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Simple Summary: Maize is one of the world’s most important crops, and pests can seriously damage
its yield and quality. Detection of maize pests is vital to ensuring the excellent productivity of maize.
Traditional methods of pest detection are generally complex and inefficient. In recent years, there
have been many cases of plant pest detection through deep learning. In this paper, we propose a new
real-time pest detection method based on deep convolutional neural networks (CNN), which not
only offers higher accuracy but also faster efficiency and less computational effort. Experimental
results on a maize pest dataset show that the proposed method outperforms other methods and that
it can balance well between accuracy, efficiency, and computational effort.

Abstract: The frequent occurrence of crop pests and diseases is one of the important factors leading
to the reduction of crop quality and yield. Since pests are characterized by high similarity and fast
movement, this poses a challenge for artificial intelligence techniques to identify pests in a timely and
accurate manner. Therefore, we propose a new high-precision and real-time method for maize pest
detection, Maize-YOLO. The network is based on YOLOv7 with the insertion of the CSPResNeXt-50
module and VoVGSCSP module. It can improve network detection accuracy and detection speed
while reducing the computational effort of the model. We evaluated the performance of Maize-YOLO
in a typical large-scale pest dataset IP102. We trained and tested against those pest species that are
more damaging to maize, including 4533 images and 13 classes. The experimental results show that
our method outperforms the current state-of-the-art YOLO family of object detection algorithms and
achieves suitable performance at 76.3% mAP and 77.3% recall. The method can provide accurate
and real-time pest detection and identification for maize crops, enabling highly accurate end-to-end
pest detection.

Keywords: YOLO; maize pest; real-time; object detection; artificial intelligence

1. Introduction

Maize is one of the most important foods and industrial crops in China, but it always
faces the threat of pests and diseases during its growth, which leads to a decrease in yield
and quality [1]. To avoid this, strict visual monitoring is needed for the early detection of
pest and disease infestation of the crop. The traditional way of detection is to identify plant
pests and diseases by agricultural experts on-site or by farmers based on their experience [2].
This method is not only time-consuming and labor-intensive but also results in misjudgment
due to subjective factors of the inspectors and, thus, the blind use of drugs. This situation
will not only bring pollution to the environment but also cause unnecessary economic
losses. The application of computer vision methods in the field of plant pest detection has
become a research hotspot. The ability to accurately identify the type of pests and locate
them is an important aspect of crop production monitoring, as well as the basis for making
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plant protection prescriptions and automatic and precise application of medicine through
images captured by various intelligent vision devices [3].

In recent years, some researchers have used image processing and machine learning
techniques to detect crop diseases [4]. However, traditional machine vision methods are
less robust in complex scenes, so it is difficult to meet the needs of complex scenes. With
the excellent performance of deep learning at the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC), deep learning has been rapidly developed. Among them, deep
learning models represented by convolutional neural networks (CNN) have been successful
in many fields, such as computer vision [5] and natural language processing [6], and many
deep learning architectures are gradually applied to agricultural crops pest identification,
such as AlexNet [7], GoogleNet [8], VGGNet [9], ResNet [10], and Vision Transformer [11],
which has been introduced from the field of natural language processing to the field of CV
in recent years. Object detection of pests is one of the main tasks of plant pest detection,
and the aim is to obtain accurate location and class information of pests, which can be well
solved by CNN-based deep learning feature extractors and integrated models. Sabanci
et al. proposed a convolutional recurrent hybrid network combining AlexNet and BiLSTM
for the detection of pest-damaged wheat [12]. Gambhir et al. developed a CNN-based
interactive network robot to diagnose pests and diseases on crops [13]. Sun et al. proposed
a multi-scale feature fusion instance detection method based on SSD, which improved
on SSD to detect maize leaf blight in complex backgrounds [14]. Although all the above
studies have suitable accuracy, they cannot meet the demand for real-time object detection.

In computer vision, real-time object detection is a very important task. YOLO is a
popular family of real-time object detection algorithms. The original YOLO object detector
was first released in 2016 [15]. This architecture is much faster than other object detectors
and has become the latest technology for real-time computer vision applications. Currently,
YOLO has been widely used in plant pest identification. For example, Roy et al. proposed
an improved YOLOv4-based real-time object recognition system, Dense-YOLOv4, by inte-
grating DenseNet into the backbone to optimize the transmission and reuse of features [16].
Using the improved PANet to acquire location information and detect mango growth in
complex scenes in orchards. Lawal et al. proposed YOLO-Tomato-A and YOLO-Tomato-B
models based on YOLOv3 to detect tomatoes in complex environments and improved
the performance of the models by adding labeling methods, dense architecture, spatial
pyramid pooling, and the mish activation function to the YOLOv3 model [17]. Li et al.
proposed an architecture for plant pest and disease video detection based on a combination
of deep learning and custom backbone networks [18]. Experiments demonstrated that the
customized DCNN network has outstanding detection sensitivity for rice stripe wilt and
rice stem borer symptoms compared with YOLOv3 with VGG16, ResNet50, and ResNet101
as the backbone. Zhang et al. combined the pooling of spatial pyramids with YOLOv3 to
achieve inverse by combining upsampling and convolution operations. Convolution can
effectively detect small-sized plant pest samples in images, and the average recognition
accuracy can reach 88.07% [19]. Tian et al. proposed a deep learning-based method for
Apple Anthracnose damage detection, which optimized the low-resolution feature layer of
the YOLOv3 model by DenseNet and greatly improved the utilization of neural network
features and the detection results of the model [20]. In summary, YOLO can achieve end-
to-end detection by converting the object detection task into a regression task and using
global features to directly classify and localize the object, which greatly improves the speed
of detection. However, it is difficult for the YOLO family of object detection algorithms
to achieve a suitable balance between accuracy, speed, and computational effort at the
same time.

With the YOLO family of object detection algorithms continuously updated, YOLOv7
was created in 2022 [21], which claimed that YOLOv7 is the fastest and most accurate
real-time detector to date. There is less research on the application of YOLOv7 to plant pest
detection, so we tried to apply YOLOv7 to plant pest detection while we further optimized
its accuracy, speed, and computational load. On the other hand, although some researchers
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have explored DL-based detection and identification of pests, there are fewer studies on
pest detection and identification for maize, an important agricultural crop. In this study,
we propose the Maize-YOLO algorithm for maize pest detection. The proposed algorithm
achieves a suitable balance between accuracy, computational effort, and detection speed
to achieve fast and accurate detection of pests. The main contributions of this work are
as follows:

(1) We inserted the CSPResNeXt module into the YOLOv7 network, replacing the
original ELAN module, to improve accuracy while reducing model parameters and com-
putational effort.

(2) We replaced the ELAN-W module in YOLOv7 with the VoVGSCSP module, which
reduces the complexity of the model while maintaining the original accuracy and improving
the speed of detection.

(3) We tested the detection of highly damaging pests on maize using Maize-YOLO on
the IP102 dataset. We achieved 76.3% mAP and 77.3% Recall with a substantially reduced
computational effort and an FPS of 67. better than most of the current classical detection
algorithms, including YOLOv3, YOLOv4, YOLOv5, YOLOR, YOLOv7. and we conducted
an ablation experiment to separately analyze the effects of CSPResNeXt-50 and VoVGSCSP
on Maize-YOLO.

2. Materials and Methods
2.1. Maize-YOLO

Since the release of YOLO, many versions based on the YOLO architecture have been
derived, such as Scaled-YOLOv4 [22], YOLOv5, YOLOR [23], etc. YOLOv7 is the latest
version of the YOLO series and is currently the fastest and most accurate real-time object
detection model for computer vision tasks. Compared to previous versions, YOLOv7
greatly improves real-time object detection accuracy without increasing inference costs. It
can generate models at different scales to meet different inference speed requirements by
means of composite scaling methods, such as YOLOv7x, YOLOv7-w6, YOLOv7-e6, and
YOLOv7-d6.

The network structure of YOLOv7 is mainly composed of CBS, UPSample, MP, SP-
PCSPC, ELAN, REPConv, etc. The structure of each module is shown in Figure 1. The
CBS module with a kernel of 3 and stride of 1 is mainly used to extract features, and the
CBS module with a kernel of 3 and stride of 2 is mainly used to downsample. Upsample
and MP are upsampling and downsampling modules, respectively, which are used to
consider the maximum and local value information of local regions. SPPCSPC is a modified
spatial pyramidal pooling structure in which ELAN and ELAN-W are efficient network
structures that regulate the network to be able to learn more features by controlling the
shortest and longest gradient paths. REPConv modules are of two types, used for train and
deployment, respectively.

The basic framework of Maize-YOLO can be divided into three parts: Input, Backbone,
and Head. Input is responsible for operations such as image Mosaic data enhancement,
adaptive anchor frame calculation, and adaptive image scaling. Backbone consists mainly
of ELAN, CBS, and CSPResNeXt-50 modules. It uses the CBS base convolution module
for feature extraction and the CSPResNeXt-50 module to reduce MAC and achieve the
most efficient computation. Head aggregates the image features by using the SPPCSPC
and ELAN modules, using the VoV-GSCSP module to minimize spatial complexity while
maximizing the loss of some of the semantic information caused by spatial compression
and channel expansion of the feature map. Finally, the Rep module adjusts the channels
of the output features, which are then combined with 1 × 1 convolutional layers for
prediction and output. Overall, Maize-YOLO provides a faster and more powerful network
architecture, provides more effective feature integration methods, more accurate object
detection performance, better loss functions, and higher label allocation and model training
efficiency. Therefore, Maize-YOLO can be trained faster on small datasets without any
pre-training weights. We have made the following major changes: (1) replace the ELAN-W
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module with the VoVGSCSP module in the YOLOv7 framework; (2) replace some ELAN
modules with CSPResNeXt-50 modules. The network structure is shown in Figure 2.
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2.2. CSPResNeXt-50

CSPNet (CrossStagePartialNetworks) is a lightweight network structure proposed in
2020 that combines feature maps of the underlying layers into two parts and a proposed
cross-stage hierarchy to achieve richer gradient combinations while reducing model com-
putations [24]. CSPNet, on the other hand, can be easily applied to architectures such as
ResNeXt, ResNet, and DenseNet. Therefore, this study combines CSPNet and ResNeXt
to form CSPResNeXt to replace some ELAN modules in YOLOv7. The purpose of this
study is to improve the accuracy of our model while alleviating the problem that much
inference calculation needs to be performed from the perspective of network architecture.
The CSPResNeXt-50 framework is shown in Figure 3. Since only half of the feature channels
pass through ResUnit, there is no need to introduce the bottleneck layer anymore. When
FLOPs are fixed, the memory access cost (MAC) can be lowered to its lower limit.
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2.3. VoVGSCSP

GSConv is a new lightweight convolution method proposed in 2022 [25]. The structure,
shown in Figure 4, enhances the non-linear representation by adding DSC layers and a
shuffle, which preserves the hidden connections between each channel as much as possible
with less time complexity. This method makes the output of the convolution calculation as
close as possible to that of the SC (channel-dense convolution) and reduces the calculation
cost. If GSConv is used in the backbone, the network layer of the model will be deeper,
which will increase the resistance of the data flow and greatly increase the reasoning time.
When GSConv is used in the neck, since the channel size of the feature map is the largest
and the width and height dimensions are the smallest, using GSConv to process the feature
map in series can reduce duplicate information and does not require compression.

Insects 2023, 14, x FOR PEER REVIEW 6 of 14 
 

 

sible with less time complexity. This method makes the output of the convolution calcu-
lation as close as possible to that of the SC (channel-dense convolution) and reduces the 
calculation cost. If GSConv is used in the backbone, the network layer of the model will 
be deeper, which will increase the resistance of the data flow and greatly increase the rea-
soning time. When GSConv is used in the neck, since the channel size of the feature map is the 
largest and the width and height dimensions are the smallest, using GSConv to process the 
feature map in series can reduce duplicate information and does not require compression. 

 
Figure 4. Network architecture of GSConv. 

VoVGSCSP is a continuous introduction of GS bottleneck based on GSConv, and then 
a cross-stage partial network (GSCSP) module, VoVGSCSP, is designed by using the one-
shot aggregation method, as shown in Figure 5. The module balances the accuracy and 
speed of the model well, reducing computational and network structure complexity while 
maintaining sufficient accuracy and a high reuse rate of extracted features. 

 
Figure 5. Architecture of VoVGSCSP. 

2.4. Dataset 
IP102 is a large-scale pest identification dataset covering 102 common crop pests [26]. 

As IP102 contains images of the entire pest life cycle, the larval and adult stages of some 
pests are often very different in appearance, and some different types of pests are similar 
to each other. In addition, the background of the images is complex, and some pests are 
similar in color to the background. The combination of these factors makes the identifica-
tion of the IP102 dataset challenging. In this study, only pest species that are damaged by 
maize were targeted, as shown in Table 1, with 13 species. They are referred to as IP13 in 
this paper. 

Table 1. Pest species and sample numbers in IP13. 

Id Pest Species Number 
14 Grub 436 
15 Mole cricket 868 
16 Wireworm 424 
17 White margined moth 49 
18 Black cutworm 300 
19 Large cutworm 153 

Figure 4. Network architecture of GSConv.

VoVGSCSP is a continuous introduction of GS bottleneck based on GSConv, and
then a cross-stage partial network (GSCSP) module, VoVGSCSP, is designed by using the
one-shot aggregation method, as shown in Figure 5. The module balances the accuracy and
speed of the model well, reducing computational and network structure complexity while
maintaining sufficient accuracy and a high reuse rate of extracted features.
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2.4. Dataset

IP102 is a large-scale pest identification dataset covering 102 common crop pests [26].
As IP102 contains images of the entire pest life cycle, the larval and adult stages of some
pests are often very different in appearance, and some different types of pests are similar to
each other. In addition, the background of the images is complex, and some pests are similar
in color to the background. The combination of these factors makes the identification of the
IP102 dataset challenging. In this study, only pest species that are damaged by maize were
targeted, as shown in Table 1, with 13 species. They are referred to as IP13 in this paper.

Table 1. Pest species and sample numbers in IP13.

Id Pest Species Number

14 Grub 436
15 Mole cricket 868
16 Wireworm 424
17 White margined moth 49
18 Black cutworm 300
19 Large cutworm 153
20 Yellow cutworm 194
21 Red spider 160
22 Corn borer 425
23 Army worm 206
24 Aphids 874
25 Potosiabre vitarsis 203
26 Peach borer 241

Total 4533

2.5. Performance Evaluation Methods

In this study, mean average precision (mAP), floating-point operations (FLOPs), and
frames per second (FPS) are selected as evaluation indicators. mAP represents the average
value of AP, which is used to measure the overall detection accuracy of object detection.
For object detection, AP and mAP are the best indicators to measure the detection accuracy
of the model [27]. FLOPs represent the amount of computation and are used to measure
the complexity of the model. FPS indicates how many images can be detected by the
network per second as an indicator of object detection speed. The formula is shown in
Equations (1)–(4):

Precision(P) =
TP

TP + FP
(1)

Recall(R) =
TP

TP + FN
(2)

APi =
∫ 1

0
Pi(Ri)dRi (3)

mAP =
1
C

C

∑
i=1

APi (4)

Among them, Precision reflects the correctness of the model in all detected boxes.
Recall represents the coverage of the detection frame to all ground truths predicted by the
model. AP evaluates the performance of the model in each category by considering P and
R indicators. The value of AP is equal to the area between the P–R curve and the coordinate
axis. TP (true positive) indicates the number of correctly predicted positive instances, and
FN (false negative) indicates the number of incorrectly classified positive instances; FP
(false positive) is the number of negative instances classified as positive categories. C is the
number of pest species and represents the precision of the ith pest category. Ri represents
the recall rate of the ith pest category.
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3. Experimental Results and Discussion

Before model training, this paper divides the dataset into a training set and a validation
set in a ratio of about 8:2 for 5-fold cross-validation, where the training set is 3600 images,
and the test set is 932 images. This means that the whole dataset is divided into 5 equal
parts, each of which accounts for about 20% of the whole dataset. We trained the model on
4 parts and validated it on the remaining 1 part. This operation was repeated 5 times and
took the average value as the final result. To ensure the originality of the dataset, we only
scaled the input images adaptively, and since images with too large a size or resolution
can significantly increase the detection time of the model, we scaled the input images to
3,640,640. All experiments were conducted on a server configured with 16 Intel (R) Xeon
(R) Gold 5218 CPU and 2 NVIDIA GeForce RTX 3090. These GPUs were deployed based on
Python 3.9 under Linux Ubuntu 20.04 LTS operating system. Our model is built under the
Pytorch 1.11.0 deep learning framework, and the Adam algorithm is used to optimize the
model in the training process. The default super parameter settings are as follows: epoch is
300, batch size is 32, and the initial learning rate is 0.01. The momentum factor and weight
falloff are set to 0.937 and 0.0005, respectively. In this study, we initialize the parameters of
all YOLO model backbone networks using pre-trained weights.

3.1. Detection Results of Maize-YOLO

Based on the IP13 dataset, we compared Maize-YOLO with other models that are cur-
rently performing well, including RetinaNet, Faster R-CNN, YOLOv3, YOLOv4, YOLOv5,
YOLO-Lite, YOLOR, YOLOv7, and different versions of these algorithms. The backbone
of RetinaNet and Faster R-CNN is ResNet50. We first analyzed the detection results of
Maize-YOLO, as shown in Figure 6. The loss curve of Maize-YOLO stabilizes later in the
model training process, with the loss values fluctuating only within a small range.
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represents the mean of object detection loss, Classification represents the mean of classification loss,
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object detection loss in the validation set, val Classification represents the mean of classification loss
in the validation set.

On the other hand, we obtained the P–R curves for each species. According to Figure 7
and Table 2, we can see that Maize-YOLO successfully identified most species of pests,
with mAPs that could reach 76.3% and the highest AP even reaching 99.7%, but the
identification of category 17 (White margined moth), category 18 (Black cutworm), category
19 (Large cutworm), and category 20 (Yellow cutworm) were generally identified because
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the dataset contained both larval and adult stages of these four categories of pests, and their
different growth periods differed greatly in appearance, which caused great difficulties in
identification.
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Table 2. Detection performance of Maize-YOLO on IP13 datasets for various types of pests.

Class Images Labels P R mAP@0.5 mAP@0.5:0.95

14 932 154 88.0% 91.6% 93.7% 51.9%
15 932 181 98.7% 98.9% 99.7% 53.9%
16 932 91 84.5% 92.3% 93.4% 69.6%
17 932 13 54.6% 38.5% 42.3% 35.8%
18 932 72 54.4% 73.6% 68.6% 56.0%
19 932 42 38.5% 54.8% 40.6% 30.9%
20 932 36 27.8% 61.1% 31.2% 24.7%
21 932 35 92.0% 94.3% 99.0% 65.2%
22 932 86 78.1% 86.9% 86.6% 56.2%
23 932 51 86.9% 68.6% 75.9% 48.4%
24 932 257 76.7% 89.1% 86.9% 49.1%
25 932 67 95.2% 89.6% 95.4% 67.0%
26 932 47 77.0% 66.0% 78.2% 56.6%

3.2. Comparison of Other Classical Models

As shown in Table 3, the model size of Maize-YOLO is 33.4M, the FLOPs are 38.9G,
and the mAP reaches 76.3%. Its mAP exceeds the mAP of almost all other classical detection
models (except YOLOR-E6). In addition, some YOLO models with similar mAP size as
Maize-YOLO, such as YOLOR-D6, YOLOR-E6, YOLOR-P6, YOLOv7-E6E, which are two
to six times more computationally intensive than Maize-YOLO. On the other hand, Maize-
YOLO achieves an FPS of 67, and its detection speed surpasses that of most YOLO models
(except for YOLO models with less than 20G of computation), which indicates that our
method can meet the requirements of real-time detection. In conclusion, our model strikes
a suitable balance between speed, accuracy, and computational effort.
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Table 3. Performance comparison of object detection algorithms on the IP13 including Maize-YOLO,
mAP@0.5 is the average accuracy of all categories when the representative accuracy assessment IoU
threshold is 0.5, mAP@0.5: 0.95 is the average accuracy of IoU thresholds weighted from 0.5 to 0.95 in
steps of 0.05. Time indicates the training time of the model.

Model Params Layer P R mAP@0.5 FLOPs FPS mAP@0.5:0.95 F1 Time (h)

RetinaNet 36.6M 152 72.2% 56.53% 65.9% 167.7G 38 39.5% 61.8% 14.549
Faster R-CNN 136.9M 40 48.2% 59.9% 55.0% 402.0G 24 29.0% 46.5% 39.214

YOLOv3 61.6M 333 69.7% 72.2% 71.7% 155.5G 58 45.4% 70.9% 13.796
YOLOv3-SPP 62.6M 342 73.2% 78.3% 74.5% 156.3G 51 48.7% 75.7% 14.196

Scaled-YOLOv4 52.6M 513 58.3% 63.5% 63.3% 119.9G 51 33.9% 60.8% 15.428
YOLOv5-L 46.2M 468 65.5% 55.8% 59.0% 108.4G 45 31.4% 60.3% 12.004
YOLOv5-S 7.1M 270 51.4% 48.2% 49.9% 16.0G 94 23.9% 49.7% 5.663
YOLOv5-N 1.8M 270 47.2% 53.0% 52.6% 4.3G 114 26.8% 49.9% 4.755
YOLOv5-M 20.9M 369 58.6% 69.4% 65.1% 48.4G 52 38.1% 63.5% 8.581
YOLOv5-X 86.3M 567 71.8% 61.2% 65.5% 204.9G 48 38% 66.1% 17.670
YOLO-Lite 4.4M 319 49.3% 55.7% 56.2% 8.8G 178 32.1% 52.3% 5.176

YOLOR-CSP 52.6M 521 65.9% 67.9% 66.9% 119.9G 50 38.4% 66.9% 13.648
YOLOR-D6 151.1M 956 75.8% 77.2% 75.8% 233.3G 29 50.5% 76.5% 26.889
YOLOR-E6 115.3M 740 76.1% 77.0% 76.7% 170.0G 34 51.4% 76.5% 22.324
YOLOR-P6 36.9M 660 70.1% 82.4% 76.2% 80.8G 43 50.9% 75.7% 11.140
YOLOR-W6 79.4M 660 76.3% 72.9% 75.1% 112.6G 41 50.1% 74.6% 16.371

YOLOv7 37.2M 407 69.0% 71.1% 70.8% 105.3G 57 45.1% 70.0% 11.263
YOLOv7-tiny 6.1M 263 66.9% 68.9% 67.7% 13.3G 204 39.5% 67.9% 5.739

YOLOv7-tiny-silu 6.0M 255 69.0% 63.9% 68.1% 13.3G 182 41.1% 66.3% 5.809
YOLOv7-D6 133.0M 702 72.8% 77.6% 74.7% 174.5G 41 50.6% 75.1% 23.574
YOLOv7-E6 110.6M 645 75.6% 77.0% 74.9% 144.9G 44 50.5% 76.3% 22.285
YOLOv7-W6 81.2M 477 75.9% 74.9% 73.3% 102.9G 61 49.7% 75.4% 18.723
YOLOv7-X 70.9M 459 74.4% 67.2% 71.5% 189.1G 42 47.2% 70.6% 16.338

YOLOv7-E6E 151.1M 1032 74.5% 79.0% 76.2% 210.1G 24 51.9% 76.7% 28.158
Maize-YOLO 33.4M 527 73.3% 77.3% 76.3% 38.9G 67 51.2% 75.2% 10.598

3.3. Ablation Experiment

To distinguish the respective characteristics of the CSPResNeXt-50 module and the
VoVGSCSP module, we performed ablation experiments with the method proposed in this
study, and the results are presented in Table 4. We added the two separately to the YOLOv7
network and analyzed the impact of each module on YOLOv7 and Maize-YOLO.

Table 4. Ablation study of Maize-YOLO on IP13.

Model Param Layer P R mAP@0.5 FLOPs FPS mAP@0.5:0.95 F1 Time (h)

YOLOv7 37.2M 407 69.0% 71.1% 70.8% 105.3G 57 45.1% 70.0% 11.263
YOLOv7+

CSPResNeXt-50 35.4M 434 75.0% 71.7% 74.8% 41.3G 49 50.4% 73.3% 10.689

YOLOv7+
VoVGSCSP 32.7M 515 73.3% 79.1% 75.3% 93.6G 71 49.5% 76.1% 10.942

Maize-YOLO 33.4M 527 73.3% 77.3% 76.3% 38.9G 67 51.2% 75.2% 10.598

(1) Effects of CSPResNeXt-50, Compared to YOLOv7, YOLOv7+CSPResNeXt-50 has
4.8% fewer parameters, 61% less computation, 4% more mAP, but a decrease in FPS by 8.
This demonstrates that the CSPResNeXt-50 module, when replacing the original ELAN-W
module, does help to significantly reduce computational costs. By using a cross-stage
splitting and merging strategy, the CSPResNeXt-50 module is able to effectively reduce
the possibility of duplication in the information integration process and also has a suitable
improvement in the learning capability of the network.

(2) Effects of VoVGSCSP, compared to YOLOv7, VoVGSCSP has 12% fewer parameters,
11% fewer calculations, 4.5% more mAP, and 14 more FPS. This demonstrates that the
VoVGSCSP module can improve the inference speed and mAP of the network without
increasing the computational effort and that the depth-wise separable convolution in
the VoVGSCSP module can achieve results close to those of normal convolution and is
more efficient. We took into account the characteristics of the VoVGSCSP module and
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applied it to the neck, but we did not replace all ELAN-W modules with VoVGSCSP
modules because too many VoVGSCSP modules would lead to a deepening of the network
layers, which would increase the resistance of the data flow and significantly increase
the inference time. Therefore, in the Maize-YOLO network structure, the feature maps
processed with VoVGSCSP modules contain less redundant repetitive information and do
not require compression.

(3) The effects of both together, We conducted a series of experiments and found that
the CSPResNeXt-50 module made a far greater contribution to reducing computational
effort than the VoVGSCSP module. The VoVGSCSP module contributes more to improv-
ing the speed of model detection than the CSPResNeXt-50 module. Both have similar
improvements to the model’s mAP, and finally, Maize-YOLO combines the best of each
with a 10% reduction in the number of parameters, a 63% reduction in computation, a 5.5%
improvement in mAP, and a 10 improvement in FPS compared to YOLOv7. Figure 8 shows
the confusion matrix for YOLOv7, YOLOv7+CSPResNeXt-50, YOLOv7+VoVGSCSP, and
Maize-YOLO. As can be seen from Figure 8, Maize-YOLO combines the features of both
CSPResNeXt-50 and VoVGSCSP and has a suitable improvement in recognition accuracy
for most types of pests compared to YOLOv7.
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In conclusion, Maize-YOLO is not only accurate but also fast enough to meet the
requirements of real-time detection. Whether it is used to identify the pest category or to
track the movement of the pest, Maize-YOLO is very advantageous in different practical
applications. Figure 9 shows some of the results of Maize-YOLO’s detection of pests. It can
be seen that Maize-YOLO also performs well in detecting smaller pests, demonstrating the
reliability of our model.
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4. Conclusions

In this study, we propose a real-time intelligent maize pest detection method (Maize-
YOLO) that can well balance the relationship between accuracy, speed, and computational
effort and outperforms current state-of-the-art real-time object detection algorithms. Our
Maize-YOLO differs from current related research [28–30] in that it achieves a high level
of detection accuracy while maintaining high speed. The method provides accurate pest
detection and identification not only for maize crops but also for other crops, enabling
end-to-end real-time pest detection.

To maintain the originality of the large-scale pest dataset IP102, we only size-scaled
the dataset without excessive pre-processing of the dataset, and the detection results from
the model did not show that the unbalanced data resulted in the model being more biased
toward those categories with more training samples. In addition, the sample distribution
of the dataset reflects the true situation in the natural field environment, with some types
of pests occurring more frequently and others being less common. Currently, there are
few open-source datasets related to plant pest detection, and we can maximize the use of
existing datasets by using data augmentation techniques or GAN to perform richer manual
processing on the existing datasets.

There are still some limitations in this study, as some types of pests have a large
difference in appearance between the larval and adult stages, which can lead to poor
recognition of such types of pests by the model. In the next step of our research, we will
refine the model’s identification process by classifying different pest types according to
their growth period and morphological differences.

In the future, Maize-YOLO can be combined with web interfaces, intelligent patrol
robots, and smartphone applications to achieve an easy-to-operate human–computer inter-
face through the use of an AI-based pest detection system.
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Abbreviations

YOLO You Only Look Once
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
SSD Single Shot Multibox Detector
CNN Convolutional Neural Network
DL Deep Learning
MAC Memory Access Cost
AI Artificial Intelligence
CV Computer Vision
CSPNet Cross-Stage Partial Networks
IP102 Insect Pests 102
AP Average Precision
mAP Mean Average Precision
FLOPs Floating-point Operations
FPS Frames Per Second
TP True Positive
FN False Negative
FP False Positive
P Precision
R Recall
GPU Graphics Processing Unit
CPU Central Processing Unit
Faster R-CNN Faster Region-based Convolutional Neural Networks
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