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Simple Summary: Biodiversity is not evenly distributed on Earth. For phytophagous insects, we
could expect increasing taxonomic richness from temperate to tropical latitudes, where plant diversity
is high. In this paper, we explored the variation in the number of genera in one of the most widespread
groups of phytophagous insects, flea beetles, from north to south on the African continent. We found
that the number of genera depends on the number of vegetation types, the kind of vegetation, and
some specific bioclimatic variables, leading to an up-and-down trend in taxonomic richness from
north to south.

Abstract: The distribution of global biodiversity can be investigated based on comprehensive datasets
and many methods to process them. The taxonomic diversity of phytophagous insects is typically
linked to plant diversity, which increases from temperate to tropical latitudes. In this paper, we
explored the latitudinal distribution of the flea beetle genera (Coleoptera, Chrysomelidae, Galerucinae,
Alticini) on the African continent. We divided the area into latitudinal belts and looked for possible
correlations with the number and types of vegetational divisions, the area of each belt, and the
bioclimatic variables. The number of flea beetle genera is related to the number and types of
vegetation divisions rather than the area of each belt. Some bioclimatic variables are highly related to
the number of genera, which is higher within those belts where climate factors limit the oscillation of
temperature over the year and favor high precipitations, especially in the warmest months. These
biotic and abiotic factors lead to a two-peak trend in the taxonomic richness of flea beetle genera
from north to south. Genera endemic to restricted areas are linked to the presence of high mountain
systems and increase the taxonomic richness of the belt they belong to.

Keywords: Africa; Chrysomelidae; latitudinal distribution; phytophagous insects

1. Introduction

Biodiversity is not evenly distributed on Earth [1]. The recent emergence of compre-
hensive global datasets on species occurrences, the availability of genetic datasets, and
new methods for processing them have facilitated global analyses of biodiversity distri-
bution and investigations of the factors shaping them [2–4]. Major studies have focused
on vertebrates and plants as model systems that are generally used to explore and test the
latitudinal diversity gradient, which is recognized as the main pattern in the distribution of
life [5–10]. Invertebrate distribution, instead, has been comparatively poorly investigated,
arguably due to the data deficiency for most taxa at the global or continental scales. Re-
garding terrestrial invertebrates, studies were conducted on specific insect groups [11–17].
However, the occurrence of a biodiversity gradient has not been documented for most taxa.

This paper explored the latitudinal distribution of a tribe of leaf beetles, Alticini, at the
continental scale, in Africa. With over 40,000 species worldwide, leaf beetles (Coleoptera
Chrysomelidae) are one of the most abundant families of phytophagous insects and are
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widespread in the terrestrial habitats of all continents. Alticini, defined as “flea beetles” due
to their ability to jump, are the largest and most diverse tribe of leaf beetles in the subfamily
Galerucinae, which also includes pests and alien species [18–23]. They occur worldwide,
except in the polar regions, with 601 genera and about 10,000 species [24]. Most are highly
specialized phytophagous insects that are primarily associated with herbaceous plants and,
to a lesser extent, shrubs and trees. The adult and larval stages mainly feed on the stems,
leaves, or roots of most higher plant families in different environments but rarely feed
on the flowers [25,26]. Alticini can be a reliable model to explore phytophagous insects’
distributional patterns thanks to their wide distribution, taxonomic richness at the species
and genus levels, and various trophic strategies. [27]. The African flea beetle fauna has
been the object of extensive studies over the last 30 years (see references for occurrence data
in the Section 2) despite still needing deep investigations for some areas. We investigated
the variation in the number of genera and the possible correlation of this number with the
sampling area, vegetation type, and bioclimatic variables.

2. Materials and Methods
2.1. Study Area, Dataset, Vegetation Formations, and Bioclimatic Variables

The study area consisted of continental Africa. Madagascar was excluded from our
analyses because the knowledge of the flea beetle fauna in this region is very poor and not
comparable with that of the African continent [28–32]. The African continent was divided
into 15 latitudinal belts of 5◦, a spatial resolution that reduced potential biases due to the
possible incompleteness of the occurrence data. The area of each belt was calculated in
ArcGIS Pro 3.01 [33], projecting the spatial data in the WGS 1984 Sinusoidal Africa (EPSG:
102,011) while concurrently taking into account the geodesy in the calculation.

Occurrence data of flea beetles were obtained from checked literature [34–46] and
integrated with unpublished data from entomological collections preserved in numer-
ous depositories worldwide (Biondi, unpublished data). We conducted the study at the
genus level to avoid biases in the number of taxa in each belt. Species-level data may be
affected by taxonomic uncertainties and potential misidentifications [47], while genera
are comparatively stable taxonomic entities, especially in areas where faunal knowledge
is still very partial. Although some authors have recently attributed the genera Hespera
and Luperomorpha to the “Galerucini incerta sedis” group [24,48], in this work, they were
considered Alticini, pending a definite taxonomic collocation.

The taxonomic richness of phytophagous insects is typically linked to vegetation
features. Thus, to assess possible correlations of the number of genera in each latitudinal
belt with vegetation types, we gathered spatial information on a raster map of the terrestrial
ecosystems of Africa where vegetation formations were classified hierarchically (i.e., class,
subclass, formation, division, and macro-group) [49].

Because abiotic factors may have independently affected the taxonomic richness, we
evaluated possible correlations of the number of genera with some bioclimatic variables.
We used the 19 temperature- and precipitation-related variables that are available on the
Worldclim 2.1 online repository at a 2.5 min spatial resolution [50].

2.2. Statistical and Spatial Analyses

The correlations of the number of genera in each latitudinal belt with the sampling area,
vegetation type, and bioclimatic variables were evaluated using the Pearson correlation
coefficient (r), which was calculated using the statistical package NCSS version 11 for
Windows [51].

Geostatistical analyses were conducted using ArcGis Pro 3.01 [33]. Specifically, 5◦ lat-
itudinal belts were generated, spanning from 40–35◦ N to 30–35◦ S, thus encompassing
the whole of Africa. Then, we intersected those belts with Africa’s boundaries, obtaining
specific latitudinal belts for this continent. Then, we used each as a crop mask to extract
information from the African vegetation types raster dataset [49], subsequently calculating
the area of each vegetation type per latitudinal belt.
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A cluster analysis was performed to highlight the degree of association between the
latitudinal belts considered here and flea beetle genera. The web tool ClustVis [52] was used
to generate a binary heatmap using hierarchical clustering, applying Euclidean distance
and Ward linkage for areas and genera. The analysis was returned as single output clusters
of genera based on the similarity of their distributions and clusters of areas based on their
faunistic similarity. The following areas were introduced in the analysis to also take into
account the occurrence of genera outside of the African continent: the Arabian Peninsula
(AP), the Australian region (AUR), Madagascar (MAD), the Nearctic region (NAR), the
Neotropical region (NTR), the Oriental region (ORR), and the Palearctic region (PAR).

3. Results

At the current state of knowledge, 96 genera of Chrysomelidae Alticini occur on
the African continent (Table 1), of which 78.12% (74) are only present in sub-Saharan
Africa and 11.46% (11) are only present in Mediterranean Africa, while 10.42% (10) are
widespread on the entire continent. Regarding the 74 genera of the sub-Saharan component,
58.66% (44) are strictly endemic to the African continent, 10.67% (8) are shared with only
Madagascar, and 4.00% (3) are shared with only the Arabian Peninsula. The other 26.67%
of the sub-Saharan genera (20) have the widest distributions and are mainly extended to
the Oriental (18) and Palearctic (15) regions. None of the 11 flea beetle genera present in
only Mediterranean Africa are endemic. All of them are widespread in Europe; of these,
36.36% (4) also occur in the Nearctic region, and 27.27% (3) are also present in the Oriental
region. Finally, the pan-African component includes genera that are also widely distributed
in other zoogeographical regions, except for the genus Angulaphthona, which is endemic to
the African continent, with a short extension into the Arabian Peninsula.

Table 1. Flea beetle genera on the African continent, species number for each genus, and distribu-
tion. AP: Arabian Peninsula, AFR: African continent, AUR: Australian region, MAD: Madagascar,
MAF: Mediterranean Africa, NAR: Nearctic region, NTR: Neotropical region, ORR: Oriental region,
PAR: Palearctic region, SSA: sub-Saharan Africa.

Genera No. of Species in Continental Africa Distribution

Adamastoraltica Biondi, Iannella and
D’Alessandro, 2020 1 SSA

Afroaltica Biondi and D’Alessandro, 2007 2 SSA

Afrocrepis Bechyné, 1954 3 SSA-MAD

Afrorestia Bechyné, 1959 ≈20 SSA-MAD

Alocypha Weise, 1911 1 SSA

Altica Geoffroy, 1762 >30 World

Amphimela Chapuis, 1875 >30 SSA-AP-MAD-PAR-ORR-AUR

Angulaphthona Bechyné, 1960 7 AFR-AP

Aphthona Chevrolat, 1836 >30 World

Apteropeda Motschulsky, 1860 1 MAF-PAR

Argopistes Motschulsky, 1860 ≈10 MAF-PAR

Argopistoides Jacoby, 1892 4 SSA-ORR

Argopus Fischer von Waldheim, 1824 1 MAF-PAR-ORR

Arrhenocoela Foudras, 1861 1 MAF-PAR

Bangalaltica Bechyné, 1960 1 SSA

Batophila Foudras, 1860 1 MAF-PAR

Bechuana Scherer, 1970 2 SSA
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Table 1. Cont.

Genera No. of Species in Continental Africa Distribution

Bechynella Biondi and D’Alessandro, 2010 3 SSA

Bezdekaltica Döberl, 2012 1 SSA

Bikasha Maulik, 1931 ≈6 SSA-MAD-PAR-ORR

Biodontocnema Biondi, 2000 1 SSA

Blepharidina Bechyné, 1968 >30 SSA

Calotheca Heyden, 1887 >30 SSA-AP-PAR

Carcharodis Weise, 1910 7 SSA-MAD

Celisaltica Biondi, 2001 1 SSA

Chaetocnema Stephens, 1831 >30 World

Chaillucola Bechyné, 1968 1 SSA

Chirodica Germar, 1834 8 SSA

Collartaltica Bechyné, 1959 6 SSA

Crepidodera Chevrolat, 1836 3 MAF-PAR-NAR

Decaria Weise, 1895 ≈20 SSA-AP

Diamphidia Gerstaecker, 1855 17 SSA

Dibolia Latreille, 1829 ≈20 AFR-PAR-NAR

Dimonikaea Bechyné, 1968 1 SSA

Djallonia Bechyné, 1955 1 SSA

Drakensbergianella Biondi and
D’Alessandro, 2003 1 SSA

Dunbrodya Jacoby, 1906 2 SSA

Epitrix Foudras, 1860 ≈12 World

Eriotica Harold, 1877 7 SSA

Eurylegna Weise, 1910 6 SSA

Eutornus Clark, 1860 ≈7 SSA-MAD

Gabonia Jacoby, 1893 >30 SSA-AP

Guilielmia Weise, 1924 2 SSA

Guinerestia Scherer, 1959 3 SSA

Hemipyxis Chevrolat, 1836 >30 SSA-AP-PAR-ORR-AUR

Hermaeophaga Foudras, 1860 1 MAF-PAR-NAR

Hespera Weise, 1889 >30 SSA-AP-PAR-ORR

Hesperoides Biondi, 2017 1 SSA

Homichloda Weise, 1902 3 SSA

Jacobyana Maulik, 1926 3 SSA-ORR

Kanonga Bechyné, 1960 1 SSA

Kenialtica Bechyné, 1960 7 SSA-MAD

Kimongona Bechyné, 1959 3 SSA

Lampedona Weise, 1907 3 SSA

Lepialtica Scherer, 1962 4 SSA

Longitarsus Berthold, 1827 >30 World

Luperomorpha Weise, 1887 2 SSA-AP-PAR-ORR-AUR



Insects 2023, 14, 394 5 of 14

Table 1. Cont.

Genera No. of Species in Continental Africa Distribution

Lypnea Baly, 1876 ≈10 SSA-PAR-ORR-AUR

Malvernia Jacoby, 1899 2 SSA

Manobia Jacoby, 1885 ≈15 SSA-PAR-ORR-AUR

Mantura Stephens, 1831 4 MAF-PAR-NAR-ORR

Montiaphthona Scherer, 1961 6 SSA

Myrcina Chapuis, 1875 ≈16 SSA-MAD

Neocrepidodera Heikertinger, 1911 5 MAF-PAR-NAR-ORR

Nisotra Baly, 1864 >30 SSA-AP-PAR-ORR-AUR

Notomela Jacoby, 1899 3 SSA

Nzerekorena Bechyné, 1955 9 SSA

Ochrosis Foudras, 1861 1 MAF-PAR

Oedionychis Latreille, 1829 2 MAF-PAR

Orestia Chevrolat, 1836 3 MAF-PAR

Orthocrepis Weise, 1888 >30 AFR-AP-PAR-ORR

Paradibolia Baly, 1875 3 SSA-ORR-AUR

Perichilona Weise, 1919 2 SSA

Philopona Weise, 1903 ≈20 SSA-AP-PAR-ORR-AUR

Phygasia Chevrolat, 1836 >30 SSA-AP-PAR-ORR

Phyllotreta Chevrolat, 1836 >30 World

Physodactyla Chapuis, 1875 6 SSA

Physoma Clark, 1863 2 SSA-MAD

Physonychis Clark, 1860 >30 SSA

Podagrica Chevrolat, 1836 >30 SSA-AP-PAR-ORR

Polyclada Chevrolat, 1836 16 SSA-AP

Psylliodes Berthold, 1827 9 World

Sanckia Duvivier, 1891 4 SSA-MAD-ORR

Serraphula Jacoby, 1897 19 SSA

Sesquiphaera Bechyné, 1958 ≈10 SSA-MAD

Sjostedtinia Weise, 1910 2 SSA

Sphaeroderma Stephens, 1831 >30 SSA-AP-PAR-ORR-AUR

Stegnaspea Baly, 1877 6 SSA

Stuckenbergiana Scherer, 1963 1 SSA

Terpnochlorus Fairmaire, 1904 2 SSA-NTR

Toxaria Weise, 1903 5 SSA

Trachytetra Sharp, 1886 5 SSA-PAR-ORR-AUR

Tritonaphthona Bechyné, 1960 1 SSA

Ugandaltica D’Alessandro and
Biondi, 2018 1 SSA

Upembaltica Bechyné, 1960 1 SSA

Zomba Bryant, 1922 1 SSA



Insects 2023, 14, 394 6 of 14

The latitudinal distribution of the number of flea beetle genera in Africa has an
approximately sinusoidal trend (Figure 1a), with a relative maximum in Mediterranean
Africa (40–30◦ N), a minimum in correspondence with the Sahara Desert (30–20◦ N), and
an increase with an absolute maximum in the equatorial belts (5◦ N–5◦ S). South of the
equator, the genus richness decreases in the latitudinal belts that include the Namib and
Kalahari deserts and increases significantly in the more southern temperate belts.
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Figure 1. (a) The number of flea beetle genera within the 15 latitudinal belts that were considered.
(b) The percentage of African endemic genera (orange, with the fraction of endemic genera exclusive
to the belt in red) and the number of vegetation divisions [49] (green) within the 15 latitudinal belts
that were considered.

The African endemic component is composed of 44 genera that are exclusively present
in sub-Saharan Africa, with limited extensions into the Saharan area (Figure 1b). Considered
alone, it shows a latitudinal trend in the distribution similar to that of the entire flea beetle
fauna (Figure 1a,b). It starts from 30◦ N, with an absolute maximum in the equatorial belts
(5–0◦ N and 0–5◦ S, with 53.85% and 54.55% of the endemic component, respectively) and a
relative maximum in the temperate belt (25–30◦ S and 30–35◦ S, with 52.49% and 43.49% of
the endemic component, respectively).

The binary heatmap obtained from the cluster analysis is reported in Figure 2, where
flea beetle genera are clustered based on the similarity of their distributions and the areas
are clustered based on their faunistic similarity. The 11 genera that are only present in
Mediterranean Africa, north of the Sahara Desert, are gathered in block A. They are all
shared with the Western Palearctic region, and some are also shared with the Nearctic
region (Crepidodera and Hermaeophaga), the Oriental region (Argopus), or with both (Mantura
and Neocrepidodera). Cluster B includes most sub-Saharan endemic genera, particularly
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those distributed S of latitude 15–10◦ N; only Afrocrepis is also present in Madagascar.
It includes Adamastoraltica, Biodontocnema, Chirodica, Drakensbergianella, and Stegnaspea,
which are endemic to southern Africa, and Celisaltica, Chaillucola, Dimonikaea, Guilielmia,
Perichilona, Tritonaphthona, and Upembaltica, which are more typically Central African.
Block C comprises genera with broader distributions on the African continent that are
present in other zoogeographical regions, mainly the Palearctic, Oriental, and Australian
regions. The analysis also included the genus Angulaphthona in this cluster. It is widespread
from north to south on the African continent, with a short extension into the Arabian
Peninsula. Cluster D mainly groups genera endemic to the Afrotropical region, which are
more widespread than those in cluster B and are generally also present in Madagascar
and/or the Arabian Peninsula. Finally, block E consists of genera that are distributed
mainly in the northernmost belts of sub-Saharan Africa. They are endemic to this area
(e.g., Bangalaltica, Bechynella, Djallonia, Eurylegna, Guinerestia, and Nzerekorena) or are shared
with other regions, especially the Australian and Oriental regions and, to a lesser extent,
the Palearctic region.
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The number of genera in the 15 latitudinal belts is uncorrelated with the area (ln) of
each belt (r = 0.14) (Figure 3a and Table 2). It is instead significantly correlated with the
number of vegetational divisions (r = 0.74) (Figure 1a,b (green bars), Figure 4, and Table 2).
The number of genera also shows strong positive correlations with some of the bioclimatic
variables considered here: BIO3 (isothermality: r = 0.91), BIO13 (precipitation of the wettest
month: r = 0.89), and BIO18 (precipitation of the warmest quarter: r = 0.91) (Figure 3b and
Table 3).
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Table 2. Metadata for the 15 latitudinal belts that were considered. Vegetation divisions refer to
Sayre et al. [49].

Latitudinal Range Total Area (km2) Total Number of
Flea Beetle Genera

African Endemic
Genera (%)

Flea Beetle Genera
Endemic to a Single

Latitudinal Range (%)

Number of
Vegetation
Divisions

40–35◦ N 219,406 22 0 0 12

35–30◦ N 1,441,210 23 0 0 13

30–25◦ N 2,567,593 13 7.69 0 13

25–20◦ N 2,990,429 12 8.33 0 13

20–15◦ 3,228,301 32 28.13 0 19

15–10◦ N 3,620,333 53 47.17 3.77 19

10–5◦ N 3,673,971 53 47.17 0 18

5–0◦ N 2,269,300 65 53.85 1.54 19

0–5◦ S 1,888,226 66 54.55 1.51 27

5–10◦ S 1,617,538 64 53.12 3.12 27

10–15◦ S 1,648,111 58 51.72 0 29

15–20◦ S 1,520,157 44 45.45 0 27

20–25◦ S 1,201,049 48 47.92 0 27

25–30◦ S 915,547 51 52.94 3.92 29

30–35◦ S 478,961 39 43.49 5.13 24
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Figure 4 shows the main vegetational divisions within the 15 latitudinal belts and a
vegetation division map with the number of flea beetle genera in each belt. The north-
ernmost latitudinal belt, including Mediterranean Africa (40–35◦ N), hosts significant
taxonomic richness (22 genera), despite occupying a relatively small area (219.406 km2).
It is mainly characterized by the vegetational division “Northern African Mediterranean
Scrub” (2.B.1.Pk), which occupies 63.74% of its area. Moving southward, belts 30–25◦ N
and 25–20◦ N have an evident increase in the surface occupied by the “Saharan Desert”
(3.A.2.Fh) (85.42% and 79.06%, respectively), which is accompanied by a significant de-
crease in the number of flea beetle genera (13 and 12, respectively), despite the large areas
covered by these belts (2,567,593 km2 and 2,990,429 km2, respectively). A marked increase
in the number of genera is observed approaching the equator. In the belt 20–15◦ N, a
substantial increase in the number of genera (32) is combined with the extension of the
“North Sahel Semi-Desert Scrub & Grassland” (3.A.2.Pf) (60.68%) and the contraction of
the Saharan Desert (25.44%). The two southernmost pre-equatorial belts (15–10◦ N and
10–5◦ N) show further growth in the number of genera (53 in both cases) and the extension
of savannah vegetation (“Sudano-Sahelian Dry Savanna” (2.A.1.Fi): 47.72%; “West-Central
African Mesic Woodland & Savanna” (2.A.1.Ff): 32.84%), and, to a lesser extent, forestry
(“Guineo-Congolian Evergreen & Semi-Evergreen Rainforest” (1 .A.2.Fd): 18.45%). The
strictly equatorial latitudinal belts (5–0◦ N and 0–5◦ S) host the highest numbers of flea bee-
tle genera (65 and 66, respectively). They are primarily occupied by the “Guineo-Congolian
Evergreen & Semi-Evergreen Rainforest” (1.A.2.Fd), with 45.57% of the area in the northern
belt (5–0◦ N) and 53.03% of the area in the southern one (0–5◦ S). In austral Africa, the
two latitudinal belts 5–10◦ S and 10–15◦ S (north of the Tropic of Capricorn) host similar
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taxonomic richness (64 and 58 genera, respectively). The subsequent four temperate belts
from 15◦ S to 35◦ S have comparatively smaller numbers of genera (44, 48, 51, and 39,
respectively), especially in correspondence with the Namib and Kalahari deserts (15–25◦ S).
Still, these numbers are decidedly higher than in the analogous belts of boreal Africa. From
the vegetational point of view, the two northernmost belts (15–20◦ S and 20–25◦ S) are
mainly characterized by savannahs (“Sudano-Sahelian Dry Savanna” (2.A.1.Fi); “Mopane
Savanna” (2.A.1.Fh); and “Miombo & Associated Broadleaf Savanna” (2.A.1.Fn)), with total
coverage values of 85.31% and 79.38%, respectively. The two southernmost belts (25–30◦ S
and 30–35◦ S) are the only ones characterized by the presence of karoo vegetation (“Nama
Karoo Semi-Desert Scrub & Grassland” (3.A.2.Fh) and “Succulent Karoo” (3.A.2.Fc), 26.13%
and 37.40%, respectively), and high-altitude pasture (“Southern African Montane Grass-
land” (2.B.2.Fm)) (23.76% and 19.15%, respectively). Despite their small areas (915.547 km2

and 478.961 km2, respectively), they have proportionally high numbers of genera (51 and
39, respectively). The 30–35◦ S belt is the only one hosting Mediterranean scrub (“South
African Cape Mediterranean Scrub” (2.B.1.Fh)), which occupies 17.26% of its surface area.

Table 3. Metadata for the 15 latitudinal belts that were considered. BIO2: mean diurnal range,
BIO3: isothermality, BIO8: mean temperature of the wettest quarter, BIO9: mean temperature of the
driest quarter, BIO13: precipitation of the wettest month, BIO14: precipitation of the driest month,
BIO15: precipitation seasonality, BIO18: precipitation of the warmest quarter, BIO19: precipitation of
the coldest quarter [50].

Latitudinal
Range

BIO2
(Mean)

BIO3
(Mean)

BIO8
(Mean)

BIO9
(Mean)

BIO13
(Mean)

BIO14
(Mean)

BIO15
(Mean)

BIO18
(Mean)

BIO19
(Mean)

40–35◦ N 11.39 38.27 11.01 24.99 72.54 5.323 51.29 38.31 192.3

35–30◦ N 12.94 40.44 13.78 28.04 25.4 1.265 60.87 9.296 60.28

30–25◦ N 14.43 43.22 17.55 27.78 4.716 0.06 49.47 1.775 9.149

25–20◦ N 14.9 46.42 29.45 21.57 6.837 0.122 67.47 10.19 1.752

20–15◦ 15.11 52.89 31.09 22.97 44.36 0.137 139 29.21 1.894

15–10◦ N 14.05 59.63 26.5 25.05 192.7 0.814 127.1 88.07 105.8

10–5◦ N 11.94 68.53 24.58 25.03 223.7 6.895 84.81 195.3 422.1

5–0◦ N 10.8 78.37 24.64 24.71 197.5 29.09 62.61 295.3 344.7

0–5◦ S 9.799 78.05 23.63 22.66 215.4 27.19 58.34 403.6 155.5

5–10◦ S 11.18 69.54 23.43 21.63 213 3.525 83.16 333.9 65.69

10–15◦ S 12.74 61.17 22.47 18.63 237.1 0.716 104.3 288 7.666

15–20◦ S 14.16 58.75 24.16 18.39 166.1 2.265 109.2 234.3 15.84

20–25◦ S 15.27 59.7 24.83 16.41 91.84 2.446 95.73 215.6 11.29

25–30◦ S 15.54 55.71 22.77 12.61 78.24 5.45 74.59 202.1 22.39

30–35◦ S 14.41 54.25 18.41 13.32 61.6 13.83 46.66 134.9 70.79

4. Discussion

We expected that the richness of phytophagous insects is linked to plant diversity,
which increases from temperate to tropical latitudes [53,54]. Our results also showed this
general latitudinal trend for the flea beetle genera in continental Africa (Figure 1a,b). More
specifically, the number of genera is significantly correlated with the number of vegetational
divisions [49], rather than the area of each latitudinal belt. Different vegetation types neces-
sarily produce different ecological gradients that can favor biological diversification [55].
In addition, ecotones between vegetation types can favor edge effects, including increases
in taxonomic richness [56,57].

However, single vegetation types also play a significant role in shaping taxonomic
richness. In some cases, the difference in the number of genera is related to the different
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extensions or contractions of a specific vegetational type, rather than the number of vegeta-
tional divisions. For example, the increase in the taxonomic richness in the belt 20–15◦ N
compared to the belt 25–20◦ N is combined with the extension of scrub vegetation and
grasslands and the contraction of the Saharan Desert; the increase in the belt 5–0◦ N com-
pared to the belt 10–5◦ N is combined with the extension of the evergreen rainforests and
the contraction of the dry and mesic savannah; the decrease in the belt 15–20◦ S compared
to the belt 10–15◦ S is mainly combined with the extension of the drier mopane savannah
and the contraction of the wetter miombo and broadleaf savannah.

Both insects and plants also respond to abiotic factors that may have played inde-
pendent roles in shaping current biodiversity patterns [58–60]. In our analysis, taxonomic
richness appears to be higher where seasonality is absent and temperature oscillations
over the year are comparable to the day-to-night temperature oscillations (the day-to-night
temperature oscillations represent about 70–75% of the summer-to-winter variations); this
occurs mainly in the equatorial area. Moreover, high mean values of precipitation in the
wettest month (BIO13 ≥ 200 mm) and warmest quarter (BIO18 ≥ 300 mm) seem to favor
the presence of a higher number of flea beetle genera in Africa.

These factors lead to a two-peak trend in the taxonomic richness of flea beetle genera
from north to south in continental Africa.

Regarding the endemic component, most of the 44 genera occur in more than one
latitudinal belt. Therefore, they are a representative subset of the whole ensemble of the sub-
Saharan flea beetle fauna. They are subjected to the same factors affecting the taxonomic
richness and thus show a similar latitudinal trend in the number of genera. The presence
of genera exclusively associated with a single belt is mainly related to the occurrence
of mountain systems, such as Celisaltica in the Ruwenzori Massif (Uganda), Perichilona
in the Iringa region (Tanzania), Upembaltica in the Katanga region (Democratic Republic
of Congo), and Drakensbergianella in the Drakensberg Mountains (Democratic Republic
of South Africa). This is not surprising, considering the acknowledged role of tropical
mountains as “cradles” and/or “museums” of biodiversity [10,11,61–63]. Indeed, although
other mountains, such as Mount Kenya, Mount Aberdare, and Mount Kilimanjaro, lack
endemic flea beetle genera, they nonetheless host several endemicities at the species level.
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