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Simple Summary: The fibroin heavy chain (FibH) is the core protein of silkworm silk, and a sys-
tematic analysis of its sequence (primary structure) is essential for understanding silkworm silk
fibers. However, only a few FibH sequences have been identified. The recently published high-
resolution silkworm pan-genome was useful in analyzing the FibH gene systematically. In this
study, we extracted the complete FibH sequences of wild silkworms, local and improved strains
from the silkworm pan-genome, bringing the total number of known silkworm FibH genes to 286.
We characterized in detail the FibH variation during domestication and breeding and established a
silkworm pedigree based on the FibH gene sequence. Additionally, we investigated the relationship
between the cis-regulatory elements of FibH gene and silk yield in wild and domesticated silkworms.
Our study laid the foundation for artificial silk as well as provided guidance for silkworm breeding.

Abstract: The highly repetitive and variable fibroin heavy chain (FibH) gene can be used as a
silkworm identification; however, only a few complete FibH sequences are known. In this study,
we extracted and examined 264 FibH gene complete sequences (FibHome) from a high-resolution
silkworm pan-genome. The average FibH lengths of the wild silkworm, local, and improved strains
were 19,698 bp, 16,427 bp, and 15,795 bp, respectively. All FibH sequences had a conserved 5′ and
3′ terminal non-repetitive (5′ and 3′ TNR, 99.74% and 99.99% identity, respectively) sequence and a
variable repetitive core (RC). The RCs differed greatly, but they all shared the same motif. During
domestication or breeding, the FibH gene mutated with hexanucleotide (GGTGCT) as the core unit.
Numerous variations existed that were not unique to wild and domesticated silkworms. However, the
transcriptional factor binding sites, such as fibroin modulator-binding protein, were highly conserved
and had 100% identity in the FibH gene’s intron and upstream sequences. The local and improved
strains with the same FibH gene were divided into four families using this gene as a marker. Family I
contained a maximum of 62 strains with the optional FibH (Opti-FibH, 15,960 bp) gene. This study
provides new insights into FibH variations and silkworm breeding.

Keywords: pan-genome; FibH gene; FibHome; cis-regulatory element; silkworm pedigree

1. Introduction

Bombyx mori, the domesticated silkworm, is an economically important insect that has
played a vital role in human economic and cultural history. According to evolutionary
analysis and archeological evidence, domesticated silkworms originated in the middle
and lower reaches of the Yellow River and were domesticated from Chinese wild silk-
worms [1–3]. The Chinese trimolter may have been the first domesticated local strain.
Following selection and dissemination, the trimolter silkworm gradually evolved into
a Chinese tetramolter strain, a European strain, and a tropical variety [4]. Local strains
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were bred into improved strains, including Chinese and Japanese improved strains to im-
prove silk quality and yield. The Chinese improved strains were chosen from the Chinese
tetramolter strains, whereas the Japanese improved strains were derived primarily from
European strains [4]. Evolutionary analysis based on conserved genes revealed the origin
of silkworms but could not reveal the silkworm breeding history. With the exception of
the breeding process of some improved strains, the pedigree of local and some improved
strains has remained unclear.

Silkworm silk is mainly composed of three fibroin and five sericin proteins, with the
fibroin heavy chain (FibH), encoded by the FibH gene, having the highest content and
molecular weight [5–8]. The first reported FibH gene is 16,788 bp long, consisting of two
exons (67 bp, 15,750 bp) and one intron. Exon II comprises non-repetitive sequences at
both ends and numerous tandem repeats [9,10]. We previously obtained the complete FibH
sequences of seven wild (Bombyx mandarina) and seventeen domesticated silkworms using
CACS method [11]. Their exon I is identical, the non-repetitive sequences at both ends of
exon II are very conservative, and the introns are dominated by single-base mutations. The
repetitive sequence of exon II is composed of the same repeat units, but their number and
arrangement order differ, resulting in considerable differences in the sequence and length
of the FibH gene between wild and domesticated silkworms. Wild silkworms had the
longest average FibH and the most variation, followed by local strains, whereas improved
strains had the shortest average FibH, and the fewest variations. Wild silkworms and local
strains do not share the same FibH gene. This gene is identical in all improved strains,
except for two mutants (grr and nds), which are closely related to their breeding history.
The parents of strain 872 were strains 46 and 782, the grandfathers were strains 794 and
796, and the parents of strain 54A were strains 532 and 794, implying that the FibH gene
could be used as a marker gene for identifying silkworm pedigree.

There are thousands of silkworm strains, including wild silkworms, local and improved
strains, and genetic mutants, but only 25 strains have known FibH sequences [9,12,13].
Tong et al. recently established a high-resolution pan-genomic database using deeply re-
sequencing and long-read sequencing [3]. In this study, we extracted FibH sequences from the
silkworm pan-genome, characterized the FibH variation, and developed a silkworm pedigree.
To investigate the relationship between cis-regulatory elements and silk yield, the intron,
upstream, and downstream sequences of the FibH gene were examined. Our results improve
our understanding of the FibH gene in addition to providing insights for silkworm breeding.

2. Materials and Methods
2.1. Data Source

Tong et al. assembled 545 high-resolution silkworm genomes and deposited them in
the China National GeneBank DataBase (CNGBdb; https://db.cngb.org/ (accessed on 10
November 2022)) [3]. Sample IDs (such as BomW2, BomL1, and BomP18) in Supplementary
Table S2 were used to retrieve data from the CNGBdb. Each sample ID contained the
assembled chromosome and contig data, each with a unique assembly number. The
assembled chromosome data were downloaded for subsequent analyses.

2.2. Sequence Analysis

The complete FibH sequence, as well as its upstream and downstream sequences, were
extracted from the assembled chromosomal genome using the terminal sequence (20 bp)
of the Dazao strain’s FibH gene as a barcode. A few FibH sequences were investigated
and aligned using Bioedit 7.0.9.0 and Jalview 2.11.2.5 [14]. The online software mafft
(https://mafft.cbrc.jp/alignment/server/ (accessed on 12 November 2022)) [15] was used
to perform multiple sequence alignment of all FibH genes and draw a phylogenetic tree
based on the average linkage (UPGMA) algorithm. TNR and RC sequences were aligned by
online software mafft and their identity was calculated by DNAman version 9.0 (Lynnon
Biosoft, San Ramon, CA, USA). RNA22 [16] and RNAhybrid [17] were used to predict
miRNA targeting sites existing in the 3′ UTR of all FibH genes.

https://db.cngb.org/
https://mafft.cbrc.jp/alignment/server/
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2.3. Motif Identification

A novel motif in the FibH gene was discovered by MEME in MEME-Suite 5.5.0 [18,19].
The parameters were set to default, except for the number of motifs to be searched (four
motifs), the minimum motif width (18 bp), the minimum number of sites per motif (10 sites),
and the distribution of any number of repetitions (anr) in FibH. Each amorphous region
of the FibH gene had one Nde I site [11], which was used to distinguish the amorphous
regions. We used MAST in the MEME-Suite to scan Nde I sites. All the parameters were set
to default, except for the motif sequence (restriction site of Nde I) and the FibH sequence.

2.4. Visualization

TBtools software [20] was used to visualize the motifs detected and scanned by MEME
and MAST in MEME-Suite. The phylogenetic tree was modified using the online software
iTOL (https://itol.embl.de/ (accessed on 1 December 2022)) [21]. The aligned introns
as well as the upstream and downstream sequences were visualized through the NCBI
Multiple Sequence Alignment Viewer 1.22.2 (https://www.ncbi.nlm.nih.gov/projects/
msaviewer/ (accessed on 5 December 2022)). A map was constructed using the software
Mark O’Travel 3.2.1 (https://download.cnet.com/Mark-O-Travel-your-travel-map-Where-
you-ve-been/3000-20428_4-76133240.html (accessed on 1 December 2022)); the geographi-
cal distribution of silkworms was marked on the map by Adobe Illustrator 2021 (Adobe
Systems, San Jose, CA, USA).

3. Results
3.1. FibH Gene of High Quality from the Silkworm Pan-Genome

Oxford Nanopore Technologies (ONTs) have long reads and systematic errors that
are significantly biased and primarily located in the homopolymer and tandem repeti-
tion regions [22]. In a previous study, the FibH gene from Cpf1-based enrichment and
ONT (CEO)-enriched sequencing (coverage depth 87.07×) lost three bases in polythymine
and polyguanine of introns, resulting from sequencing errors [13]. Tong et al. de novo
assembled 545 silkworm genomes with average sequencing depth of 97× through long-
read sequencing [3]. To assess these genomes, we first extracted FibH sequences from the
genomes of three local strains: L38 (81×), L86 (72×), and L193 (103×). Compared to the
FibH of Damao, C108 and Bilian strains obtained by CACS [11], L38 and Damao, L193 and
C108, Bilian, and L86 had identical FibH gene, indicating that the pan-genome was of high
quality and could be used for entire FibH analysis (Figure 1, Tables S1 and S2).
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Figure 1. Comparison of the fibroin heavy chain (FibH) genes from pan-genome and as obtained by
CACS. The FibH genes of Damao, C108, and Bilian were obtained by CACS [11], and L38, L86, and
L193 were from the pan-genome.

3.2. FibH Gene Complete Sequences (FibHome) of 264 Silkworms

Tong et al. assembled 545 high-resolution silkworm genomes, including 39 wild silk-
worms, 160 local and 118 improved strains, and 228 genetic stocks [3]. Excluding FibH
with polyguanine and polyN (N representing any base), we extracted 264 complete FibH
sequences from the genomes of wild (20), local (138), and improved silkworm strains (106)
(Figure 2). All FibH genes were composed of the same motif (AGGWRSYGGWGCTG-
GYTCAGGWGCTGGTGCTGGTKCAGGWGCTGGTGCT, W = T or A, R = G or A, S = G
or C, Y = T or C, K = T or G) and were rich in GC (Figure 2). Except for W14, which
had 60.0364% GC, the GC content of the other FibH sequences ranged from 58.9449% to

https://itol.embl.de/
https://www.ncbi.nlm.nih.gov/projects/msaviewer/
https://www.ncbi.nlm.nih.gov/projects/msaviewer/
https://download.cnet.com/Mark-O-Travel-your-travel-map-Where-you-ve-been/3000-20428_4-76133240.html
https://download.cnet.com/Mark-O-Travel-your-travel-map-Where-you-ve-been/3000-20428_4-76133240.html
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59.6878% (Tables S1 and S2). Most of the silkworms in genetic stocks were mutants of
unknown origin, so we did not focus on their FibH genes.
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The length of the FibH sequence extracted from wild silkworms varied from 24,162 bp
(W14) to 17,664 bp (W12), with an average length of 19,698 bp. The local strains’ FibH
genes ranged in size from 14 to 19 kb, with an average length of 16,427 bp. FibH genes of
the same length (15,960 bp) were observed in 11.59% of local strains (L79, L90, L91, L102,
etc.). The improved strains had an average FibH of 15,795 bp. Except for P204 (20,541 bp),
the FibH genes of other improved strains were distributed in 13–19 kb. Of the improved
strains, 46.23%, 23.58%, 7.55%, and 4.72% had 15,960 bp, 15,318 bp, 15,315 bp, and 14,874 bp
FibH genes, respectively (Figure 2). These results implied that the FibH gene is shortened
during domestication.

3.3. Conserved Terminal Non-Repetitive and Variable Repetitive Cores of FibH Genes

FibH gene coding sequences in wild and domesticated silkworms were composed of 5′

and 3′ terminal non-repetitive (5′ and 3′ TNR, respectively) sequences and a repetitive core
(RC). The 3′ TNR of 264 silkworm FibH genes from the pan-genome was highly conserved,
with 99.99% identity. Except for the 3′ TNR of one improved strain (P204) and two wild
silkworms (W17, W35) with base substitutions, the others were the same (Figure 3A).
In contrast, the variation of the 5′ TNR was more than that of the 3′ TNR, with 99.74%
identity (Figure 3A). One local strain (L96) had a base insertion, resulting in a frameshift
mutation and failure of silkworm spinning. This may be due to a sequencing error. Two
silkworm strains (L93 and P201) had one base substitution at the same position, and six
local silkworm strains had three consecutive base deletions (CAT) at the same position.
These variations originate from single nucleotide polymorphisms in the silkworm strains.
Some wild silkworms had 1–4 base substitutions, but no insertions or deletions (indels)
were identified. The 5′ TNR of the other silkworms was the same (Figure 3A). The high
conservation of 5′ and 3′ TNR implied that they may play key role in silk formation.
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Figure 3. Conserved analysis of the FibH gene. (A) Similarity analysis of TNR of 264 FibH sequences.
5′ or 3′ TNR, 5′ or 3′ terminal non-repetitive. (B) Similarity analysis of RC of wild silkworms, local
and improved strains. RC, repetitive core.

The RC of FibH gene (16.12% identity) was more variable in length and sequence than
the 5′ and 3′ TNR, which is consistent with previous studies [11]. The RC of wild silkworms
was the longest and each wild silkworm had a unique RC with 21.83% identity (Figure 2).
The average RC of the local strains was shorter than that of the wild silkworms and had
23.91% identity. The improved strains had the shortest RC and least difference, with 48.40%
identity (Figure 3B). The same RC of 14,319 bp and 13,692 bp was shared by 48.11% and
23.58% of improved silkworms, respectively (Table S3).
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3.4. FibH Gene Mutated with GGTGCT as the Core Unit

The FibH of some silkworms differed from one another in the pan-genome by only
one repeat, that is, the differential sequence. All differential sequences were classified
into four groups. The differential sequence of Group 1 had only six bases (GGTGCT). The
sequence difference between Groups 2 and 3 was 18 bp, and the two groups differed by
only one base, and both encoded the hexapeptides GAGAGS, which are the repetitive units
of FibH. Group 4 had a 54–4302 bp differential sequence that could encode a complete
peptide. The first six bases of the other three groups of differential sequences, with the
exception of Group 1, were GGTGCT (encoding dipeptide GA), and the last three bases
were TCA (serine) (Figure 4, Table S4). Both dipeptides, GA and serine, are components of
the repetitive GAGAGS unit. There were two or more differential sequences containing
GGTGCT between FibH genes of other silkworms. These findings indicated the FibH gene
mutated with hexanucleotide GGTGCT as the core unit.
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3.5. Cis-Regulatory Elements Regulating the FibH Gene Were Highly Conserved

The fiber content of FibH, as the main component of cocoon silk, determines the silk
yield [23]. The FibH gene is highly expressed in the fifth instar larvae and the silkworm’s
posterior silk gland and is tightly regulated by cis-regulatory elements (including E, C
sites, and TATA-box) and trans-regulatory factors (including Bmdimm, SGFs, FMBPs,
Fkh, and POU-M2) [24–29]. We found those cis-regulatory elements in the 5 kb upstream
sequences of 264 FibH genes were highly conserved and had 100% identity (Figure 5A). In
addition to the upstream sequence, the intron is also involved in the regulation of the FibH
gene [24]. The FibH gene has only one intron. The L84 intron was 1007 bp long, and the
other introns were 958–988 bp long, with 971 bp and 986 bp accounting for 51.14% and
37.50%, respectively. Binding sites for the transcription factor FMBPs were present on all of
the silkworm FibH introns, suggesting their important role in regulating FibH expression
(Figure 5B).
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There are currently few studies on the downstream regulatory sequence of FibH, and
it remains unknown if it regulates the FibH gene. The 3′ UTR is the first 85 bp of the
downstream 5 kb sequence of FibH. Except for W35 and L62, all silkworms had the same 3′

UTR. There is an E-box in the downstream sequence of the 3′ UTR that may be involved in
regulating the FibH gene. Bmo-miR-2739 was the first miRNA discovered in domesticated
silkworms, and it can bind to the 3′ UTR to regulate target genes [30,31]. The RNA22
and RNAhybrid predicted target sites existed in the 3′ UTR of all FibH genes. There was
no specific sequence or variation in the upstream and downstream sequences or introns
of FibH gene of wild and domesticated silkworms (Figure 5C). These findings suggested
that cis-regulatory elements are essential for FibH expression, but are not the cause of silk
yield differences between silkworm strains, which are likely to be mainly determined by
trans-acting factors.

3.6. Silkworm Pedigree Revealed by FibHome

In a previous study, we observed that improved strains (breeding strains, excluding
mutants grr and nds) had identical FibH genes [11], which is consistent with their breeding
process (Figure 6A). In the pan-genome, strains P181 and P177, P68 and 794, 796 had the
same FibH gene. P181 (JingsongB) is a binary hybrid of P177 (781A) and 757, while P68
(Yun8B) is a ternary hybrid of strain 794, 796, and 9042, and strain 872 is a ternary hybrid of
794, 796, and 792. Strain 872 (15,960 bp) had the same FibH gene as 794 and 796, but differed
from P40 (strain 782, 15,920 bp), indicating that the FibH gene of strain 872 was derived
from strain 794 and 796. These results suggested that FibH could be used as a marker gene
for silkworm identification.
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Figure 6. Silkworm pedigree based on FibHome. (A) Silkworm family of improved strains. Do-
mesticated silkworms with identical FibH genes from a previous study [11], yellow background;
domesticated silkworms from the pan-genome, red font. (B) The phylogenetic tree of wild silkworms.
(C) The phylogenetic tree of local strains. (D) The phylogenetic tree of improved strains. (E) The
phylogenetic tree of silkworms containing wild silkworms, local and improved strains. The branches
of the same color had the identical FibH gene except for the black ones, in which the thickened
branches were improved strains. (F) Geographical distribution of silkworms in Families I, II, III, and
IV. Local strains, circle; Improved strains, Pentacle. Family I, red; Family II, green; Family III, blue;
Family IV, yellow.

In the FibH sequence extracted by us, not all wild silkworms had the same FibH gene.
As a result, they could not be clustered (Figure 6B). There were mainly five families of local
strains, with a maximum of 16 strains in one family (Figure 6C). There were four improved
strain families with 5–47 silkworm strains (Figure 6D). Local and improved strains with
identical FibH genes were classified into four large clusters: Family I (62 silkworms),
II (31 silkworms), III (16 silkworms), and IV (6 silkworms) (Figure 6E and Table 1). The
local strains of Families I and III were distributed in many Asian and European countries
(mainly China and Japan). The improved strains were all from China and Japan. Both
local and improved strains of Family II were obtained from China. Family IV had only one
local strain and five improved strains from Romania and Japan (Figure 6F). These results
implied that silkworms, particularly local strains, are not confined to one geographic region
but spread throughout many countries, with improved strains primarily bred in China
and Japan.
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Table 1. Silkworm pedigree with the same FibH gene.

Family Sample ID Sample FibH Gene (bp)

Family I

L79, L90, L102, L109,
L113, L172, L173,
L174, L176, L178,
L182, L183, L184,

L200, L214, P20, P22,
P35, P38, P46, P47,
P49, P50, P51, P53,
P54, P55, P59, P63,
P64, P68, P70, P72,

P73, P97, P103, P113,
P119, P121, P125,
P150, P153, P155,
P157, P158, P161,
P168, P169, P171,
P172, P174, P175,
P180, P183, P184,
P185, P186, P195,
P196, P197, P199,

P208

62 15,960

Family II

L87, L94, L97, L105,
L201, L208, P99, P101,

P104, P105, P107,
P108, P111, P114,
P122, P124, P129,
P131, P149, P156,
P167, P176, P177,
P178, P181, P187,
P188, P191, P192,

P193, P194

31 15,318

Family III

L47, L71, L75, L92,
L98, L179, L180, L193,

P18, P26, P27, P33,
P34, P41, P163, P202

16 15,315

Family IV L63, P37, P67, P74,
P76, P79 6 14,874

4. Discussion

FibH is the main component of silkworm silk, and its sequence (primary structure) is
the structural basis for the excellent mechanical properties of silk fiber [32,33]. The analysis
of its sequence is helpful for understanding the formation mechanism of silk fibers and silk
formation. The FibH gene has been studied for more than 30 years; however, few complete
FibH sequences have been reported because of its long sequence (up to 20 kb), rich GC, and
repetitive sequences [9,13,34]. Single-molecule sequencing has been used to resolve the
complete FibH sequence in recent years [3,4], but it is expensive. In this study, we have
fully mined the pan-genome data and extracted the FibH and its upstream and downstream
sequences from wild silkworms, local and improved strains, and some genetic mutants,
providing a comprehensive understanding of the FibH gene and silkworm breeding.

We attempted to describe the complete sequence of the FibH gene and have established
the CEO and CACS methods successively [11,13]. The CEO method based on Cpf1 and
ONT had an 87.07× coverage depth and 2.29-fold target enrichment. The FibH obtained by
CEO was identical to that obtained by P50T [11], except that three bases were deleted in the
intron. CACS is a cloning and sequencing method based on CRISPR/Cas9 and PacBio single
molecule sequencing. The 24 silkworm FibH sequences obtained by CACS were translated
continuously without frameshift mutations. The 545 high-resolution pan-genomes were
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derived using whole-genome sequencing (NGS and ONT sequencing). Among the FibH
sequences we extracted, some had polyguanine and polyN (N representing any base), as
well as single-base variations that led to premature termination of translation. CEO is
expensive, and the enrichment factor is affected by Cpf1/crRNA activity and chromosomal
fragments, which are suitable for target gene sequencing of a small number of samples. In
contrast, CACS has a low cost and high accuracy, but the cloning cycle is long; therefore, it is
suitable for obtaining target genes or fragments of interest from chromosomes. The cycle of
whole-genome sequencing is short, and the cost and accuracy are related to the sequencing
depth; as a result, it is more appropriate for an unknown genome or mass resequencing.

We obtained a total of 286 silkworm (27 wild silkworms, 146 local, and 113 im-
proved strains) FibH sequences combined this and previous study [11]. The optimal FibH
(Opti-FibH) gene, which has a length of 15,960 base pairs, was found in 24.48% (70/286) of
silkworms, including Family I. The maximum strength of silk is positively correlated with
the length of the FibH gene. The longer the FibH, the stronger the silk fiber [11]. However,
domesticated silkworms are protected by humans and do not need silk as strong as wild
silkworms; the FibH gene is too short, silk is weak, and silk yield is low [11], which is in
contrast to domestication and breeding. In addition to Opti-FibH, there were many FibH
genes with similar lengths, but none of them were preferentially selected. We speculated
that Opti-FibH may be more conducive to spinning and textile processing.

With FibH gene as marker gene, all silkworms were divided into four large families,
and each family had at least six members containing local and improved strains. Except
for these four families, the rest had few members and only local strains. Moreover, we
obtained the FibH sequences of four heterozygotes (L185, L194, P21, and P25) from the
pan-genome. The FibH genes of L185 and L194 were different from those of other strains.
P25 had one FibH gene (15,315 bp) belonging to Family I, while the other was different
from other FibH genes. The two FibH genes (15,960 bp and 15,315 bp) of P21 belonged to
Families I and III, respectively, indicating that P21 was associated with these two families,
but we could not determine its parents. More written records and genome-wide analyses
are needed to identify the parents of the silkworms.

In conclusion, we globally characterized hundreds of silkworm FibH sequences from
the pan-genome, revealed the relationship between the cis-regulatory element and silk
yield, and established a silkworm pedigree. This study provides a theoretical foundation
for silk improvement and silkworm breeding.
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