity and
oviposition period were recorded on FD; these variables were reduced significantly on ZK. The results
of our study demonstrate that T. aurantii can successfully survive on the six tea germplasms; however,
ZK was less suitable for T. aurantii and should be considered as a potential source of resistance in
breeding and Integrated Pest Management.

Keywords: Toxoptera aurantii; electropenetrography; feeding behavior; life table; host adaptability

1. Introduction

Via the interactions between phytophagous insects and host plants, the former has
evolved adaptability to host plants in complex ecological environments [1]. Through this
process, insects select plants as food sources through a range of behavioral and physiological
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responses to improve their adaptability to host plants, thus leading to the diversity or
specialization of various insects to a specific host, and ultimately making insect populations
more rampant on some crops [2]. Increasing evidence suggests that the performance
of insects on host plants is widely considered a reliable indicator for evaluating their
adaptability [3–5]. Therefore, studying insects’ feeding behavior and population dynamics,
we can judge their adaptability to various host plants, which is also essential for developing
insect-resistant host plant varieties [6].

The tea aphid, Toxoptera aurantii (Boyer) (Hemiptera: Aphididae), is one of the most
serious pests of tea plants, which damages them by sucking sap from the phloem and
producing metabolites such as honeydew to increase the risk of sooty mold [7]. Reportedly,
T. aurantii causes an average yield loss of 5−55% annually [8]. Nowadays, T. aurantii is
widely distributed in countries such as China, India, Japan, Sri Lanka, and Kenya, it also
can harm other plants such as cocoa, coffee, and citrus [9]. Given the high adaptability
of T. aurantii, they can further increase their pest potential in the near future. The current
methods of managing aphids focus mostly on insecticides [10,11]. In attempting to avoid
the negative effects of chemical insecticides, the utilization of resistant tea germplasms
to control aphids has emerged as an economical, effective, and environmentally friendly
management strategy [12,13]. Unfortunately, few reports regarding the resistance of tea
plants to T. aurantii have been published, which are insufficient for screening aphid-resistant
tea germplasms.

When aphids encounter a new host plant, they probe the plant tissues to determine
the resistance of the epidermis and appropriateness of the phloem sap, and only accept
the plant as a food source following this assessment procedure. In order to complete their
life cycle, aphids also assess whether the host plant can provide a suitable habitat for
their development and reproduction. Therefore, combining knowledge of their feeding
behavior with population dynamics could offer a better understanding regarding aphid
adaptation to diverse host plants [14]. Owing to their efficiency and accuracy, the electrical
penetration graph (EPG) technique and life tables are useful tools for screening insect-
resistant germplasm resources to comprehensively analyze the adaptation of piercing–
sucking insects to plants [12]. EPG signals can reflect the location of the stylet in the
plant tissue alongside special feeding activities [15–17] and has been widely used as an
advanced technology to examine the feeding behavior of piercing–sucking insects [18] such
as Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) [19], Toxoptera citricida (Kirkaldy)
(Hemiptera: Aphididae) [13], Myzus persicae (Sulzer) (Hemiptera: Aphididae) [20], and
Bemisia tabaci (Gennadius) (Hemiptera: Aphididae) [21]. Life table analysis is widely
accepted as a powerful tool for researching the dynamics of insect populations. The
intrinsic rate of increase (r), net reproductive rate (R0), and finite rate of increase (λ)
obtained from the age-stage, two-sex life table analysis can accurately reveal the dynamics
of insect populations and provide accurate findings for evaluating host adaptability [20].

We recorded the feeding behavior of T. aurantii on six tea germplasm materials using
the EPG technique and assessed the growth and development levels of aphids in relation
to the life table parameters in the current study. The overarching goal of this study was
to clarify the host adaptability of T. aurantii and filter out resistant tea germplasm sources
to establish a theoretical foundation for prospective pest preventive and control actions
during tea planting.

2. Materials and Methods
2.1. Test Materials
2.1.1. Insects

T. aurantii were collected from the tea field in the teaching experimental farm of
Guizhou University. These aphids were reared in an insect-proof cage in a greenhouse at
(25 ± 1) ◦C, (70 ± 5)% RH, and 14 L:10 D photoperiod. In order to avoid the interference
of other germplasm materials on the adaptability of T. aurantia. Before the experiment, an
apterous adult from the stock colonies was transferred to a susceptible tea seedling Camellia
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sinensis cv. Huangjinya. After three generations of breeding, the newly emerged (0–6 h)
adults of T. aurantii were picked out for the studies.

2.1.2. Tea Germplasm Materials

Tea germplasm materials Zikui (ZK), Zhongcha108 (ZC108), Zhongcha111 (ZC111),
Qianmei419 (QM419), Meitan5 (MT5), and Fudingdabaicha (FD) were provided by the
Institute of Tea Research, Guizhou Academy of Agricultural Sciences. All tea germplasms
were 2-year-old tea seedlings grown in an artificial climate chamber (25 ◦C ± 1 ◦C,
70% ± 5% RH, 14 L:10 D photoperiod).

2.2. Test Methods
2.2.1. EPG Recording

In this experiment, we used a DC-EPG Giga-8 system (EPG Systems, Wageningen
Agricultural University, The Netherlands) to record the feeding behavior of T. aurantii on
six germplasms. The newly molted adult apterous aphids were first starved for 1 h before
binding the pronotum of T. aurantii to a thin gold wire (1~2 cm long and 12.5 µm in
diameter) with silver conductive paint glue. The other end of the gold wire was fixed on the
welded fine copper nail, and the nail was fixed to the probe of the input electrode to form a
biotic electrode. Then, another copper rod with a diameter of 2 mm and a length of 10 cm
was inserted into the soil of the plant to be measured to form the plant electrode. Finally,
in accordance with the feeding habits of T. aurantii, it was placed on the abaxial surface of
the upper leaf of the test plant to feed freely. When the aphid on the plant’s leaf pierced
the plant tissue, it formed a closed circuit. The experiment was conducted in a Faraday
cage to eliminate interference from electrical noise. The feeding behavior was continuously
recorded for 6 h, following which we selected 15 valid duplicates for statistical analysis.

2.2.2. Life Table Construction

The experiment was performed on live potted plants. The potted tea plants were
placed in trays filled with water to prevent aphids from escaping and to ensure normal
plant growth. An apterous adult was obtained from each of the six tea germplasms and
placed on the appropriate fresh leaves of the tea plant. Every 12 h, the survival, molting,
and number of newly born nymphs for each aphid were recorded, and exuviae and new
aphids were promptly removed. Only one new aphid was permitted to be placed on each
plant, and each tea germplasm was replicated 50 times. The experiment was carried out in
a climate chamber at 25 ◦C ± 1 ◦C, 70% ± 5% RH, with a photoperiod of 14 L:10 D.

2.3. Statistical Analysis

The aphids’ probing behaviors were recorded using the Stylet+d program. The labeling
of aphid waveforms on Stylet+a software according to Tjallingii [22–24] and Helden and
Tjallingii [25] descriptions and all behavioral variables were processed using the EPG
Excel Data Workbook produced by Sarria et al. [26]. The EPG parameter analyses were
performed using SPSS 26.0 statistical software (SPSS, Chicago, IL, USA). Kolmogorov–
Smirnov’s test and Bartlett’s test were used to test the normality and homogeneity of the
variance of the data, respectively. In the absence of normality, the data of the EPG were
log10(x + 1) transformed and arcsine conversion was used for data on the percentage
of the average duration of each waveform. One-way ANOVA with Tukey–HSD test
(p < 0.05) was conducted to detect differences between the treatments, with germplasms
as the independent variable and EPG parameters as the dependent variable. Each tea
germplasm was performed in 15 replicates. We assessed the growth and development of
T. aurantii on six tea germplasm resources with 50 replicates per treatment.

The life table and particular age-related parameters were exported using a bootstrap
approach with 100,000 resampled data values in the software TWOSEX-MSChart [27,28]. We
used the above statistical method of EPG data to test the differences among the parameters.
The sxj, lx, mx, lxmx, exj, and vxj curves were drawn using SigmaPlot 14.
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3. Results
3.1. Measuring T. aurantii Feeding Behavior by EPG

We observed seven distinct waveforms (np: non-probing behavior, pd: intracellu-
lar stylet puncture, C: intercellular stylet pathway, G: xylem sap ingestion, F: derailed
stylet mechanics, E1: phloem salivation, and E2: passive phloem ingestion) on the six
tea germplasms during the 6 h recording. The comparison of phloem phase and non-
phloem phase parameters revealed that the feeding behavior of T. aurantii on ZK was
significantly affected.

3.2. Probing Behavior of T. aurantii Stylets in Non-Phloem Phase

No significant differences were observed in the number of probes, number of probes
to the 1st E1, number of short probes (C < 3 min), and total duration of F among six host
plants (Table 1, Parameters 1, 4, 7, and 11). The total time of the np on MT5 was the
longest among all the tea germplasm and even considerably longer than ZC108 (Table 1,
Parameter 2). The duration of first probe was significantly extended on FD compared with
ZC108 (Table 1, Parameter 3). T. aurantii exhibited the highest count of pd on ZK; however,
the mean duration of pd increased significantly on MT5 (Table 1, Parameters 5 and 6).
The total duration of C and the number of F showed the maximum value on ZK (Table 1,
Parameters 8 and 10). The duration of T. aurantii on ZC111 and QM419 was significantly
longer than that of other germplasms (Table 1, Parameter 9).

Table 1. Electrical penetration graph parameters of T. aurantii on six tea germplasm materials.

No. EPG Parameters
Tea Germplasms

p
ZK ZC108 ZC111 QM419 MT5 FD

1 Count probes 14.60 ± 3.71 6.60 ± 1.77 14.60 ± 2.59 11.20 ± 2.39 11.67 ± 2.72 6.93 ± 3.18 0.171

2 Sum time of np
wave (min) 20.33 ± 8.23 ab 2.76 ± 0.60 b 8.46 ± 2.22 ab 6.88 ± 1.89 ab 31.77 ± 13.34 a 7.13 ± 5.68 ab 0.035

3 Duration of 1st
probe (min) 69.88±26.64 ab 38.88 ± 23.54 b 98.70 ± 37.59 ab 79.67 ± 30.97 ab 88.71 ± 38.62 ab 204.50 ± 44.75 a 0.026

4 Number of probes to the
1st E1 6.13 ± 1.81 5.40 ± 1.62 10.07 ± 1.99 5.33 ± 1.55 9.60 ± 2.82 6.87 ± 3.19 0.508

5 Count of Pd 122.40 ± 16.22 77.60 ± 7.51 112.47 ± 10.18 102.20 ± 14.15 92.00 ± 9.20 92.40 ± 12.26 0.122
6 Mean duration of pd (s) 4.25 ± 0.31 ab 4.05 ± 0.13 ab 4.02 ± 0.11 ab 3.82 ± 0.84 b 4.95 ± 0.47 a 4.07 ± 0.98 ab 0.033
7 Number of short probes 8.00 ± 2.71 3.73 ± 1.34 8.67 ± 1.94 6.00 ± 1.55 6.27 ± 2.08 4.53 ± 2.50 0.521
8 Total duration of C (min) 218.57 ± 25.59 a 77.78 ± 8.15 c 89.41 ± 17.48 c 111.72 ± 27.05 bc 110.54 ± 15.62 bc 186.45 ± 35.34 ab <0.01
9 Total duration of G (min) 13.87 ± 3.63 b 9.09 ± 2.00 b 57.09 ± 9.08 a 46.21 ± 6.52 a 17.32 ± 4.29 b 21.78 ± 3.21 b <0.01
10 Number of F 5.00 ± 0.97 a 2.07 ± 0.54 b 1.80 ± 0.73 b 1.73 ± 0.50 b 1.07 ± 0.56 b 1.93 ± 0.61 b <0.01
11 Total duration of F (min) 24.13 ± 11.24 12.15 ± 7.01 22.60 ± 11.58 48.57 ± 17.00 51.03 ± 22.00 30.28 ± 12.47 0.343
12 Number of E1 2.73 ± 0.62 2.87 ± 0.54 3.27 ± 0.80 2.40 ± 0.58 3.20 ± 0.86 1.73 ± 0.33 0.564

13 Total duration of
E1 (min) 28.76 ± 9.06 13.02 ± 3.84 20.77 ± 5.05 12.61 ± 3.62 11.63 ± 3.30 12.76 ± 3.32 0.125

14 Number of E2 1.33 ± 0.47 2.27 ± 0.36 2.53 ± 0.65 2.00 ± 0.54 2.67 ± 0.80 1.13 ± 0.20 0.244

15 Number of sustained E2
(>10 min) 0.53 ± 0.17 1.47 ± 0.22 1.47 ± 0.26 1.13 ± 0.22 1.67 ± 0.63 0.80 ± 0.11 0.094

16 Total duration of
E2 (min) 73.17 ± 25.72 b 247.56 ± 13.71 a 162.93 ± 19.45 ab 159.91 ± 28.40 ab 141.31 ± 29.25 b 155.88 ± 28.33 ab <0.01

The feeding behavior of T. aurantii on six tea germplasms was recorded with EPG, and seven waveforms were
determined: np (non-probing behavior), pd (intracellular stylet puncture), C (intercellular stylet pathway), G
(xylem sap ingestion), F (derailed stylet mechanics), E1 (phloem salivation), and E2 (passive phloem ingestion).
Data in the table represent mean ± SE (n = 15). Different letters in the same rows show significant differences
between treatments at p < 0.05 (Tukey–HSD test).

3.3. Probing Behavior of T. aurantii Stylets in Phloem Phase

There are no significant difference between T. aurantii on the six treatments in terms of
the number of E1, number of E2, and number of sustained E2 (>10 min) (Table 1, Parameters
12, 14, and 15). The total duration of E1 on ZK was the highest among six tea germplasms
(Table 1, Parameter 13). Conversely, the total duration of E2 was significantly lower on
ZK, and the feeding behavior of T. aurantii was significantly affected as it spent less time
pricking the phloem on ZK (Table 1, Parameter 16).
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3.4. Average Percentage of Time per Waveform during 6 h

The distribution (as a percentage of the total) of the average durations of the various
waveforms of T. aurantii on the six tea germplasms was analyzed (Figure 1). In the non-
phloem phase, ZK attained the maximum value of 58.55% in C wave, and ZC108 reached
the lowest value of 21.12%. ZC111 and QM419 were obviously longer than others for G
wave. There was no difference in the proportion of F wave among the six tea germplasms.
In the phloem phase, the proportion of E1 wave was the highest in ZK, which were con-
sistent with parameter 13 shown in Table 1. The proportion of E2 waves exhibited highly
significant differences, with ZC108 having the highest value at 69.29%, while ZK had the
lowest value at only 20.59%.
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3.5. Life Table Analysis

Population dynamics data (nymphal, preadult, and adult stages; fecundity; and total
longevity) of T. aurantii on ZK, ZC108, ZC111, QM419, MT5, and FD tea germplasms
are shown in Table 2. The developmental times of the preadult stage differed markedly
among the six tea germplasm materials: T. aurantii developed the slowest on ZK and the
quickest on MT5 during the early adult stage. Moreover, there were substantial differences
(p < 0.01) in the time required for T. aurantii growth and development at each age among the
six germplasm sources. During the adult stage, or even throughout the whole growth and
development stage, T. aurantii exhibited the shortest longevity on ZK. In addition, feeding
on different tea germplasms induced changes in the APOP and TPOP, oviposition time, and
fecundity. The APOP of T. aurantii reared on QM419 and ZK was significantly greater than
that of the other four host plants. The TPOP values measured on ZK were considerably
longer than those recorded on others. The longest oviposition period and highest fecundity
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occurred on FD and MT5, respectively, whereas the minimum values of both the variables
were observed on ZK. Among the six germplasms, there was no difference in the survival
rate of T. aurantii in the larval stage, with all aphids surviving to the adult stage.

Table 2. Developmental stage duration and growth parameters of T. aurantii on six tea germplasm materials.

Parameters
Tea Germplasms

p
ZK ZC108 ZC111 QM419 MT5 FD

First Instar (d) 1.78 ± 0.05 a 1.57 ± 0.03 bc 1.66 ± 0.04 ab 1.61 ± 0.04 b 1.41 ± 0.05 c 1.52 ± 0.03 bc <0.01
Second Instar (d) 1.60 ± 0.04 a 1.20 ± 0.04 c 1.39 ± 0.04 bc 1.42 ± 0.03 ab 1.41 ± 0.08 ab 1.46 ± 0.04 ab <0.01
Third Instar (d) 1.42 ± 0.05 a 1.19 ± 0.03 b 1.36 ± 0.04 a 1.41 ± 0.03 a 1.35 ± 0.05 ab 1.39 ± 0.04 a <0.01

Fourth Instar (d) 1.43 ± 0.06 ab 1.52 ± 0.04 ab 1.43 ± 0.06 ab 1.61 ± 0.08 a 1.17 ± 0.05 c 1.36 ± 0.04 bc <0.01
Preadult

Duration (d) 6.23 ± 0.11 a 5.48 ± 0.08 cd 5.84 ± 0.08 b 6.05 ± 0.08 ab 5.35 ± 0.07 d 5.73 ± 0.07 bc <0.01

Adult
Longevity (d) 11.77 ± 0.67 12.84 ± 0.27 13.15 ± 0.93 13.23 ± 0.89 13.66 ± 0.51 14.40 ± 0.47 0.13

Total
Longevity (d) 18.00 ± 0.66 18.32 ± 0.26 18.99 ± 0.93 19.28 ± 0.90 19.01 ± 0.52 20.13 ± 0.47 0.28

APOP (d) 0.15 ± 0.01 a 0.02 ± 0.01 c 0.11 ± 0.01 b 0.16 ± 0.01 a 0.12 ± 0.01 b 0.11 ± 0.01 b <0.01
TPOP (d) 6.38 ± 0.12 a 5.50 ± 0.08 e 5.94 ± 0.08 c 6.22 ± 0.10 b 5.47 ± 0.07 e 5.85 ± 0.07 d <0.01

Larviposition
Period (d) 8.34 ± 0.07 f 10.66 ± 0.02 c 10.14 ± 0.09 d 9.82 ± 0.08 e 11.05 ± 0.06 b 11.47 ± 0.05 a <0.01

Fecundity 31.22 ± 2.11 d 58.48 ± 1.18 a 45.90 ± 2.82 c 49.16 ± 2.68 bc 66.04 ± 2.20 a 57.42 ± 1.89 ab <0.01

Means ± SE within rows followed by the same letter do not differ significantly according to the Tukey–HSD test
(p < 0.05). TPOP represents the total prereproductive period, and APOP represents the adult prereproductive period.

Table 3 shows the parameters of the population that were estimated using the bootstrap
method. The highest values of the finite rate of increase (λ), intrinsic rate of increase (r),
and reproductive rate (R0) appeared on MT5, whereas the lowest values occurred on ZK.
Furthermore, the maximum and minimum values of the mean generation time (T) were
detected on ZK and ZC108, respectively.

Table 3. Life table parameters of T. aurantii on six germplasm materials.

Parameters
Tea Germplasms p

ZK ZC108 ZC111 QM419 MT5 FD

λ (d−1) 1.4147 ± 0.0143 e 1.5751 ± 0.0011 b 1.4890 ± 0.0013 d 1.4880 ± 0.0012 d 1.5831 ± 0.0011 a 1.5230 ± 0.0011 c <0.01
r (d−1) 0.3469 ± 0.0010 e 0.4543 ± 0.0007 b 0.3981 ± 0.0009 d 0.3974 ± 0.0008 d 0.4594 ± 0.0007 a 0.4207 ± 0.0007 c <0.01

R0 31.3552 ± 0.2849 e 58.3408 ± 0.1659 b 46.7204 ± 0.4117 d 49.3016 ± 0.3898 c 66.0652 ± 0.3344 a 57.2232 ± 0.2227 b <0.01
T (days) 9.9289 ± 0.0237 a 8.9507 ± 0.0108 e 9.6523 ± 0.0232 c 9.8062 ± 0.0239 b 9.1216 ± 0.0125 d 9.6201 ± 0.0152 c <0.01

Data in the table are represented as mean ± SE. Standard errors were estimated with 100,000 bootstrap resamplings.
Means in each row followed by the same letter are not significantly different at p < 0.05 (Tukey–HSD test).
Parameters of life table: Finite rate of increase (λ), Intrinsic rate of increase (r), Net reproductive rate (R0), and
mean generation time (T).

The age-specific survival rates (lx), age-specific fecundity values (mx), and net mater-
nity values (lxmx) of T. aurantii on the six germplasm materials are shown in Figure 2. The
findings revealed that the lx value gradually decreased with increasing age. The age-specific
fecundity on ZK, ZC108, ZC111, QM419, MT5, and FD was 5.02, 4.16, 2.99, 3.30, 4.57, and
3.62, respectively. Figure 3 shows the probability that an individual neonate aphid will
survive to age x and stage j. The overlap of survival curves at specific stages may be due
to differences in developmental rates between individuals. The age stage-specific lifespan
revealed the expected lifespan of individual T. aurantii of age x and stage j on the different
tea germplasm materials (Figure 4). The life expectancy of a neonate was 18.04, 18.32, 18.99,
19.28, 19.02, and 20.13 days on ZK, ZC108, ZC111, QM419, MT5, and FD, respectively. The
age stage-specific reproductive values (vxj) of T. aurantii on the different tea germplasm
materials are shown in Figure 5. T. aurantii reared on six tea germplasms had the highest
reproductive values in the early stages of maturity. The highest value for reproduction
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peaked at 14.02 on MT5, while the lowest peak occurred on ZK at 10.36, both of which
occurred late on the sixth day.
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4. Discussion

The host adaptability of aphids is closely related to the plant species [29,30]. To
design ecologically effective pest control strategies, there is a need for a comprehensive
understanding of aphid performance on different tea germplasms. Herein, the feeding
behavior and population dynamics of T. aurantii on six tea germplasms were evaluated
using the EPG technique and life table method.

The feeding habits of piercing–sucking insects can reflect a lot of information, which
is useful in determining the aphids’ preference for host plants. After determination and
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analysis, T. aurantii produced seven waveforms (np, pd, C, G, F, E1, and E2) on the six tea
germplasms, which was consistent with the conclusion of Han et al. [31]. When aphids
feed on a plant, the stylets penetrate the epidermis and then suck its internal composition
of the tissue [32]. Thus, the factors affecting the feeding of herbivorous insects include the
physical and chemical properties of the plant surface and internal tissues [33]. The total
duration of non-probing and pathway of T. aurantii on ZK was relatively high on the six
tea germplasms; hence, we speculated that it is related to the physical characteristics of
ZK leaves, such as their color and surface structure. The physical traits of plants exhibit
a significant impact on aphid feeding activities and are often used in research on host
adaptation. Hao et al. [34] reported that the feeding behavior of Brevicoryne brassicae (L.)
was negatively correlated with the length and density of trichomes. Similar results were
confirmed for M. persicae and Melanaphis sacchari (Zehntner) [35,36].

The phloem sap of host plants constitutes the main nutrient for aphids. E1 and E2
waveforms are indicative of phloem feeding activity that may be utilized to evaluate aphid
preferences on host plants [37]. The E1 wave indicates secretion of water-soluble saliva
by the stylets after reaching the sieve tube [38,39]. The total duration of E1 on ZK was the
longest of any test material, it may suggest that T. aurantii must produce a large amount
of saliva to overcome associated defense substances in order to feed successfully from the
plant phloem. E2 is the waveform that represents passive feeding on sap in the phloem. The
number of sustained E2 waves (>10 min) on MT5 was higher than that on ZK in the current
study. In addition, the duration of E2 was the lowest on ZK and highest on ZC108. Liang
et al. [40] reported that the total duration of E2 of T. aurantii on ZC108 was significantly
reduced. This result is inconsistent with the conclusion of our study, which might be due to
a regional difference in ZC108.

The life table parameters of herbivorous insects can also reflect their adaptability
to different host plants. The population parameters were produced using the bootstrap
method with 100,000 resamplings. The results revealed that feeding on different tea
germplasms can change the biological parameters of T. aurantii. Increasing evidence
suggests that a short development time, extended longevity, and the large reproductive
capacity of phytophagous insects are features that are essential for a high capacity to adapt
to different hosts [41–43]. In this study, the nymph period of T. aurantii was clearly longer on
ZK than others, and its fecundity was significantly reduced. Certain biochemical or physical
disorders may reduce T. aurantii’s feeding on ZK; hence, lowering its developmental and
reproductive capacity. Undoubtedly, this will be a part of our further research.

The population parameters (r, λ, and R0) reflect the physiological characteristics related
to fertility of the insects [44,45]. Among the six tea germplasm materials, the maximum and
minimum values of these three variables occurred on MT5 and ZK, respectively. Tea plant
resistance to insect pests is the consequence of a complex interplay of factors, including leaf
bud color, physical characteristics, biochemical composition, and tenderness-keeping ability,
etc. Yang et al. [46] found that ZC108 and FD had low caffeine content but high free amino
acid content, and that Dendrothrips minowai (Priesner) and Empoasca onukii (Matsuda) were
more adaptable to these two host plants. According to Luo et al. [47], there is a significant
positive correlation between plant anthocyanin content and insect resistance, and the
greater the anthocyanin content in leaves, the better the resistance against Apolygus lucorm
(Meyer-Dür). Moreover, plants with strong tenderness-keeping ability can prolong aphid
longevity and larviposition period, thus improving their fecundity. Overall, T. aurantii was
the most adaptable on MT5, whereas the opposite was observed on ZK. MT5 is an excellent
strain previously selected by our research group that has strong tenderness-keeping ability.
Previous results demonstrated that ZK exhibited a high content of anthocyanins and
short tender-maintaining time [48]. However, other resistance factors for ZK require
further study.

In conclusion, the results measure adaptation to each of the tested tea germplasm
types, and show that T. aurantii is better adapted to MT5 than others, whereas ZK was
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the least suitable host plant. Therefore, ZK can be regarded as a potential aphid-resistant
germplasm for further study to form a useful genetic resource.
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