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Simple Summary: Female frog-biting midges exclusively feed on blood from frogs. They are attracted
by the calling of male frogs and search for specific feeding sites on their host’s body. To feed, these
blood-feeding midges use a very short proboscis that is composed of six piercing structures and an
enclosing component. We analyzed the morphology of the mouthparts using SEM and compared
these with the well-studied proboscises of other blood-feeding flies. Females of Corethrella share
more similarities to the very small blood-feeding short-proboscid biting midges, black flies and sand
flies than to their more closely related long-proboscid mosquitoes. We interpret our findings in the
functional context of a very short piercing proboscis and its possible specialization to pierce frogs.

Abstract: Females of frog-biting midges (Corethrellidae) obtain their blood meals from male calling
frogs. While the morphology of the feeding apparatus is well studied in hematophagous Diptera
that impact humans, frog-biting midges have received far less attention. We provide a detailed
micromorphological examination of the piercing blood-sucking proboscis and maxillary palpus in
three Corethrella species using scanning electron microscopy and histological semi-thin sectioning.
We also compare the sensilla found on the proboscis tip and the palpus of Corethrella with other
piercing blood-sucking Diptera. Corethrella spp. have a proboscis length of about 135 µm, equipped
with delicate mandibular piercing structures composing the food canal together with the labrum
and hypopharynx. Their proboscis composition is plesiomorphic and more similar to other short-
proboscid hematophagous Culicomorpha (e.g., Simuliidae), in contrast to the phylogenetically more
closely related long-proboscid Culicidae. As in other short-proboscid taxa, the salivary canal in
Corethrella spp. transitions into an open salivary groove with one mandible forming a seal, whereas in
Culicidae the salivary canal is closed until the tip of the proboscis. We discuss the possible functional
constraints of very short, piercing blood-sucking proboscises (e.g., dimensions of host blood cells)
that may limit the size of the food canal.

Keywords: piercing proboscis; mouthparts; hematophagous; sensilla; Diptera

1. Introduction

Part of the success and diversity of insects stems from the large variety of niches they
occupy; this is especially true for the type of food source they are specialized on [1]. Among
the huge morphological and functional variety of fluid-feeding mouthparts, a piercing-
sucking proboscis convergently evolved in many different insect taxa and represents a
technique for feeding on food sources that are covered by a protective layer such as
skin [2,3].

Frog-biting midges (Corethrellidae, with the monotypic genus Corethrella) belong to
the dipteran infraorder Culicomorpha, forming the superfamily Culicoidea together with
the phantom midges (Chaoboridae), the meniscus midges (Dixidae) and the mosquitoes
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(Culicidae) [4,5]. To date, Corethrellidae comprises more than 120 described species [6–9].
The vast majority of Corethrella spp. likely remain unknown due to limited sampling effort,
high beta diversity and the high probability of cryptic species [10,11]. Corethrella spp. are
tiny (approx. 1–2 mm in body length), mostly tropical, blood-sucking flies whose females
are specialized to feed on frogs which they locate and approach acoustically: the mating
calls of male frogs serve as the main stimulus for far-range attraction [12,13]. Similar
positive phonotactic behavior has been observed in other families of Diptera, including
Culicidae [14], Psychodidae [15], Tachinidae [16] and Sarcophagidae [17]. It is likely that
Corethrellidae also utilize additional cues to find their hosts such as chemical, visual and
tactile indicators, as seen in other blood-sucking flies [11,18]. This is supported in Corethrella
spp. by observed higher (non-acoustic) levels of host specialization, including the choice
of host species and/or a specific feeding site on a host [19] (Figure 1). Like many other
biting Diptera, female frog-biting midges rely on vertebrate (i.e., frog) blood to produce
their eggs [12,18,20,21].
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hypopharynx and a labium; these typical components make up the ground plan features 
in adult lower Diptera [26]. These are modified from biting–chewing mouthparts in in-
sects and enable hematophagous flies to pierce and to suck blood and/or other body fluids 
[22,27]. The labrum, the mandibles and maxillary laciniae are long, acute structures that 
are modified into thin piercing stylets that can penetrate the host together with the elon-
gated hypopharynx [28]. The labium forms a trough-like sheath that partly surrounds the 
piercing stylets posteriorly [28], thereby forming a supporting and guiding structure for 
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Figure 1. Female frog-biting midge (Corethrella spp.) sucking blood at the nostril of a male treefrog
Scinax elaeochrous in amplexus; haematoma formed beneath the surface of the skin (arrow). La Gamba,
Costa Rica. Photo: A. Ruppert.

Although the form and function of fluid-feeding mouthparts in insects may vary
depending on the utilized food source, the set of mouthparts always consists of the same
principal components [2,22]. In blood-sucking Diptera, the feeding apparatus consists
of the piercing–sucking proboscis and two sucking pumps: the cibarial pump beneath
the clypeus and the pharyngeal pump in the posterior of the head [2,23–25]. In female
Culicomorpha the proboscis is formed by the labrum, a pair of mandibles, a pair of maxillae,
a hypopharynx and a labium; these typical components make up the ground plan features
in adult lower Diptera [26]. These are modified from biting–chewing mouthparts in
insects and enable hematophagous flies to pierce and to suck blood and/or other body
fluids [22,27]. The labrum, the mandibles and maxillary laciniae are long, acute structures
that are modified into thin piercing stylets that can penetrate the host together with the
elongated hypopharynx [28]. The labium forms a trough-like sheath that partly surrounds
the piercing stylets posteriorly [28], thereby forming a supporting and guiding structure
for the piercing stylets [3,18]. The food canal, through which blood is sucked up, is
formed by the labrum and hypopharynx; in some taxa the mandibles form part of the
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composition of the food canal. The salivary canal is formed by the hypopharynx and is
used to inject saliva to counter the host’s mechanisms of blood clotting, platelet aggregation
and vasoconstriction [3,23,29,30]. Since males do not feed on blood, mandibular piercing
structures are reduced [31].

The aim of this study is to examine the proboscis morphology and micro-anatomy of
the mouthparts of three species of Corethrella (Corethrellidae) and to compare these with
other hematophageous Diptera to understand mouthpart evolution in the Culicomorpha.
In this regard, we discuss the functional aspects of very short piercing mouthparts and the
size limits of the feeding apparatus of blood-feeding insects.

2. Materials and Methods
2.1. Studied Species

Corethrella midges were caught using acoustic traps in Costa Rica at the Tropical Station
of La Gamba (Golfito/Puntarenas, 83◦12′7′ ′ W, 8◦42′2′ ′ N; 77 m asl) and fixed in ethanol.
Three Corethrella morphospecies, C. ranapungens Borkent, 2008, C. amazonica Lane, 1939, and
Corethrella peruviana Lane, 1939, were studied. Light microscopic preparations of Corethrella
midges (n = 10 of each species) were used for measuring body length, head height and
proboscis length. The length of the proboscis was defined as the distance from the distal
end of the clypeus to the apex of the labrum and measured using a light microscope (Nikon
Labophot 2, Nikon, Tokyo, Japan) with an attached drawing device.

2.2. Semi-Thin Sections

For the semi-thin sections, Corethrella spp. were first dehydrated in ascending ethanol
concentrations (70%, 80%, 90%, 95%, 100%; 15–30 min per step) and 100% acetone at room
temperature. Specimens were then embedded in agar low viscosity resin (Agar Scientific
Ltd., Essex, UK) after gradually increasing the concentration of the resin in three steps.
After 2.5 h in a vacuum chamber at 150 mbar at 40 ◦C and hardening for 24 h at 70 ◦C, the
resulting blocks were trimmed to an appropriate size and cut into 1 µm sections with a
microtome (Leica EM UC6, Leica GmbH, Wetzler, Germany). The sections were mounted
onto glass slides, stained with Toluidine blue (0.1%), embedded in agar low viscosity resin,
and covered with cover glasses. Photos of the sections were taken using a microscope
(Nikon Eclipse E800, Nikon, Tokyo, Japan) equipped with a digital camera (Nikon DS-
Ri2, Nikon, Tokyo, Japan) at 400x magnification in an oil immersion. The contrast of the
photomicrographs was adjusted using Adobe Photoshop (CC 2018, San Jose, CA, USA).

2.3. Scanning Electron Microscopy (SEM)

Preparation of the midges for the scanning electron microscope (SEM) started with
dehydration in an ascending ethanol series (70%, 96%, 100% at room temperature; 30 min
per step). To increase the durability of the animals against the electron beam, they were
immersed in hexamethyldisilazane (HMDS) for 15 min at room temperature and then air-
dried. The midges were then mounted onto the mounting tables using carbon platelets and
conductive silver was used. Finally, specimens were coated with a thin gold layer using a
sputter-coater (JEOL JFC-2300HR, JEOL Ltd., Tokyo, Japan). Photos of the specimens were
taken using the scanning electron microscope Philips XL 30 ESEM (Koninklijke Philips N.V.,
Amsterdam, The Netherlands) at 15 kV voltage and JEOL JSM-IT300 (JEOL Ltd., Tokyo,
Japan) at 20 kV voltage. Photos were edited and labelled using the Fiji plug-in ScientiFig.
Measurements of the sensilla lengths were taken using the SEM photos of five specimens.

3. Results
3.1. Proboscis Morphology of Corethrella

The morphology of the proboscis is similar across the females of C. peruviana, C. ama-
zonica and C. ranapungens. The proboscis is distinctly shorter than the head and measures
about 1/10 of the body length (Figure 2A,B). The mean length of the proboscises ranges
from 119.8 µm in C. ranapungens to 143.5 µm in C. amazonica (Table 1).
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Figure 2. Feeding apparatus of female Corethrella (Corethrellidae, Diptera) (SEM). (A) Lateral view
of C. peruviana. (B) Head and mouthparts of C. ranapungens in lateral view. (C) Proboscis tip of C.
ranapungens; the mandibles are positioned between the labrum and hypopharynx (frontal view).
(D) Maxillary palps and proboscis of C. amazonica in frontal view; the labella forms a sheath over the
stylets. (E) Proboscis tip of C. amazonica (frontal view) highlighting the serrations on the mandibles
and split labrum tip as well as microtrichia and grooved setae on the labella. cl: clypeus; hp:
hypopharynx; lb: labellum; lc: lacinia; lr: labrum; ls: labellar seta; mb: mandible; mp: maxillary palp;
mt: microtrichium; pe: pedicle; pr: proboscis.
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Table 1. Body length, head height (dorso-ventral length of complex eyes) and proboscis length
(clypeus to tip of the labrum) in female Corethrella species; means± SD, n = 10 individuals per species;
measurements in µm, rounded to one decimal place.

C. ranapungens C. amazonica C. peruviana
Body Head Proboscis Body Head Proboscis Body Head Proboscis

1326.9 258.1 119.8 1224.7 307.2 143.5 1513.4 320.8 141.2
±159.3 ±9.2 ±10.1 ±45.3 ±14.8 ±10.6 ±91.7 ±12.8 ±10

The proboscis forms a piercing organ that includes the same morphological features
found in most other Culicomorpha. The arched clypeus has numerous short microtrichia
and a few long setae and its distal border is connected with the labrum. The elongated
labrum, which does not have any setae, is slender towards the tip of the proboscis and
forms the anterior border of the food canal (Figure 2C,D). At the apex of the proboscis the
labrum splits into two parts, called labral pegs. The mandibles extend to the apex of the
proboscis and lie very close to each other between the anterior labrum and the posterior
hypopharynx (Figure 2C). One mandible covers the salivary groove, which is shaped by the
hypopharynx. The mandibles and hypopharynx jointly form the food canal (approximately
25 µm in width) alongside the labrum (Figure 3). At the apex, the mouthparts form a small
opening into the food canal that is 10 to 12 µm in width in C. amazonica (Figure 4A).
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proximal region the thin-walled salivary duct transitions into a thicker-walled salivary canal and
(B) further distally into the salivary groove at the distal region of the proboscis (C,D). fc: food canal;
hp: hypopharynx; lb: labellum; lc: lacinia; lg: ligula; lr: labrum; mb: mandible; mp: maxillary palp;
pm: prementum; sc: salivary canal; sg: salivary groove.
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Figure 4. Microtrichia, setae and sensilla of the proboscis tip and maxillary palpus (SEM). (A) Pro-
boscis tip of C. amazonica with microtrichia and socketed setae covering the labella. Ligula visible
between the labella inside the opening of the food canal (ventral view). (B) Palpus of C. peruviana
(lateral view). (C) Microtrichia, grooved, socketed and serrated setae and club-shaped sensilla on the
maxillary palp of C. peruviana (lateral view). (D) Microtrichia, setae of various types and club-shaped
sensilla on the palpus of C. ranapungens (lateral view). (E,F) Microtrichia, grooved, serrated setae
and club-shaped sensilla on the palpus of C. amazonica (lateral view). lb: labellum; lg: ligula; ls:
labellar seta; mp: maxillary palpus; ms: maxillary palpus seta; mt: microtrichium; smp: maxillary
palpus sensillum.

The mandibular stylets converge and overlap medially and lie very close to one
another (Figures 2E and 3C,D). One mandible forms the posterior cover of the food canal
while the other covers the salivary groove (Figure 3C,D). The lateral edge of the tips of the
mandibles are serrated. The teeth on the apex of the mandibles are evident in Figure 2E.
The mandibular stylets, labrum and hypopharynx all reach to the very tip of the proboscis,
whereas the laciniae, as part of the maxillae, extend only to two-thirds of the proboscis
length and form the lateral borders of the food canal up to the middle region (Figure 3A,B).
The laciniae appear as slender structures that converge distally, making them less pointed
than the mandibles.
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The labium is composed of the prementum in the proximal region of the proboscis and
splits up into a paired labella and an unpaired ligula in the distal region. Here, the labella
form a sheath surrounding the piercing organs (Figures 2 and 3). Numerous long setae
are found on the labella; these have grooves and smooth ridges along their longitudinal
axes. The setae have pointed tips, extend from a socket and are 25 µm to 36 µm long
(Figure 4A). There are also shorter setae, with a very similar appearance, but which are 11
µm to 14 µm in length. Short, curved structures (2 µm to 5 µm in length) without grooves
or sockets are present in high abundance on the labella (Figure 4A). In the proximal region
of the proboscis the hypopharynx lies anteriorly of the prementum and reaches into the
prementum enveloping the salivary canal (Figure 3A,B). More distally, the salivary canal
transitions into the salivary groove, which is formed by the hypopharynx (Figure 3C,D).
Here, the hypopharynx becomes blade-shaped and serrated; it has the shape of a thin stylet.
In the proximal region of the proboscis, the salivary canal is thick-walled (Figure 3B).

3.2. Maxillary Palpus

The palpi are longer than the proboscis but do not form part of the piercing apparatus
itself (Figure 2B). They consist of five segments; the first two appear to be mostly fused
(Figure 4B). The surface of each segment bears long socketed setae with grooves and
serrated ridges along their longitudinal axes. The setae occur in two different length types:
the longer setae measure between 93 µm and 143 µm in length, and the shorter vary in
length between 22 µm to 48 µm (Figure 4B). The surface of the palpus is also covered with
a large number of short and smooth microtrichia, which measure between 2 µm to 5 µm
in length. The third segment is elongated and has blunt sensilla towards its distal end.
These sensilla vary in their form and size across the three species of Corethrella. While they
are longer and club-shaped in C. peruviana (Figure 4C) and C. ranapungens (Figure 4D),
they have a spoon shape in C. amazonica and are shorter, more numerous and more dense
(Figure 4E,F).

4. Discussion
4.1. Comparison of the Proboscis of Corethrella spp. to Other Hematophagous Diptera

Insects show a high degree of adaptation to the different kinds of food sources they use
to nourish themselves [2]. In hematophagous insects a pattern of convergent evolution is
seen where functional adaptation has led to a piercing and sucking proboscis that can pierce
through the skin of vertebrates and suck up blood. Even though the piercing proboscises of
different insect taxa may show different functional mechanisms, they still share functionally
similar structures for puncturing, penetrating and anchoring the proboscis, a sheath-like
covering component of the stylets and a food canal [3]. The main goal of this work
was to analyze the structures that make up the piercing blood-sucking proboscis of the
Corethrellidae using modern imaging techniques and to compare our findings with the
existing literature [29,31]. From our detailed analysis, we found that all three species of
Corethrella investigated displayed a very similar proboscis morphology to each other and
which also matched with the known morphology of other species of Corethrellidae.

The short piercing structures of the proboscis in small-sized hematophagous Diptera,
like the Corethrellidae, need to be rigid and stiff, as they are essential in the process of
piercing vertebrate skin. In all blood-feeding Culicomorpha (e.g., frog-biting midges,
mosquitoes, black flies, etc.), the labium forms a supporting structure around the piercing
structures. Several species of Phlebotominae [3,32], Simuliidae [3,33,34] and Ceratopogo-
nidae [3,35] show a similar proboscis morphology when compared to Corethrellidae, even
though they are not closely related [4,5]. It is concluded that a proboscis shorter than the
head is ancestral for Culicomorpha while the comparatively long proboscis of the relatively
large Culicidae is derived. Likewise, we hypothesize that a scissor-like piercing mechanism
including sideward movements of the mandibles [28,33,34] in non-culicid Culicomorpha is
plesiomorphic and the pro- and retraction of the mandibles observed in Culicidae [23,36,37]
is apomorphic. A putative functional adaptation of the proboscis of Corethrellidae to frogs
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are the serrated mandibles and unarmed laciniae. Borkent (2008) [11] points out that this
combination of traits can also occur in species of Psychodidae and Ceratopogonidae that
obtain their blood meals from anuran hosts, and that these species may not necessarily
need to rely on the anchoring function of armed laciniae, possibly because of the loose
skin of their hosts. In Corethrella spp., the food canal is bordered anteriorly by the labrum
and posteriorly by the mandibles, with the hypopharynx lying further along the posterior
side. It is likely, however, that the hypopharynx also plays an important role in forming
the food canal together with the mandibles. This is necessary because the movement of
the mandibles during the piercing process of the host’s skin interferes with the sealing of
the food canal. In Simuliidae [33,34] and Ceratopogonidae [38], the mandibles perform
a snipping motion to open the skin of the host. Even though the exact mechanism of the
skin-piercing process in Corethrellidae is unknown, the absence of an interlocking structure
seems to indicate that the mandibles do not move in such a way [31,39]. However, they
probably do move to some degree during the piercing process since serration is evident
in the studied species. Figure 1 indicates that blood-feeding Corethrella midges can cause
a haematoma beneath the skin of the frog and that they will suck blood from the pool of
escaped blood, as do many other short-proboscid hematophagous lower Diptera [18,33].

Some interesting differences of the proboscis morphology are found in Corethrella
when compared to representatives of the Culicidae. Firstly, the proboscis of mosquitoes
is much longer when compared to body size than in Corethrella and can penetrate the
host’s skin deeper [18]. Secondly, the food canal is mainly formed by the labrum and
is bordered ventrally by the hypopharynx, but the mandibles and laciniae lie outside of
the food canal and not in between the labrum and the hypopharynx [3,23,40,41]. The
overlapping mandibles, plus the hypopharynx together with the labrum, form the food
canal in Corethrellidae [29,31], similar to Ceratopogonidae [35], Phlebotominae [3,32] and
Simuliidae [3,33,34]. Thirdly, the salivary canal of Culicidae is closed to the tip of the
long proboscis where it releases salivary fluid during the piercing process [3,23,41–43]. In
contrast, the salivary canal in Ceratopogonidae, Phlebotominae and Simuliidae opens and
transitions into the salivary groove towards the tip of the proboscis; a similar morphology
is also found in Corethrella. Furthermore, in the proximal region of the proboscis of these
taxa one mandible forms a closure of the salivary groove [29]. These shared features in
Corethrellidae, Phlebotominae, Ceratopogonidae and Simuliidae are the plesiomorphic
condition whereas the character states found in Culicidae are autapomorphic.

4.2. Sensilla of Labella and Maxillary Palpus

Three different types of sensilla were observed on the labella and the palpi of the
females of Corethrella. Their long, grooved appearance, as well as their placement in a
socket, suggests a function as a mechanoreceptor [44]. No pores or openings, which would
suggest a chemosensory function, could be found. Two types of long setae that differ in
length were found on the labella of the Corethrella species investigated. Both types resemble
the long setae found on the palpus of Corethrella and show similar grooved surfaces and
a socket. Lee and Craig (2009) [45] found two length types of long setae on the labella of
Aedes aegypti (Culicidae). They state that the longer type, called long labellar hairs, are
mechanosensory and are probably responsible for checking the position of the labella on
the host’s skin during the feeding process. The shorter setae, called medium-sized hairs,
are chemosensory and might serve to probe the skin of the host to check for suitability.
Spiegel et al. (2005) [46] found three different length types of this sensillum on the labellar
lobes and maxillary palps of Lutzomyia longipalpis (Psychodidae) and described them as
trichoid sensilla. Even though the authors were not able to detect pores or openings on the
surface of these sensilla using SEM, they found indirect proof of their existence by using a
silver staining method. This would suggest a chemosensory function of these sensilla. In
the investigated species of Corethrella, the short, very abundant cuticular structures on the
labella and the palpus closely resemble the microtrichia of species of Psychodidae [46] and
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Culicidae [45]. Electrophysiological and ultrastructural studies are needed for a profound
comparison of the function of the mouthpart sensilla in the various taxa of Culicomorpha.

The club shaped sensilla on the third segment of the palpus observed in the in-
vestigated species of Corethrella are similar to those found in species of Simuliidae [47]
and Ceratopogonidae [35,38], as well as other species of Corethrellidae [29]. Spiegel et al.
(2005) [46] described similar sensilla on the palpus of L. longipalpis (Psychodidae) as capitate
peg sensilla. In Culicidae, these sensilla have a known sensitivity to carbon dioxide [48,49].
These sensilla most likely also assist frog-biting midges in locating their hosts by detecting
the carbon dioxide released by the frog in addition to other recognition cues, such as skin
peptides [50]. The possible use of additional olfactory or gustatory and visual cues appears
congruent with observations on host-seeking behavior, host preferences and feeding site
selection in Corethrella [11,19,51].

4.3. Impact of Proboscis Size

Anuran erythrocyte blood cells are relatively large and range from 10.6 µm to 28.3 µm
in diameter among different species [52]. There are only a few published photos of histolog-
ical cross sections of a hematophagous insect’s proboscis [3] which can be used to estimate
whether the size of the blood cells of a host can possibly limit the dimensions of blood
feeding organs. In Corethrellidae, the size of blood cells of anuran hosts must be wide
enough to enable the blood cells to pass through the food canal during the feeding process.
In the present study, SEM photos of C. amazonica indicate an apical proboscis opening of
about the lower range size of anuran blood cells. In the studied Corethrella species the
cross sections of the food canal fit the larger range size of anuran blood cells. Similarly, the
erythrocyte blood cell size of mammals [53] and birds [54] may have a size constraining
effect on the mouthparts of hematophagous Simuliidae, Ceratopogonidae and Culicidae.
However, it is not known whether the smaller diameter of the blood cells of mammals,
i.e., 2.1 µm to 10.8 µm [53] would allow for narrower feeding organs.

De Silva et al. (2014) [39] discussed the relationship between the vascularization
density and depth of blood vessels in the skin of anuran hosts to the preferred feeding site
of female Corethrellidae. By measuring the length of the labium, the authors estimated
the potential depth frog-biting midges would need to penetrate to reach the blood vessels.
However, the labium does not penetrate the skin during blood-feeding. In the present
study, the length of the proboscis of the investigated species of Corethrella was determined
by measuring the distance from the distal end of the clypeus to the tip of the labrum. Since
the clypeus is not inserted into the hosts skin during the feeding process this marks the
maximal insertion depth of the proboscis of about 120–145 µm depending on the species,
and thus the maximal depth in which blood vessels can be reached. As the preferred anuran
hosts of the studied Corethrella species are known [11], the experimental framework of the
study of de Silva et al. (2014) [39] could potentially be applied to the results of this work.
However, skin measurements for the target frog host species are missing; future research
would need to acquire this data to test de Silva et al.’s (2014) [39] hypothesis. Data on skin
thickness and varying vascular properties may also help explain the presence of preferred
feeding sites on anuran hosts. However, other factors may offset skin thickness such as
when anticoagulant substances cause a blood pool to form under the skin which is then
reachable even when using a very short proboscis. Such superficial blood pools have been
observed during and after the blood meal of frog-biting midges (J.V. personal observation).
Future comparative studies should investigate the interplay between proboscis length,
depth of penetration, skin thickness at different feeding sites and the role of anticoagulants
in various hematophagous insects.
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