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Simple Summary: Modern pest control is based on correct timing protection and the avoidance of
unnecessary insecticide use. Therefore, we must know the exact time of pest gradation and activity.
Using automatic insect traps allows insect activity detection without considerable human intervention.
The proper use of automatic catching, counting, and data forwarding in the field has not been fully
resolved yet. This study presents a modified trap prototype used for automatically catching and
counting flying insects, mostly pest moths, in the field. Here, we present the modifications to the
construction of our trap design. During the pilot field tests, the new probe prototypes provided
real-time, time-series data sets for each of the six pest moth species monitored. Environmental noise
was reduced and filtered out. Detected data were forwarded to a web interface where end-users
could further process or download the data. With this new device, moths’ daily and seasonal flight
patterns could be followed and described. This knowledge may provide an opportunity for more
precise forecasts of population outbreaks.

Abstract: Monitoring insect populations is essential to optimise pest control with the correct protec-
tion timing and the avoidance of unnecessary insecticide use. Modern real-time monitoring practices
use automatic insect traps, which are expected to be able to estimate the population sizes of pest
animals with high species specificity. There are many solutions to overcome this challenge; however,
there are only a few data that consider their accuracy under field conditions. This study presents
an opto-electronic device prototype (ZooLog VARL) developed by us. A pilot field study evaluated
the precision and accuracy of the data filtering using an artificial neural network(ANN) and the
detection accuracy of the new probes. The prototype comprises a funnel trap, sensor-ring, and data
communication system. The main modification of the trap was a blow-off device that prevented
the escape of flying insects from the funnel. These new prototypes were tested in the field during
the summer and autumn of 2018, detecting the daily and monthly flight of six moth species (Agrotis
segetum, Autographa gamma, Helicoverpa armigera, Cameraria ohridella, Grapholita funebrana, Grapholita
molesta). The accuracy of ANN was always higher than 60%. In the case of species with larger body
sizes, it reached 90%. The detection accuracy ranged from 84% to 92% on average. These probes
detected the real-time catches of the moth species. Therefore, weekly and daily patterns of moth flight
activity periods could be compared and displayed for the different species. This device solved the
problem of multiple counting and gained a high detection accuracy in target species cases. ZooLog
VARL probes provide the real-time, time-series data sets of each monitored pest species. Further
evaluation of the catching efficiency of the probes is needed. However, the prototype allows us to
follow and model pest dynamics and may make more precise forecasts of population outbreaks.

Keywords: automatic counting system; pest detection; pheromone trap; remote sensing; real-time
monitoring
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1. Introduction

Monitoring insect populations is essential both in the field of ecology and practical pest
management. It is a constitutive part of Integrated Pest Management (IPM): the primary
approach for decreasing environmental loads in agriculture [1]. The most widespread moni-
toring tools in IPM are insect traps, which help to detect and estimate the pest population in
a given plantation and set action threshold levels. However, maintaining traps during the
season requires high human and financial efforts due to frequent inspections, counting, and
the identification of trapped insects. Furthermore, species identification requires high-level
taxonomic expertise, which is increasingly lacking nowadays. Additionally, there is a delay
in data communication due to expert sample processing. Parallel counting in extended
areas is challenging with human work [2]. These disadvantages of insect traps may hinder
correct and timely decision-making [2].

New real-time monitoring technologies provide key information as to where, when,
and to what extent the emergence of pests is expected, thus allowing reasonable timing for
the necessary protection and omission of unnecessary insecticide treatments. The precise
timing of the different protection methods will become increasingly crucial as selective
insecticides become widespread. We experienced rapid development over the last decade
in insect detection technologies. Automatic counting in IPM-related research was mainly
obtained by traps installed with different types of sensors [3–5].

Population size estimation, real-time use, and species specificity are the three most
important and expected features of automatic insect detection. Liu et al. [5] distinguished
two main types of sensing: acoustic and machine vision systems (MVS), which were used
for different insect groups. In recent decades, considerable efforts have been made to
specify and improve these two lines of methods for flying insects such as moth species.

Acoustic traps (microphones) were used either outside the trap for the detection and
identification mostly of mosquito species [6] or inside the McPhail or Jackson traps and were
based on the species-specific spectrums or frequencies of wingbeats [7,8]. In the second
research direction, among the MVS methods, the most common ones were optoelectronic
devices: laser beam, infrared beam, video and photo tools, CCD sensors, or a combination
of them.

For the pest moth forecast, automatized sticky and pheromone traps have been devel-
oped with detection systems. Currently, the most widespread insect detection method is
the use of different image analysis software [2]. Most of these automatic traps catch the
insects and detect them either dead or stunned [9,10]. Sticky traps equipped with cameras
can send pictures directly to the laboratory, where image analysis software, with the help
of artificial intelligence and neural networks, can gain a high level of species recognition
(e.g., [9,11,12]). These systems are easy to use and have a high potential due to their rapid
development of artificial intelligence; however, they have some disadvantages. The sticky
surface of the traps is easily overloaded and needs relatively frequent human intervention,
especially in the case of mass swarming. The probes (traps equipped with sensors) also
need a continuous power supply. In addition, the position of the insects as they are caught
may make species recognition challenging [3].

Regarding flying insects, photo shootings are hardly possible because of their rapid
movement. For this reason, traps equipped with optoelectronic sensors detect specimens
when they are falling or flying through the sensor field [13,14]. These sensors detect the
light differences when the incoming insects interrupt the infrared (IR) beam. Probes with
IR sensors have lower energy consumption. Some solutions use reflected light instead of
emitted light [15]. These detectors recognise colour and morphological patterns and gain a
higher level of species specificity. Species specificity can be traditionally achieved by using
sex pheromones as bait [16], which can also be joined to electronic probes, creating another
line and gaining species specificity at automatic traps [17]. Funnel traps with pheromones
collect insects continuously without the problem of overloading. Sex pheromones attract
male individuals for moth species, so population and activity parameters can be estimated
only based on male specimens.
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Despite the widespread literature of these studies and the fast development of devices,
only a small fraction of the above-mentioned methods have been applied under field or
semi-field conditions (e.g., greenhouses and storage halls). Several constraints hinder or
delay the use of these methods under field conditions, such as high environmental noise,
high energy consumption, and oversaturation. Further details about existing probes and
sensors detecting flying insects (primarily moths and fruit flies) in the field are summarised
in Supplement S1.

In recent years, we have developed optoelectronic sensors [18,19] to detect small
arthropods living in the soil. The infrared (IR) sensor ring was further developed to detect
invertebrates of different body sizes [20]. By using this IR sensor ring, we constructed auto-
matic traps (probes) to detect small invertebrates living in the soil [21] and the adults of the
Western Corn Rootworm (Diabrotica virgifera virgifera; Coleoptera: Chrysomelidae) [22]. Fi-
nally, to detect flying insects, we used the same IR sensor ring installed in the CSALOMON®

VARL funnel traps produced by the Plant Protection Institute, Centre of Agricultural Re-
search, ELKH, Budapest. In this present study, we describe the construction of this new
device. We also present the precision and accuracy of the new probe by comparing the
number of detected and caught insects. Pilot study results are also shown to demonstrate
the advantages of the new probe.

2. Materials and Methods
2.1. Description of the New Probe (ZooLog VARL)

The new probe prototype called ZooLog VARL has been developed to catch flying
insects such as moths. It automatically counts and also forwards the data to end users. The
equipment comprises three main parts: a trap, a sensor, and a data communication system.

2.1.1. Modified VARL Trap

The base of the ZooLogVARL is the commercially available VARL funnel trap belong-
ing to the CSALOMON® pheromone trap family (Plant Protection Institute CAR, ELKH,
Budapest, Hungary, www.csalomoncsapdak.hu, (accessed on 23 February 2023) [23,24]).
When flying individuals enter the funnel (top opening outer diameter: 13 cm, funnel hole
diameter: 3 cm, height of funnel: 16 cm), they drop through the hole at the bottom of
the funnel and cannot escape (Figure 1). Insects are attracted by the species-specific sex
pheromone bait (for males) placed under the roof of the trap (20 cm diameter). While
flying through the funnel of the ZooLogVARL, insects were detected by an infrared (IR)
sensor ring, which was built right under the lower hole of the funnel (Figure 1). Initially,
the funnel was transparent or green in VARL traps, but we changed it to black to prevent
sunlight from getting into the trap body, which could cause false detections in the IR sensor.
A second funnel was built under the IR sensor ring to decrease the probability of escape for
insects already caught and detected.

In the case of insects, which actively fly into the probes, as they fly around and through
the sensor, their movement can severely multiply the number of detections. According to
our observations in the field, this “in and out” movement is more frequent than expected.
First, to solve the problem of multiple counts, we used a double row of IR sensors, which
count with fly-in and fly-out [13,25,26]. However, this double-layered sensor ring solution
did not work appropriately in our case because the two layers of the sensor-ring could not
be set far enough from each other to identify the direction of the flights. If we set the two
sensor ring far enough, we could create an appropriately long tube that the insects did
not enter or fly through. Holguin et al. [14] used kill strips at the trap entrance. That way,
moths fell through the sensor field, but they were not killed and caused miscounting by the
sensors and low accuracy. To resolve the problem of multiple counting, we developed a
blow-off system, which activated after detection and blew down the insects. In previous
testing of the ZooLogVARL, several methods were tried (without the active movement of
insects, with top and down ventilator, and compressed air pressure, see Supplement S2).
The finalised blow-off device was built above the funnel, under a plastic lid, to prevent

www.csalomoncsapdak.hu
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escaping individuals from proceeding backward from the funnel, which could decrease
counting precision (Supplement S3). When the IR sensor-ring detects an individual, the
blow-off system is automatically turned on three times for one second. It blows off the
insect into the sample container placed under the funnel. This transparent plastic sample
container was made longer in size than the original one (20 cm high, 13.5 cm diameter)
to allow the appropriate functioning of the blow-off system. To increase the dark area in
the sample container, a 4.5 cm wide black tape was also put around the upper part of the
plastic container (Figure 1a). According to our field observation, if the sensor detected a
moth, no escape was detected due to the blow-off mechanism.
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Figure 1. ZooLog VARL probe prototype in the field (a) and its 3D schematic diagram (b). The probe
was built to detect flying insects, mostly pest moths and other lepidopteran pests. The probe was
baited with a pheromone lure of the target insect; insects dropping through the funnels into the catch
container could not escape. An infrared sensor-ring detects the individuals, and a blow-off system
directs the flying insects toward the catch container. For further details, see Supplement S2.

2.1.2. Sensor-Ring

The construction of the sensor ring is fully described in Balla et al. [20]; therefore,
only a brief description is provided here. The optoelectronic sensor was placed around
the glass tube. If an insect interrupted the path between the receiver and the emitter, the
optoelectronic sensor recorded the event. Then, it activated the blow-off system, which
blew off the flying insect. The used IR sensor ring (IRSR-1) [20] had a wide sensor field,
thereby detecting arthropods of considerable size, for example, Noctuid moths. The sensor
was placed in a waterproof plastic tube with rubber rings. It is connected to the probe
with a stainless-steel disk (Supplement S2). In previous work [20], we tested the detection
accuracy of the sensor ring with dead animals. For moths with a size of 6.35–23.94 cm,
such as Ephestia kuehniella (Phycitidae), Operophtera brumata (Geometridae), and Autographa
gamma (Noctuidae), detection accuracy was revealed to be 100%.
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2.1.3. Data Communication System

As has already been described by Tóth et al. [22], the ZooLog system was designed
for the online monitoring of arthropods. It works with its own data forwarding system,
a central database, and a Web interface. Due to the solar panel power supply, the probe
detects insects in real time and sends data daily throughout the season. A logger is
connected to each probe that transmits the sensor data via the Internet. The results of
the detection data can be downloaded from or managed directly on a ZooLog Online
Web Interface.

The materials used to produce the trap and the electronics cost about 300 euros. The
total production cost of the trap prototype was 650 euros. The blow-off system accounted
for half of the costs.

2.2. Field Tests

Automatic monitoring was conducted in three locations in Hungary (Figure 2, Table 1).
Six moth species (Agrotis segetum, Autographa gamma, Helicoverpa armigera–Noctuidae;
Cameraria ohridella–Gracillariidae, Grapholita funebrana, Grapholita molesta–Tortricidae) were
monitored in the field in 2018 to test the new probe’s automatic counting accuracy and
precision (Table 1). Initially, we started the experiment with several probes (depending
on the number of species expected in the area). However, due to several problems (steal,
mechanical crack), we could use the data for the whole season of 10 probes for six different
Lepidopteran species. Eight probes were functioning at Érd-Elvira major (Experiment
Station of Research Institute for Fruit Growing and Ornamentals). One probe was used at
Julianna-major (Ecological Experimental Station of the Plant Protection Institute, Centre for
Agricultural Research, ELKH) and in a private orchard nearby Tordas village (see Table 1).
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Table 1. Field tests on different species.

Species Host and Symptoms Flight Period Daily Rhythm Wingspan/Body
Length (mm) Test Site Test Period Number

of Probes

Agrotis segetum Den.
and Schiff., 1775
(turnip moth)

polyphagous, larvae
feeding on the part of the
host plant at the soil level
or above 1–2 cm

2 generations/year
1—beginning of May to the middle
of June
2—beginning of July to September

4–5 h to the scotophase
[27] 30–40/15–20 Érd-Elvira

major orchard
2018.06.06.–
2018.10.15. 2

Autographa gamma L.,
1785 (silver Y)

polyphagous, larvae
feeding on the leaves

2 generations/year
1—beginning of May to the middle
of June
2—middle of June to the beginning
of October

during the scotophase
[28] 35–40/15–20 Érd-Elvira

major orchard
2018.06.22.–
2018.10.15. 2

Cameraria ohridella
Deschka and Dimič,
1986 (horse-chestnut
leafminer)

horse-chestnut (Aesculus
hippocastanum), larvae bore
mines into the leaves

3 generations/year
1—end of April to the beginning of May
2—in June
3—middle of July to the beginning
of September

beginning of
photophase, lasts for
4–5 h
(7 p.m.–2 p.m. in July
in Hungary)
[29]

6–8/5
Julianna-major,
row of horse
chestnut trees

2018.06.25.–
2018.10.15. 1

Grapholita funebrana
Treitschke, 1985
(plum moth)

Prunus spp. (plum, apricot)
Larvae bore inside the fruit
feed on the flesh around
the seeds

3 generations/year
1—middle of April to the middle of May
2—end of May to the end of June
3—beginning of July to the beginning
of August

end of the scotophase
to the beginning of
photophase [30]

9–13/6–9 Érd- Elvira
major orchard

2018.06.21.–
2018.10.15. 1

Grapholita molesta
Busck, 1916 (oriental
fruit moth)

peach, almond, apricot,
medlar, pear, apple
spring–larvae bore into
fresh shoots
summer–larvae bore into
ripening fruits

3 generations/year
1—middle of April to the middle of May
2—end of May to the end of June
3—beginning of July to the beginning
of August

during the scotophase
[31] 9–13/5–7 Érd-Elvira

major orchard
2018.06.21.–
2018.10.15. 1

Helicoverpa armigera
Hübner, 1808 (cotton
bollworm)

polyphagous, larvae feed
on the generative parts of
the plant

3 generations/year
1—end of May to the beginning of June
2—middle of July to the middle of August
3—end of August to September

during the scotophase
[32] 30–40/12–20

Érd-Elvira
major orchard

2018.06.22.–
2018.10.15. 2

Tordas orchard 2018.07.25.–
2018.10.15. 1
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The probes were in operation from the beginning of June until the middle of October
2018, depending on the species activity (Table 2). Commercially available pheromone
lures (CSALOMON® traps, Plant Protection Institute CAR, Budapest, Hungary) for the
investigated moth species were used in the probes. Baits were changed for a fresh one
every six weeks, as proposed by Tóth [33]. Our goal was to test the accuracy of the probes
for different species and to not follow the gradation patterns. Therefore, we missed the
spring peaks of moth gradation in 2018.

Table 2. The performance summary of ANN data filtering procedures. TP: true positive, TN: true
negative, FP: false positive, FN: false negative.

Target Species TP TN FP FN Filtering Accuracy Precision Recall F1 Score

Agrotis segetum 130 1132 63 28 0.93 0.67 0.82 0.74

Autographa gamma 201 1113 74 22 0.93 0.73 0.90 0.81

Cameraria ohridella 597 242 487 64 0.60 0.55 0.90 0.68

Grapholita funebrana 72 158 65 53 0.66 0.53 0.58 0.55

Grapholita molesta 78 205 6 20 0.92 0.93 0.80 0.86

Helicoverpa armigera 868 1055 246 23 0.88 0.78 0.97 0.87

The number of moths caught was recorded automatically in real-time, and data were
sent to the server daily. The probes were also manually checked daily, and the number of
captured specimens was recorded. The number of catches and the corresponding detection
data could be retrieved and compared through an inbuilt query.

2.3. Data Analysis
2.3.1. Data Filtering

From the raw dataset produced by the IR sensor ring, false detections were filtered out
according to the same method used by Tóth et al. [22]. The IR sensor ring produces intensity
data from the eight sensors surrounding the tube at the bottom of the capturing funnel.
The pattern of the eight figures was used to filter out the noise data induced by other
non-target species or plant leaves. We confirmed IR signals to be good or false detections
for the filtering procedure based on manual checking in short periods. These verified data
were used in the deep-learning analysis. Deep-learning data analysis was performed with
TensorFlow [34] on Github [35]. We used 19,228 data in the learning database for 12 species
(containing four other species not involved in this analysis, such as Agriotes species and
Diabrotica c. virgifera). The learning database contained the eight IR intensity figures and
the manual decisions on whether it was a true or false detection. The script was written in
TensorFlow using the framework Keras in Python. It is available here:

https://colab.research.google.com/drive/1Nzngi_4UxipvoQt5O0Ez4AciGTcZNiCh#
scrollTo=vVa1Q4Qwoef5&line=5&uniqifier=1 (accessed on 21 February 2023).

2.3.2. Statistical Analysis

All statistical analyses were performed in R [36]. The daily data of the ten probes were
analysed separately for each species.

An artificial neural network (ANN) approach was used to estimate the performance of
the data filtering procedure with the standard evaluation metrics (accuracy, precision, recall,
and F1 score). According to the contingency matrix of binary classification, the accuracy is
the rate of all true values and the total number of detections. Precision means the rate of
true positives and all positive values. The recall is the rate of true positives and the sum of

https://colab.research.google.com/drive/1Nzngi_4UxipvoQt5O0Ez4AciGTcZNiCh#scrollTo=vVa1Q4Qwoef5&line=5&uniqifier=1
https://colab.research.google.com/drive/1Nzngi_4UxipvoQt5O0Ez4AciGTcZNiCh#scrollTo=vVa1Q4Qwoef5&line=5&uniqifier=1
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true positives and false negatives. F1 score is defined as the harmonic mean of precision
and recall.

A =
TP + TN

TP + FP + TN + FN
P =

TP
TP + FP

R =
TP

TP + FN
,

where A: accuracy, TP: true positive, TN: true negative, FP: false positive, FN: false negative,
P: precision, R: recall.

The accuracy and reliability of the sensor system were calculated by comparing auto-
matic (and filtered) and manual counts using linear models. For under- and overestimation,
the intercept and the slope of the model were tested against 0 and 1, respectively (‘mult-
comp’ package, [37]). All data were ln (x + 1) transformed prior to the analysis to meet
normality assumptions.

Based on the data derived from the automatic detection, some examples were pre-
sented to visualise the target species’ local daily and temporal activity. Local polynomial
regression fitting (loess) was applied for smoothing time-series data (ggplot2 [38]), lubri-
date [39] packages).

3. Results
3.1. Data Filtering Using ANN (Artificial Neural Network) Approach

False detections caused by light effects, plant leaves carried by the wind, or non-target
insects were filtered out. In Table 2, we show the statistics of the contingency tables of the
species detections. The filtering accuracy of ANN was always higher than 60%; in the case
of species with larger body sizes, it reached 90%.

3.2. Detection Accuracy and Performance of the New Probe

The comparison of detected and caught, manually counted data revealed that detection
accuracy varied by species (Table 3, Figure 3). The accuracy values for the six target species
ranged from 84 to 92% on average (Table 3). The probe was the most accurate for C. ohridella
species (91.55% on average, see Table 3), while it provided the lowest average accuracy
for G. molesta (84.29%). Except for the latter species, ZooLog VARL probes achieved a
relatively high level of reliability (R2, Table 3). The slope of the linear regression lines
was significantly lower than one for all the target species. Moreover, the intercepts of the
models significantly differed from 0 in the case of H. armigera, A. gamma, and C. ohridella.
However, the intercept was higher than one only for the C. ohridella species showing a
significant overestimation.

Table 3. The average detection accuracy and reliability (R2) of ZooLog VARL probes for the six target
species with the slopes and intercepts of linear models fitted to the manually and automatically
counted data. Significant p values (p < 0.05) are highlighted in bold.

Target Species Number of
Measurement Periods Average Accuracy R2 Slope Estimation

y p intercept p

Agrotis segetum 94 85.64% 0.853 0.86 ± 0.04 <0.001 0.09 ± 0.04 0.072

Autographa gamma 80 89.94% 0.848 0.90 ± 0.04 <0.001 0.14 ± 0.06 0.030

Cameraria ohridella 16 91.55% 0.932 0.92 ± 0.06 <0.001 1.00 ± 0.17 <0.001

Grapholita funebrana 38 88.02% 0.837 0.88 ± 0.06 <0.001 −0.14 ± 0.11 0.449

Grapholita molesta 40 84.29% 0.614 0.84 ± 0.11 <0.001 −0.01 ± 0.13 1

Helicoverpa armigera 111 88.05% 0.887 0.88 ± 0.03 <0.001 0.41 ± 0.06 <0.001
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3.3. The Temporal and Daily Activity Patterns of Target Species

With ZooLog VARL probes, the seasonal activity of the six Lepidopteran species
was followed during the study period (for example, see Figure 4 for Helicoverpa armigera,
the patterns of other species are shown in Supplement S4). The differences between the
taxa was experienced by the number of individuals caught. Cameraria ohridella was the
most abundant, while, for example, Agrotis segetum or the two Grapholita species were
represented by a lower number of specimens (Supplement S4).

The individuals of A. segetum were detected in higher numbers in late June and July,
while the specimens of A. gamma were most active in late June and early September, even if
the latter was not supported by both trials (Supplement S4). The higher flight activity of
H. armigera was recorded in early July and mid-August. In contrast to the other two trials,
the third one (V303) started later and took place at another location (Tordas site), resulting
in a slightly different pattern (Figure 4). After the initial peak in July, G. molesta increased
its temporal activity. The individuals of C. ohridella and G. funebrana flew the most at the
beginning of the study period, in late June, and then they were present in decreasing
numbers in the traps (Supplement S4).
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Figure 4. An example of the automatic detection of individuals for target species over time during
the monitoring period. The number of detected Helicoverpa armigera individuals from three different
probes. Local polynomial regression fitting (loess) was applied for smoothing time-series data.

ZooLog VARL probes also enabled the daily activity of target species to be followed
(Figure 5). Typical nocturnal species were A. segetum (mainly between 10:00 p.m. and
3:00 a.m.), A. gamma (mostly between 7:00 p.m. and 3:00 a.m.), and H. armigera (mainly
between 8:00 and 11:00 p.m.). By contrast, the individuals of C. ohridella were exclusively ob-
served between 6:00 and 12:00 a.m. Different daily patterns characterised the two Grapholita
species. Grapholita funebrana was active only at early dawn (between 4:00 and 6:00 a.m.). At
the same time, G. molesta was found in the early morning period (see explanation in the
Discussion) and flew in the late afternoon and evening (between 6:00 and 8:00 p.m.).
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4. Discussion

The ZooLog VARL probe was prototyped for detecting and automatically counting
the flying insects, especially pest moths. The probe was based on a commercially avail-
able CSALOMON® VARL funnel trap. Species specificity was achieved with the sex
pheromones widely used to attract insect pests. With this, the catch of non-target species
was minimalised. The new trap used active trapping with an inbuilt blow-off device. With
that, fly-in and fly-out movement were prevented, which might cause the double counting
of insects at sensing. Although a statistical comparison of the catching efficiency of the new
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probe prototypes used the blow-off system, the classic CSALOMON funnel traps were still
missing, we did not experience a significant decrease in the number of catches (personal
communication of Miklós Tóth).

The current technology in automatic traps works with pheromones and usually uses
sticky sheets where insects are stuck (see Supplement S1). The identification of target species
is based on pictures. The only drawback of these methods is their possible oversaturation.
Our probes have a lower chance of oversaturation.

Considering the sensors under laboratory conditions, precision was proved to be 100%
for the inspected moth species [20]. However, the precision obtained in the field had lower
values due to environmental noise. This detection was based on the disruption of the IR
beam, of which the drawback was the high environmental noise. False detections can
be derived from the wind, solar radiation, and other interventions, especially when the
traps hang on the trees. Looking at the raw detection data, we could conclude that the
environmental noise for IR sensors was high. Filtering out noise data was a critical part.
The eight adjacent IR sensors in the sensor ring provided eight intensitive figures when an
object crossed the sensor field. We used the pattern of these eight values next to each other
to filter the noise. The more adjacent sensors were activated, and bigger-sized insects could
have been detected.

We used an ANN machine-learning procedure to characterise the targeted species,
i.e., true detections. This filtering was more efficient for bigger species than small species
since the light-induced detection patterns or dust particles gave similarly smaller patterns.
This way, however, we could filter a large number of light noises that could be seen in
the number of true negatives (TN). False negatives (FN) might come from the non-target
species we could not filter, while false positives (FP) were lost during filtering. FP was very
high at Cameraria ohridella. However, this deep-learning method allowed us to filter out a
considerable number of false detections that frequently occurred as IR sensors. Without
this or another filtering method, this device would be unusable.

We tested the detection accuracies by comparing the number of target species to
the number of filtered detections. In the field tests, we achieved relatively high average
accuracies (84.29–91.55%), depending on the species with a 6–40 mm size (Table 3). In the
IPM practice, the number of pest moths was informative, as a rough rule of thumb, between
0–3, 3–10, and >10. The biases of the detected number of individuals varied between 8
and 12% on the logarithmic scale (see Table 3, Slopes). Therefore, we can assume that the
device could be used for pest management. VARL probes achieved a relatively high level
of reliability, except in the case of Grapholita molesta, where R2 was 0.614. This corresponds
with the results of Preti et al. [40], who investigated stuck insects (C. pomonella) with a
camera trap. They explain it with the misidentification of non-target species. Although the
recognition mechanisms used are different, this could be an explanation in our case, where
the G. molesta pheromone can attract the males of other species as well.

The data communication system (own forwarding system, central database, Web
interface) allows end users to obtain daily, real-time, filtered data. The loggers were set
to send data once daily to save energy effectively. Analysis reports can be automatically
performed and downloaded.

In another electronic trap using the same IR sensor ring, we could gain a 60–70% detec-
tion accuracy under semi-field conditions for soil arthropods with sizes of 0.5–2.5 mm [21].
We gained a 95.84% detection accuracy in agricultural use for the larger-sized western corn
rootworm (4.4–6.8 mm) under field conditions [22].

We developed our probes for remote field use. Therefore, the energy consumption
of the devices should be low. The sensors work continuously, however, on only a slight
consumption. A detection event activates the system with higher energy consumption.
This function saves energy, so our probes can work with a single solar panel for months.
However, the use of solar panels can sometimes be challenging in dense orchards or forests.

Despite the occasional lower reliability, the probe can give an alert sign of swarming
events. The new probes can follow the exact time of pest occurrence and dynamics. We
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obtained a more detailed picture of the seasonal dynamics of the six different species
investigated. During the study period, we found the different seasonal activities of the
different moth species, which corresponded to the flight patterns known from the literature.
Although the probes caught different quantities of specimens and we did not follow the
entire flying season of the species, their seasonal flight activity could appropriately drown
up. Agrotis segetum, Autographa gamma, Helicoverpa armigera, and Grapholita molesta species
were characterised by a bimodal activity pattern. Despite the low number of probes used,
these results were consistent with the previous results from the literature [41,42]. H. armigera
and G. molesta have three peaks in their activity [43], but we missed the first ones due to the
late start of the investigations. The number of Cameraria ohridella and Grapholita funebrana
species displayed a decreasing trend with an initial peak at the end of June. However, we
may have also missed the first peaks.

Our knowledge about male moths’ exact daily flight periods is scarce [44]. This aspect
of the species’ circadian rhythm can also be studied with ZooLog VARL probes. Previously,
the circadian rhythm data of species were obtained by hourly manual checks of the traps.
With ZooLog VARL probes, it can be more accurate. The activity time of typical nocturnal
species, such as A. segetum, A. gamma, and H. armigera, was well detected with the new
probes. C. ohridella was exclusively observed between 6:00 and 12:00 a.m. Different daily
patterns characterised the two Grapholita species. According to our data, G. funebrana was
active only at early dawn (between 4:00 and 6:00 a.m.). By contrast, G. molesta flew mainly
in the late afternoon and evening (between 6:00 and 8:00 p.m.). These two species share
some of their main pheromone components. In the case of the G. funebrana lure an inhibitory
component for G. molesta was added. Therefore, the trap baited with G. funebrana lure
caught only this species [45]. However, for G. funebrana, the selective attractant inhibitor is
not known [46]. Therefore, traps baited with G. molesta pheromone attracted G. funebrana
as well [47]. The daily flight periods of these species are different: G. funebrana flies at
dawn, while G. molesta in the late afternoon and early evening [17,48]. Moth catches in
the G. molesta lures was also detected in the early morning. However, these detections
were probably G. funebrana catches, the species of which are very similar to G. molesta by
morphology. For this reason, in the case of G. molesta, to filter out G. funebrana catches, a
morning filter could readily be applied in the future, thus presenting the very first selective
G. molesta trap in the long history of pheromone trap applications.

It has to be stated that these results are for demonstration and are based on the data of
only 1-1 (and a maximum of three) probes for different species. More probes at different
locations would allow the observation of more accurate patterns which could be compared
with the environmental data.

Automatic detection is a crucial element of IPM. With that, the estimation of the loca-
tion and the exact time of actual pest outbreaks would be more precise and reliable. As
species phenology shifts due to recent climate change, automatised traps could become
more essential for the determination of new patterns. The time of spraying can be opti-
mised. By reducing unnecessary sprayings, more environmentally friendly farming and a
decrease in plant protection costs could be achieved. Mating disruption, primarily based
on sex pheromones, is a non-insecticide method, which could be more effective with the
knowledge of the exact sexual activity and (flight) time of insects [49].

Automatisation involves less human effort as well. Human field intervention would
be necessary only for refreshing the pheromone lure and emptying the catching container.
The number of trap inspections could be decreased, and counting specimens, which is the
most time-consuming work, could also be performed automatically [2]. In extensive farms
or remote areas, fuel costs and human effort can further be reduced [50]. Compared to the
manual checks of probes, the ZooLog VARL probe would provide a cost-effective method
for automatic pest detection.

Before commercialisation, several aspects have to be solved yet. The price of the
traps needs to be decreased during commercial production, but theft and physical damage
protection are two of the essential aspects that must be solved. Ascolese et al. [51] suggested
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that the position of the traps, due to the solar panel supply, could affect the catching
efficiency. The use of probes in dense vegetation has to be solved as well. Solar panel cables
can be extended; that way, probes could be used in denser vegetation, moving solar panels
up to the canopy or to the edges of the vegetation.

ZooLog VARL probes can be used to detect any species for which funnel traps (VARL)
are recommended while the pheromone lures work properly. Due to pheromone contami-
nation, one probe can detect only one species. The sensors are already used in different trap
types, such as soil traps and KLP traps for Diabrotica virgifera [22]. That way, by inserting
sensors into different traps or places, there is a high potential for sensing different types of
insects, where species specificity can be solved. For example, it is possible to insert sensors
into the entrance of honeybee hives to measure the activity of these pollinators. Alterna-
tively, it is possible to measure aero fauna as well, where we are interested in the density
of insects. The design and data communication system could also allow environmental
sensors’ attachment and proper function. As Preti, Verheggen, and Angeli [2] suggest,
insects’ population dynamics can be better modelled with these innovations.

With automatic traps, real-time data can be gained from different locations simulta-
neously. In addition to actual farming use, our device can also be helpful for ecological,
entomological, and agro-ecological studies. Data could be gained with high precision
for the exact activity time of insect species supported by data on environmental condi-
tions. With that in mind, population outbreaks could be better modelled, and more precise
forecasts could be made.

5. Conclusions

During the field test, ZooLog VARL probe prototypes provided real-time, time-series
data sets for each of the six pest moth species monitored. High environmental noise, as
a common problem during field application of automatic probes, was filtered out. The
other frequent problem when counting flying insects is their fly-in and fly-out movement
which can cause severe overestimations. This issue was solved with the new blow-off
device, which prevented escape from the trap. These probes can work with a high detection
accuracy without considerable human intervention. With the use of sex pheromones, high
species-specificity can be achieved. Through a data communication system, the results
of the detection data are automatically forwarded to a web interface where data can be
further processed or downloaded. With this new device, time and costs could be saved
for end users in the future. In the case of insect monitoring, the new device provides a
more accurate estimation of their daily and seasonal activity. Here, in these preliminary
experiments, we focus on the precision and accuracy of detection in this field. However,
as in the case of any new trap solution, the catching efficiency of the probe should be
evaluated in the field by comparing the catches of the prototype to classical funnel traps.
This is essential since the catching efficiency influences the settings of the action thresholds
in IPM.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects14040381/s1, Supplement S1: Summary of probes (sensors installed into traps) used
to automatically detect flying insects in the field [52–69], Supplement S2: Technological description
of the ZooLog VARL trap, Supplement S3: Initial phases of the development of the ZooLog VARL
probe, Supplement S4: Automatic detection of individuals for the five target species over time during
the monitoring period.
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his field.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kogan, M.; Hilton, R.J. Conceptual framework for integrated pest management (IPM) of tree-fruit pests. In Biorational Tree-Fruit

Pest Management; CABI: Wallingford, UK, 2009; pp. 1–31.
2. Preti, M.; Verheggen, F.; Angeli, S. Insect pest monitoring with camera-equipped traps: Strengths and limitations. J. Pest Sci. 2021,

94, 203–217. [CrossRef]
3. Cardim Ferreira Lima, M.; Damascena de Almeida Leandro, M.E.; Valero, C.; Pereira Coronel, L.C.; Gonçalves Bazzo, C.O.

Automatic Detection and Monitoring of Insect Pests—A Review. Agriculture 2020, 10, 161. [CrossRef]
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