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Simple Summary: Biodiversity and distribution patterns are important factors for ecological and
biogeographical studies. However, half of the high species diversity areas are found in mountain-
ous regions, which have been heavily impacted by climate change, land use changes, and habitat
fragmentation. This makes mountain habitats and biodiversity more vulnerable than before. Scorpi-
onflies, as ecological indicators with a narrow distribution, low-temperature preference, and weak
migration ability, are ideal animals for studying the impact of climate change on insect distribu-
tion. Predicting the distribution of suitable habitats for species in different periods can help clarify
the impact of climate change on species distribution and provide guidance for the conservation of
endangered species.

Abstract: The uneven distribution of species diversity on earth, with mountainous regions housing
half of the high species diversity areas, makes mountain ecosystems vital to biodiversity conservation.
The Panorpidae are ecological indicators, ideal for studying the impact of climate change on potential
insect distribution. This study examines the impact of environmental factors on the distribution
of the Panorpidae and analyzes how their distribution has changed over three historical periods,
the Last Interglacial (LIG), the Last Glacial Maximum (LGM), and Current. The MaxEnt model
is used to predict the potential distribution area of Panorpidae based on global distribution data.
The results show that precipitation and elevation are the primary factors affecting species richness,
and the suitable areas for Panorpidae are distributed in southeastern North America, Europe, and
southeastern Asia. Throughout the three historical periods, there was an initial increase followed
by a decrease in the area of suitable habitats. During the LGM period, there was a maximum range
of suitable habitats for cool-adapted insects, such as scorpionflies. Under the scenarios of global
warming, the suitable habitats for Panorpidae would shrink, posing a challenge to the conservation
of biodiversity. The study provides insights into the potential geographic range of Panorpidae and
helps understand the impact of climate change on their distribution.

Keywords: Panorpidae; Mecoptera; distribution pattern; species richness; MaxEnt

1. Introduction

The biodiversity and distribution patterns are fundamental to ecological and biogeo-
graphic studies of living organisms [1]. However, the distribution of species diversity
on earth is uneven, with half the high species diversity areas located in mountainous
regions [2]. Mountain ecosystems are distinctive and greatly impact biodiversity preserva-
tion [1]. However, the mountain ecosystems have suffered significant deterioration owing
to climate change, land use change, and habitat fragmentation, making mountain habitats
and biodiversity more vulnerable than before.
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Panorpidae, the largest family of Mecoptera, are commonly called scorpionflies be-
cause of the shape of the male genitalia. Scorpionflies are weak fliers, preferring cool,
humid habitats, and are vulnerable to high temperatures. They generally inhabit mountain-
ous regions higher than 1000 m and are unable to migrate over a long distance, forming
multiple “sky islands” in high-altitude mountain regions [3]. This kind of mountain species
with a narrow distribution, low-temperature preference, and weak migration ability is
ideal material for studying the impact of climate change on the potential distribution of
insects [4], such as neotenic net-winged beetles, sandflies, and carabid beetles. Liu et al.
used the MaxEnt and the random forest models to investigate the potential geographic
distribution and environmental adaptability of red fireflies in China [5]. Townsend et al.
used the niche simulation method to analyze the geographic and ecological distribution
of three types of sand flies in South America, as well as the impact of climate change [6];
Liu et al. used the MaxEnt model to predict the impact of current climate change on the
distribution of steppe beetles, which facilitated follow-up diversity studies [7].

Scorpionflies, important components of mountain ecological systems, are significant
ecological indicators. Thus, determining the potential geographic range of the Panorpidae is
crucial for speculating the range of undiscovered new species, studying its relationship with
the environment, and conserving the biodiversity. It can also provide a basis for taxonomic
and phylogenetic studies from the perspective of geography. In recent years, research
on Panorpidae mainly focused on taxonomy, biogeography, behavior, and evolutionary
biology [4,8–10], while the ecological study is lagging behind. Dvorak (2018) examined
the species richness of Panorpidae at various elevations within the Lagodekhi Protected
Areas and found that the diversity of Panorpidae exhibited a monotonically declining
trend with increasing elevation [11]. According to Wang et al., the number of Panorpidae
species peaked in the intermediate elevation zone of the Qinling Mountains and displayed
a unimodal pattern with increasing height [12]. Habitat size and location vary with climate
change, prompting migration and dispersal of populations [13]. Predicting the distribution
of suitable habitats for species in different periods can help clarify the impact of climate
change on species distribution. At the same time, it is an important guide for conserving
endangered species and delineating natural preserve areas [14].

After the Last Glacial Maximum in the Pleistocene, the climate change led to the con-
tinuous migration, diffusion, and isolation of populations, which shaped the distribution
pattern of today’s species [15]. Global temperature dropped during the ice age, pushing
certain cold-adapted montane species to migrate to lower latitudes and altitudes, thereby
expanding their habitats [16–18]. After glacial periods, they retreated back to the mountains
and high latitudes, causing their distribution patterns to shrink significantly.

With global warming, the habitats and ecological niches of montane species are be-
coming narrower. Predicting the suitable areas for mountain species in different periods
can help understand the changing trend of the migration and dispersal of the cold-adapted
mountain species. The geographical distribution of species reflects their ecological adapt-
ability, diffusibility, and evolutionary history. Understanding the spatial distribution
pattern of species is one of the core issues of biogeography and ecology [7,19–21]. Environ-
mental and climatic factors are primary determinants leading to biological metabolism and
reproduction [22]. Therefore, the geographical distribution of species is closely related to
climatic factors [23–25]. Ecological niche models (ENMs) provide a means of characterizing
the spatial distribution of suitable conditions for species, and have been applied to estab-
lish models of specific environmental conditions that meet the ecological requirements
of species [26,27]. ENMs predict habitats with higher adaptability to draw a probabil-
ity map suitable for species distribution [28]. The maximum entropy (MaxEnt) model is
widely used in many fields of ecological and biogeography research, such as protecting
endangered species, monitoring and managing the natural environment [29], maintaining
biodiversity, and predicting species distribution [30]. These studies play a guiding role in
understanding the potential distribution of species and formulating conservation measures
for endangered species.
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In this study, the MaxEnt method was used to predict the potential distribution area
of Panorpidae according to the global distribution data. The purposes of this study are as
follows: (1) to investigate the impact of climatic factors on the distribution of Panorpidae
and the relationship between Panorpidae species richness and environmental factors; (2) to
examine how the distribution of Panorpidae changed over three historical periods, the Last
Interglacial (LIG), the Last Glacial Maximum (LGM), and 1970–2000 (Current); and (3) to
analyze the impacts of global warming on the suitable habitat of Panorpidae.

2. Materials and Methods
2.1. Data Resources

The occurrence records of Panorpidae were gathered from the following sources: the
Global Biodiversity Information Facility (GBIF, https://www.gbif.org/ (accessed on 5 June
2022)), field collection records, and published papers and theses [31–36]. A database of
17,847 distribution records for 537 Panorpidae species was obtained. Spatial autocorrelation
analysis was performed using the R package “spThin” to lessen the effects of overfitting on
the model caused by the clustering of species distributions. This study picked up 1100 valid
records for analysis after deleting duplicate and invalid records.

Nineteen bioclimatic variables were obtained from the worldclim database (http://www.
worldclim.org (accessed on 5 June 2022)) for the Last Interglacial (LIG), the Last Glacial Maxi-
mum (LGM), and 1970–2000 (Current) periods with a resolution of 2.5 (4.3 km × 4.3 km) [37].
Elevation data were also obtained from the worldclim database (http://www.worldclim.org
(accessed on 5 June 2022)) with a resolution of 2.5 (4.3 km × 4.3 km). Climate data with
a resolution of 2.5 (4.3 km × 4.3 km) and the CCSM4 climate model are utilized for
climate prediction. Representative concentration paths (RCPs) are defined by the Inter-
governmental Panel on Climate Change (IPCC) as the trajectories of four greenhouse gas
concentrations [38]. RCPs come in four different varieties: RCP2.6, RCP4.5, RCP6.0, and
RCP8.5. They represent the CO2 concentrations of 490, 650, 850, and 1370 mL/m3 and the
net radiation intensities of 2.6, 4.5, 6.0, and 8.5 W/m2 at the end of 2100, respectively [39,40].
In this study, the suitable distribution of Panorpidae was simulated under RCP4.5 from
2061 to 2080. Finally, the globe base map was obtained from the National Basic Geographic
Information System (http://www.diva-gis.org/ (accessed on 5 June 2022)).

2.2. Identifying Bioclimatic Variables

To reduce the impact of strongly correlated environmental variable data on the pre-
diction outcomes, 19 bioclimatic variables were subjected to principal component analysis
(PCA) using the “cor” function in R 4.2.0. One variable was chosen for actual analysis from
each set of highly cross-correlated variables in the correlation analysis results (R > 0.8) [41].
Different environmental variables were taken into account, and the most important factors
for evaluation and prediction were chosen [42,43]. Contribution rates of 19 bioclimatic
variables were calculated using the MaxEnt model (Table 1). The test set consisted of 10%
of the total distribution points, while the training set consisted of 90% of the distribution
points. The model was programmed to run ten times. Six bioclimatic variables were chosen
by the Jackknife test (contribution rate > 0.4) to assess how the distribution of Panorpidae
is influenced by climate change.

2.3. Analysis of Species Richness

The patterns of species richness were visualized using a grid of size 1 × 1
(~100 km × 100 km) in ArcGIS 10.5 (ESRI Inc., Redlands, CA, USA). Each species’ presence
(1) or absence (0) matrix was built using DIVA-GIS 7.5 [44]. The aforementioned matrix
was input into EstimateS 9.1 software to obtain a cumulative curve of species constructed
based on the bootstrap method, which was used to evaluate the accuracy of the collection
of species numbers in the worldwide region [45]. In ArcGIS 10.5, we computed the average
of 19 bioclimatic variables and elevation data 4.5 km × 4.5 km grid cells to acquire the
variable values in a 1◦ grid. To ensure the normality of the data and species richness, Bio5,

https://www.gbif.org/
http://www.worldclim.org
http://www.worldclim.org
http://www.worldclim.org
http://www.diva-gis.org/
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Bio7, Bio10, Bio14, Bio17, and Bio19 were square root transformed, while Bio2, Bio3, Bio12,
Bio13, Bio15, and Bio16 were log transformed. The remaining variables were not modified.
The entire set of data was then normalized using z-scores.

Table 1. Bioclimatic variables utilized in the model and the proportional contributions of 19 biocli-
matic factors to the Maxent model for Panorpidae.

Variables Description Percent
Contribution

Bio1 Annual mean temperature 6.1
Bio2 Mean diurnal range (mean of monthly (max temp-min temp)) 1.4
Bio3 Isothermality (Bio2/Bio7)(×100) 2.3
Bio4 Temperature seasonality (standard deviation ×100) 3.5
Bio5 Maximum temperature of warmest month 0.6
Bio6 Minimum temperature of coldest month 8.1
Bio7 Temperature annual range (Bio5-Bio6) 0.2
Bio8 Mean temperature of wettest quarter 0.4
Bio9 Mean temperature of driest quarter 0.2

Bio10 Mean temperature of warmest quarter 1.3
Bio11 Mean temperature of coldest quarter 15.1
Bio12 Annual precipitation 46.3
Bio13 Precipitation of wettest month 0.1
Bio14 Precipitation of driest month 13.3
Bio15 Precipitation seasonality (coefficient of variation) 0.2
Bio16 Precipitation of wettest quarter 0.1
Bio17 Precipitation of driest quarter 0.2
Bio18 Precipitation of warmest quarter 0.2
Bio19 Precipitation of coldest quarter 0.3

The association between species richness and each environmental factor was examined
using the ordinary least squares (OLS) method. The probability of making a type I error
during regression analysis may arise while spatial autocorrelation was ignored. Therefore,
the spatial error simultaneous autoregressive analysis model (SARerr) was established
using the R package “spdep” to address the spatial autocorrelation in the residuals of the
regression model.

2.4. Model Evaluation Index

In order to make experiment results reliable, the performance of the MaxEnt model
must be evaluated. TSS (the true skill statistic) and AUC (Area Under the Curve) were used
as model performance evaluation metrics because their combination can more accurately
assess the model’s performance [46,47]. The AUC value was obtained from MaxEnt [40],
while the ROC curve is illustrated with the true-positive rate (sensitivity) as the ordinate
and the false-positive rate (specificity) of various thresholds as the abscissa. The region
encircled by the curve and abscissa was used to determine the AUC value [48]. The TSS
value was specificity + sensitivity − 1 [49]. The model’s performance can be classified as
failing (0.5–0.6), bad (0.6–0.7), fair (0.7–0.8), good (0.8–0.9), or excellent (0.9–1) based on
the AUC value [47]. The model performance can alternatively be generally categorized as
failing (<0.4), bad (0.4–0.55), fair (0.55–0.7), good (0.7–0.85), or exceptional (0.85–1) based
on the TSS value [46].

2.5. Model Setting

The real existence point operation model was used in this analysis, with 10,000 verifica-
tion points randomly established. The MaxEnt model was modified as follows to screen the
ideal model: (1) the multipliers for regularization were successively set to 1, 2, 5, 10, 15, and
20 [27,50,51]; (2) ten cross-validations were selected as the repeat-run type [52]; (3) cloglog
was chosen as the output file [53]; (4) the resolutions of the 19 biological environment
variables were set to 2.5, 5.0, and 10.0 arc minutes. The regularization multiplier was set to



Insects 2023, 14, 332 5 of 20

1, the random test percentage was set to 25, the application threshold rule was set to equal
training sensitivity and specificity, the replication run type was cross-validation, and the
output format was clog log. Other options were set by default. The MaxEnt model was re-
peated ten times in this manner. Additionally, a 2.5 min resolution for the 19 environmental
parameters was chosen.

2.6. Predicting the Appropriate Panorpidae Habitat under Climate Change

The “ASCII to Raster” tool in ArcGIS10.5 was used to convert the *.asc file produced
by MaxEnt model software into a raster file. The outcomes were then divided into four
categories using the “reclassification” tool and the “natural discontinuity grading” ap-
proach; the discontinuity values were 0.2, 0.4, 0.6, and 1, respectively [54]. The Panorpidae
worldwide suitability distribution map was then created. Consequently, the Panorpidae’s
suitable survival area was divided into four grades: 20%, denoting that it is not suitable
for Panorpidae’s survival; 20–40%, denoting the low suitable survival area of Panorpidae;
40–60%, denoting the middle suitable field of Panorpidae; and >60%, denoting the highly
suitable survival area of Panorpidae [10].

3. Results
3.1. Relationships between Species Richness and Environmental Variables

The results of the species accumulation curve revealed that there were 537 species
of Panorpidae that had been collected in the database, compared to 646 species that had
been obtained using the bootstrap mean method, a ratio of 83.12%, indicating that the
majority of the species had been collected (Figure 1). Furthermore, the patterns of spatial
species richness were uneven, with a small number of species found in Europe, a moderate
number of species in North America, and many more found in central and southeast China.
Specifically, the Qinling Mountains, the Bashan Mountains, the Minshan Mountains, the
northern part of the Hengduan Mountains, the Nanling Mountains, the Wuyi Mountains,
and the Taiwan Island have the greatest number of species (Figure 2).
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The OLS models were used to analyze the relationship between species richness
patterns and environmental factors in the Panorpidae. The results revealed that species
richness patterns were mainly influenced by Bio18 (Coef = 0.238), elevation (Coef = 0.183),
Bio16 (Coef = 0.160), Bio12 (Coef = 0.155), and Bio13 (Coef = 0.148), while negative corre-
lations were discovered with Bio2 (Coef = −0.086) and Bio7 (Coef = −0.072). Although
there were some differences, the outcomes of the SARerr model and the OLS models were
largely consistent. The species richness pattern was correlated with Bio18 (Coef = 0.087),
elevation (Coef = 0.077), Bio14 (Coef = 0.066), Bio12 (Coef = 0.064), and Bio17 (Coef = 0.064),
while it was negatively correlated with Bio2 (Coef = −0.064) and Bio15 (Coef = −0.064).
Other factors have little relationship with species richness (Table 2).
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Table 2. Correlations between species richness and environmental factors calculated by spatial
error simultaneous autoregressive (SARerr) model and ordinary least squares (OLS) model. Coef,
coefficient of regression; R2 (%), determination coefficient for the OLS model; and pseudo R2 (%),
determination coefficient for the SARerr model.

Species Richness

CoefOLS R2
OLS CoefSAR Pseudo R2

SAR

Bio1 0.043 0.098 ns 0.003 52.538 ns
Bio2 −0.086 0.660 ** −0.064 52.385 **
Bio3 −0.010 0.009 ns 0.018 53.273 ns
Bio4 −0.056 0.232 ns −0.040 52.893 ns
Bio5 −0.027 0.007 ns −0.057 52.977 *
Bio6 0.054 0.201 ns 0.028 53.071 ns
Bio7 −0.072 0.427 * −0.056 53.088 *
Bio8 0.049 0.158 ns −0.041 52.676 ns
Bio9 −0.031 0.096 ns −0.006 52.744 ns

Bio10 0.020 0.040 ns −0.043 52.637 ns
Bio11 0.048 0.139 ns 0.021 53.074 ns
Bio12 0.155 2.318 *** 0.064 51.806 **
Bio13 0.148 2.091 *** 0.030 51.205 ns
Bio14 0.013 0.017 ns 0.066 51.552 **
Bio15 0.036 0.042 ns −0.064 51.482 **
Bio16 0.160 2.480 *** 0.040 51.141 ns
Bio17 0.008 0.006 ns 0.064 51.625 **
Bio18 0.238 5.581 *** 0.087 50.743 ***
Bio19 −0.072 0.4291 * 0.023 52.439 ns

Elevation 0.183 3.246 *** 0.077 51.563 **
*** p < 0.001; ** p < 0.01; * p < 0.05; ns, not significant (p > 0.05).

3.2. Evaluation of the MaxEnt Model and the Impact of Environmental Variables

The results show that the models used in the experiments performed well (AUC = 0.900
and TSS = 0.85). Six major bioclimatic variables were used to create the model: mean
diurnal range (Bio2), isothermality (Bio3), mean temperature of warmest quarter (Bio10),
mean temperature of coldest quarter (Bio11), annual precipitation (Bio12), and precipita-
tion of driest month (Bio14) (Table 3). Figure 3 shows the Jackknife test results for each
environmental variable in the MaxEnt model. Four environmental factors (Bio10, Bio11,
Bio12, and Bio14) have relatively high returns (>0.4) when used separately, indicating that
they have more important information. However, when utilized alone, Bio2 and Bio3 both
offer relatively low contributions, demonstrating that these two environmental factors are
less informative. To evaluate the adaptability of Panorpidae’s global distribution, Bio10,
Bio11, Bio12, and Bio14 were chosen as significant environmental criteria for this study.

Figure 4 shows the response curves for the six bioclimatic variables obtained from the
MaxEnt model.

Table 3. Environmental factors used for MaxEnt modeling the habitat suitability distribution
of Panorpidae.

Data
Source Category Variables Abbreviation Units

Panorpidae
Worldclim

Bioclimatic

Mean diurnal range Bio2 ◦C
Isothermality (Bio2/Bio7)(×100) Bio3 %
Mean temperature of warmest quarter Bio10 ◦C
Mean temperature of coldest quarter Bio11 ◦C
Annual precipitation Bio12 mm
Precipitation of driest month Bio14 mm
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3.3. Global Distribution of Panorpidae

The global distribution of Panorpidae is shown in Figure 5. Panorpidae have a dis-
tribution range in Asia approximately between 10–50◦ N and 90–140◦ E, which includes
central, eastern, and southern China and Japan. There is also a small distribution in India,
Myanmar, Thailand, Viet Nam, Malaysia, and Indonesia. Panorpidae are primarily found
in Europe between the latitudes of 40 and 70◦ N, which includes western Russia, Germany,
Italy, and France. They are primarily found in North America between the latitudes of 30
and 50◦ N, which includes the eastern United States and southeast Canada.
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3.4. Predicted Habitat Suitability for Three Historical Eras

Based on the maximum entropy model simulation, six major environmental variables
and distribution data were used to calculate the global suitable habitat map of Panorpidae
in three historical periods (the Last Interglacial, LIG; the Last Glacial Maximum, LGM; and
1970–2000, Current; Figure 6). The suitability of habitat is divided into four levels: highly
suitable area, medium suitable area, low suitable area, and unsuitable area. The prediction
results show that the highly suitable regions in these three periods are mainly concentrated
in Southeast Asia, Western Europe, and eastern North America.

During these three periods, the area of the suitable habitat increased and then de-
creased as the global temperature rose and then dropped. From LIG to LGM, the area of the
suitable habitat for Panorpidae increased significantly, expanding northward into southern
Denmark and some coastal areas of the Russian Far East. Meanwhile, the area of suitable
habitat in central South America, southeastern Africa, and eastern Australia also increased,
although there are no official records of Panorpidae in these areas. Overall, the area of the
global suitable habitat (0.2–1) has expanded from 34.14 to 54.09 million km2, an increase
of 58.4%.

From LGM to Current, as the temperature rose, the area of habitat shrunk (Figure 6).
Shrinkage occurred mainly in the eastern part of Europe and northeastern Asia. The area
of the global suitable habitat decreased from 54.09 to 37.69 million km2, only 69.68% of the
LGM period. It is noteworthy that high suitability areas (>0.6) in southeastern Africa and
southeastern Australia have instead increased. Comparing the two periods of Current and
LIG, the range of the suitable habitat in China has expanded northward, and the area of highly
suitable habitat in south-central Asia has decreased. Some areas of low suitability in central
Africa and the Indonesian archipelago have disappeared, but some areas in eastern South
America, southeastern Australia, and New Zealand have become more suitable (Table 4).



Insects 2023, 14, 332 10 of 20Insects 2023, 14, x  11 of 22 
 

 

 
Figure 6. Distribution of the suitable habitat of Panorpidae over three historical periods: (a) the Last 
Interglacial, LIG; (b) the Last Glacial Maximum, LGM; and (c) 1970–2000, Current. 
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Table 4. The area of Panorpidae’s four habitat suitability distribution over four eras.

Habitat Suitability

Historical Periods Global Warming
Scenarios

Last Interglacial Last Glacial
Maximum 1970–2000 2070s RCP4.5

Area (million km2) Area (million km2) Area (million km2) Area (million km2)

0–0.2 114.7584 94.8089 111.2099 112.3447
0.2–0.4 13.1229 16.8937 13.2336 12.8701
0.4–0.6 6.5181 14.5506 8.3257 7.9061

>0.6 14.5005 22.6467 16.1308 15.7791

3.5. Distribution Trends of Panorpidae during Future Global Warming

The MaxEnt model was used to simulate the suitable habitat of Panorpidae in future
global warming scenarios (RCP 4.5) by the 2070s. The regions with a higher possibility
of Panorpidae survival are receding due to the changing environment, from 37.69 to
36.55 million km2. Highly suitable zones have shrunk slightly in North America, Europe,
and Asia. Consequently, overall Panorpidae habitat availability declined with climate
warming (Table 4).

The area of the suitable habitat under the global warming scenarios is more similar to
that of the LIG period. However, the distribution of some suitable areas in these two periods
differs greatly, mainly from central to southwestern China, Myanmar and eastern India in
Southeast Asia, and central and western North America (Figure 7).
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Due to insufficient sampling and restricted distributions of some species, field surveys
alone may considerably underestimate species richness [55]. Ecological niche modeling
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(ENM) can help estimate species distributions under inadequate sampling [56]. It is diffi-
cult to comprehensively understand the species richness patterns of Panorpidae because
previous studies are scarce and mostly focus on within a specific region [11,12]. In this
study, the distribution pattern of Panorpidae on a global scale was analyzed, revealing
that most diverse geographic areas are primarily in eastern Asia, Western Europe, and
eastern North America. In previous research, China was thought to be the center of the
origin and divergence of Panorpidae on a worldwide scale [4,57]. The current discovery of
China’s highest species richness supports this hypothesis. The centers of species diversity
of Panorpidae in China are mainly located in the Qinling, Bashan, Minshan, Nanling, the
northern Hengduan Mountains and Taiwan Island.

Panorpidae migrated from Asia to North America via the Bering land bridge in the
Eocene to Oligocene periods [58,59]. During the Middle to Late Miocene, the central
and western regions of North America dried out [60], leading to the extinction of many
scorpionfly taxa in this area. However, similar groups in the humid eastern regions were
able to persist, thus forming the current distribution pattern. The ancestor of Panorpidae
was Orthophlebiidae, which appeared relatively late in the entire Mecoptera evolution-
ary history [61]. After originating in East Asia, Panorpidae expanded their distribution
southward [59], but only as far as southern Indonesia, failing to reach the Southern Hemi-
sphere. This also may explain why the species of this family are distributed only in the
Northern Hemisphere.

Species richness is spatially characterized [62], and if the spatial autocorrelation phe-
nomenon of these indicators is not taken into consideration, it will affect the accuracy of
the assessment about the relationship between species richness and environmental factors.
The spatial autocorrelation phenomenon may lead to bias in the regression parameters.
Commonly used spatial regression models such as the SAR or OLS models can eliminate
more residual spatial autocorrelation and hence have greater explanatory power [62]. In
order to study the relationship between species richness and environmental factors, we
used OLS and SAR models. The findings indicated that both models essentially reached
the same conclusion that species richness had a highly significant positive correlation
with factors related to precipitation as well as elevation, suggesting that precipitation and
elevation were dominant factors of species richness patterns.

Some Panorpidae were found to have seasonal polyphenism as a way of adapting to
their habitat environment, with temperature being the main determinant [63,64]. However,
these studies only analyzed the effect of temperature and neglected the precipitation factor.
Apart from that, previous studies generally considered that the distribution of scorpionflies
is mainly influenced by temperature [10,12]. In contrast to previous studies, our present
research discovered that among a number of climatic factors, the richness distribution
pattern is primarily influenced by precipitation factors, with temperature factors having
a slight effect.

There are few previous studies on the effect of precipitation or humidity on scorpi-
onflies. It has been demonstrated that Neopanorpa and Leptopanorpa from Java Island had
high humidity requirements [65]. As a result, the distribution pattern of Panorpidae in this
region is strongly correlated with the local precipitation. Additionally, earlier research indi-
cated that reproduction is influenced by humidity, especially the ovipositional process [66].
We speculate that humidity may also have an impact on how the Panorpidae adapt to their
surroundings. Panorpidae can adapt to local temperatures by adjusting their eclosion time,
but precipitation can affect the ecology and thus determine whether they can survive in
an area. Therefore, Panorpidae’s species richness is mainly related to precipitation.

4.2. Relationship between Environmental Factors and the Suitability of Panorpidae Habitat

The mean temperature of the warmest quarter (Bio10), the mean temperature of the
coldest quarter (Bio11), the annual precipitation (Bio12), and the precipitation of the driest
month (Bio14) were the variables that had the greatest influence on the distribution of
Panorpidae among the bioclimatic variables analyzed in this study. The findings indicated
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that the Panorpidae tended to live in environments where the warmest quarter’s mean
temperature ranged from 14 to 26 ◦C, the coldest quarter’s mean temperature ranged
from −8 to 15 ◦C, the annual precipitation greater than 600 mm, and the driest month’s
precipitation less than 80 mm, approximately. The statistical results of these models showed
that the Panorpidae preferred the cold and humid habitat, which was consistent with the
previous research [4,10,57]. The Panorpidae primarily occurred in the canopy environment
with good vegetation coverage, such as forests, shrubs, and canyons in high mountains [67],
which may be intimately tied to their origins and evolution [68,69].

Precipitation affects the distribution of insects in both direct and indirect ways. First,
it directly affects the living environment of insects. Increased precipitation can create damp
environments and shady habitats for insects that are accustomed to the cold, increasing
their chances of surviving [70]. Panorpidae are cold-adapted insects, thus an increase in
precipitation is likely to make their habitats more favorable. Female adults burrow their
abdomens into loose, moist soil to lay eggs [71], making them particularly sensitive to soil
temperature and humidity [72]. Soil moisture will fluctuate as a result of precipitation [73].
Additionally, it was discovered that as the average annual precipitation increased, so did
the species richness of the Plecoptera [70]. However, excessive precipitation may harm the
microenvironment of insects and decrease the survival rate of insect eggs, thereby having
a negative impact on their distribution [74]. Therefore, it is hypothesized that excessively
dry or moist soil may have an impact on the reproductive process of Panorpidae. Second,
by affecting the abundance and type of plants, precipitation indirectly influences how
insects are distributed. Increased precipitation encourages plant growth, and the vegetation
in return provides habitats and a food source for phytophagous insects [75,76]. The adults
and larvae of Panorpidae mainly feed on carrion, but the adults occasionally eat flower
berries [77–79]. The adult Panorpidae frequently rest on the adaxial surface of leaves. This is
likely another factor that may influence how precipitation impacts Panorpidae distribution.

The temperature factors are the second most important influence on the distribution
of Panorpidae, next to precipitation factors. Although many habitats are suited for their
survival, adult Panorpidae have poor flying abilities so that they are unable to migrate over
great distances. The Panorpidae are prone to extreme climatic events, therefore at the end
of the glacial cycle, they migrated to higher latitudes and elevations. They typically create
sky-island-like distribution patterns at mountaintops, resulting in geographic isolation
in the interglacial periods [3]. The processes of migration, isolation, and dispersion of
these montane species are useful for studying the biodiversity of the Ice Age refugia, since
geographic isolation encourages the speciation process and increases biodiversity. It has
been suggested that biodiversity may suddenly and dramatically decline as a result of rising
temperatures due to climate change [80–82]. In addition, habitat fragmentation caused by
climate change is expected to lead to the extinction of montane species and species with
restricted distribution [83,84]. According to hypotheses of Li et al., some neotenic Lycidae
in Southeast Asia have a discontinuous distribution pattern due to unsuitable habitats
caused by climate change [85].

Numerous species, notably insects, will be impacted by the continuous climate warm-
ing, since the changes in temperature may have a significant impact on their fundamental
physiological processes [86]. Some species may adjust to climatic warming in a variety
of ways, such as advancing their phenologies or changing their geographic distributions
to follow suitable temperature ranges in order to cope with the changes in the external
environment brought on by global warming [87–89]. As cold-adapted insect groups, the
Panorpidae likely respond to global warming by retreating into refugia in higher moun-
tains where the temperature is moderately cool in the summer season. Consequently, the
biodiversity of Panorpidae may be vulnerable to global warming.

4.3. Simulation of Habitat Suitability for Three Periods of History

From the LIG to LGM period, the area of suitable habitat increased significantly as
temperature decreased. During ice ages, global temperatures dropped, allowing some



Insects 2023, 14, 332 14 of 20

cold-adapted montane species to shift to the foothills and expand their ranges [16–18]. After
the end of the ice age, global temperatures gradually increased. These species moved from
low-latitude, low-altitude regions to high-latitude, high-altitude regions, and their ranges
shrank as a result. This could be one of the causes of the distribution area’s contraction
from the Last Glacial Maximum to the modern era [4,10,57]. Previous ecological studies on
Panorpidae have tended to focus on only a few species within a genus, such as Cerapanorpa
and Dicerapanorpa [4,10,57]. These studies showed that the potential distribution range of
the LGM period had expanded significantly compared to the present day, and is widely and
continuously distributed in the Qinling, Minshan, and Bashan Mountains. This coincides
with our results that the global potential distribution area of Panorpidae was 43.52% larger
during the LGM period than it is today. Due to the dip in temperature during the LGM, the
ice sheets grew and sea levels fell, exposing the continental shelf and resulting in a sizable
coastal plain [90] (Figure S1). This might have facilitated the expansion of the Panorpidae’s
suitable survival area. For instance, the Southeast Asian islands and the Asian plate were
united during the ice age, but after it ended, they separated into archipelagic regions [91],
reducing the continental area. It is clear that changes in sea level and exposure of the
continental shelf also have a significant impact on how species are distributed.

The suitable survival area of Panorpidae dropped from LGM to 1970–2000. Dramatic
population growth, environmental devastation, the acceleration of urbanization, and other
factors have altered the earth’s climate significantly, resulting in a number of important
ecological problems [92–95]. In our study, the distribution range of Panorpidae’s highly
suitable survival area has decreased as a result of climate change. According to Meule-
brouck et al., numerous wildland species in Western Europe have suffered major decline
in recent decades as a result of habitat loss [96]. Thomas (2004) demonstrated that over
the past few decades, annual global climate change has changed the distribution and
abundance patterns of many species, and that we are likely to experience a species mass
extinction event [80]. Climate change may have resulted in the extinction of the poorly
dispersing lineage in net-winged beetles, especially when they are restricted to small forest
refugia [68].

4.4. Changes in Panorpidae Distribution in the Future

The increase in global temperature is expected to continue and could reach 1.4–5.8 ◦C
by 2100 [97]. According to predictions made by global warming models, roughly 24% of
terrestrial species will likely be “declared extinct” in the near future [80]. Other studies
indicated that 20–30% of plants and animals will go extinct if the average global temperature
rose by 2–3 ◦C; if it rose by more than 4 ◦C, a substantial number of organisms would
perish, destroying the entire planetary ecosystem [97]. Certainty, cold-adapted species,
insects in particular, are more vulnerable to global warming. In fact, insects are ectotherms,
so that their tiny population sizes and constrained habitat ranges are heavily influenced
by environmental temperatures, as indicated in studies of fossils [98,99]. The findings
based on the MaxEnt model indicate that the global warming scenarios would result in
a lesser amount of suitable habitat for Panorpidae than currently available. Obviously,
global warming may be detrimental to the survival of Panorpidae.

On the other hand, global warming has the potential to degrade the habitat environ-
ment of the species, likely influencing insect development, growth, and mortality [100].
The survival and reproduction of insects are affected by habitat changes [101,102]. Climate
change can alter the survival strategies of insects and also have an impact on their distri-
bution. Our findings indicate that Panorpidae migrate to higher latitudes and elevations
as a result of rising temperatures, which may significantly reduce their habitat areas. In
addition, there is the migration of some insects and plants to higher altitudes and higher
latitudes in response to global warming. For instance, due to the grasshopper’s high cold
tolerance, it is expected that it would migrate northward during global warming [103]. Sim-
ilar studies in Europe have shown that the migration of butterfly species is northward [104].
Additionally, following an increase in temperature, the distribution of thermophilic plants
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has been shown to shift toward higher latitudes and elevations [105,106]. However, the
productivity of the high-altitude area is lower than that of the middle-altitude zone, and
the suitable habitat area is becoming smaller [107–111]. Many individuals may be lost in
the process of moving to higher altitudes, and the population size will gradually decrease,
eventually resulting in the loss of species richness and genetic diversity. Therefore, to
reduce the adverse effects of climate change on Panorpidae, we propose to establish nature
preserve areas in their biodiversity centers.

In response to climate change, species often use both migration and adaptation strate-
gies to adapt to their environment [112]. Additionally, species adjust to climate change
on three different scales: temporal, spatial, and self-change scales [113]. Panorpidae most
likely adjust to their environment through changes in temporal and spatial scales. Different
Panorpidae species from different regions have varying eclosion times and can survive at
different latitudes, which may be an adaptive response to the environment. Numerous
studies imply that allochronic divergence is connected to species’ environmental adaptabil-
ity, resource utilization, or temperature adaptation [114–118]. As previously reported in
butterflies, allochronic divergence in insects is directly associated to temperature acclima-
tion [119]. On the other hand, because of their short life cycles, insects have the potential to
adapt to different environments. In a study on the evolutionary adaptation of scorpionflies,
Panorpodes paradoxus evolved an “alpine type” to adapt to the low-temperature environ-
ment [120]. This is a result of Panorpidae’s adaptation to the uplift of Japanese mountains
and continuous ice–interglacial cycle.

The present study also found that although the area of suitable habitats for Panorpidae
was correspondingly reduced in the future, the main distribution areas of suitable habitats
did not move much, as in the case of previous studies [121–123].

4.5. Implications for Biological Conservation

Understanding the probable ranges of rare species under present or forecast climatic
scenarios is essential for species conservation [124,125]. There are two processes leading to
species extinction: reduction in geographic distribution (large scale) and decline in pop-
ulation abundance (local scale) [126]. However, these rare species often lack distribution
data, which makes it difficult to designate appropriate conservation methods [127]. In this
regard, new developments in ecological modeling have improved our ability to estimate
and predict species distributions and can compensate for the lack of available data in
species conservation [128]. The MaxEnt model was used in this work to assess the possible
distribution of Panorpidae under several climate scenarios. The findings demonstrated
that suitable areas of Panorpidae did not significantly change under global warming tem-
perature scenarios, consistent with the relatively limited migration capacity of Panorpidae.
Nevertheless, the correct microhabitats can allow some lineages to persist for a very long
time. In other words, we advocate more attention to highly suitable areas and conservation
measures in these areas [129]. Our predicted results likely provide information for the
present population trends, and may have an impact on further studies and conservation
initiatives [128].

5. Conclusions

In this study, we investigated the distribution pattern of Panorpidae and the relation-
ship between their species richness and environmental factors. High species richness areas
are mainly located in south-central China. The main factors affecting species richness are
those related to precipitation as well as elevation. Other environmental factors, however,
had comparatively little impact.

Using the best MaxEnt model measured by the AUC and TSS index, the probable
survival area of Panorpidae was examined and predicted. The areas suitable for Panorpidae
are mainly distributed in southeastern North America, Europe, and southeastern Asia.
Six major bioclimatic factors that influence the distribution of species—mean diurnal
range (Bio2), isothermality (Bio3), mean temperature of warmest quarter (Bio10), mean



Insects 2023, 14, 332 16 of 20

temperature of coldest quarter (Bio11), annual precipitation (Bio12), and precipitation of
driest month (Bio14)—are chosen from a total of 19 bioclimatic factors. From LIG to LGM
to Current, the area of the suitable habitat increased and then decreased. For cool-adapted
insects such as scorpionflies, the range of the suitable habitat is maximum in the LGM
period. According to the simulation result in global warming scenarios, the habitat areas
of Panorpidae decreased as a result of increased temperature. This indicates a decline in
population size and genetic diversity in the future for Panorpidae.

In addition to the aforementioned bioclimatic factors and elevation, there are many
factors that may also have an impact on the suitable habitat of scorpionflies, such as
vegetation cover, soil conditions, and human activities. In subsequent studies, these factors
can be considered for analysis and are able to predict the distribution of Panorpidae more
precisely. Furthermore, a defect of ecological niche models is that they rely strongly on the
quality of data records, which are often influenced by artificial randomness.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14040332/s1, Figure S1: Coastline expanded during LGM.
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