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Simple Summary: Collembola (springtails) are tiny non-insect hexapods living in soil and have an
important ecological role as detritivores. How they can survive in the microbe-rich environment
for millions of years is unclear. This study used homology-based gene identification methods to
identify antimicrobial peptide genes from collembola genomes and transcriptomes. We analyzed five
collembola species representing three main suborders and identified 45 antimicrobial peptide genes
from five families: diapausin, Alo, diptericin, defensin, and cecropin. These peptides potentially have
broad activity against bacteria, fungi, and viruses. This study highlights collembola as a new source
for discovering novel AMPs that may help solve the current multidrug-resistant pathogen crisis.

Abstract: Multidrug-resistant bacteria are a current health crisis threatening the world’s population,
and scientists are looking for new drugs to combat them. Antimicrobial peptides (AMPs), which are
part of the organism’s innate immune system, are a promising new drug class as they can disrupt
bacterial cell membranes. This study explored antimicrobial peptide genes in collembola, a non-
insect hexapod lineage that has survived in microbe-rich habitats for millions of years, and their
antimicrobial peptides have not been thoroughly investigated. We used in silico analysis (homology-
based gene identification, physicochemical and antimicrobial property prediction) to identify AMP
genes from the genomes and transcriptomes of five collembola representing three main suborders:
Entomobryomorpha (Orchesella cincta, Sinella curviseta), Poduromorpha (Holacanthella duospinosa,
Anurida maritima), and Symphypleona (Sminthurus viridis). We identified 45 genes belonging to
five AMP families, including (a) cysteine-rich peptides: diapausin, defensin, and Alo; (b) linear
α-helical peptide without cysteine: cecropin; (c) glycine-rich peptide: diptericin. Frequent gene gains
and losses were observed in their evolution. Based on the functions of their orthologs in insects,
these AMPs potentially have broad activity against bacteria, fungi, and viruses. This study provides
candidate collembolan AMPs for further functional analysis that could lead to medicinal use.

Keywords: antimicrobial peptide; AMP evolution; AMP gene identification; collembola immunity;
drug discovery

1. Introduction

The emergence of multidrug-resistant bacteria is currently one of the most acute health
crises of the 21st century. In 2019, more than one million deaths globally were estimated
to be directly associated with drug-resistant bacteria [1], and the number is predicted to
reach 10 million deaths annually by 2050 [2]. It is, thus, an urgent issue that requires
global action to promote the correct use of antibiotics in humans and farm animals and
to find new therapeutic methods, e.g., phage therapy and new drugs, that can effectively
kill bacteria [3].

Antimicrobial peptides (AMPs) are promising new drugs for multidrug-resistant bac-
teria. They are small polypeptide molecules (12–50 amino acids) that are part of the innate
immune system of all living things [4–7]. They are diverse in form and function; many
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have been demonstrated to kill bacteria, viruses, fungi, protozoans, and nematodes [7]. The
most common mode of action of AMPs is disrupting cell membranes, making it difficult
for bacteria to develop resistance [8]. AMPs can also inhibit the cell wall, DNA, and protein
synthesis of bacteria and disrupt fungi’s mitochondrial membranes [9–11]. In addition,
AMPs also modulate the host immune response and maintain the host microbiota, which
helps control harmful pathogens [12]. More than 40 AMPs are currently in pre-clinical and
clinical trials [5].

AMPs from diverse species have been identified and functionally characterized. In
the dbAMP database (accessed on 15th December 2022) [13], the total number of curated
AMPs are 13,189 peptides. Of these, 10,575 (80%) are from animals, 1772 (13%) are from
arthropods, and 704 (5%) are from insects. The insect AMPs were identified mainly from
Lepidoptera, Diptera, Coleoptera, and Hymenoptera. The high proportion of insect AMPs
suggests that insects are an abundant resource for AMP discovery.

Insect AMPs may be classified into three main categories based on their structures
and amino acid compositions [14]: (a) linear α-helical peptides, including cecropins, melit-
tin, moricin, and scarcotoxin that have broad activity against Gram-positive and Gram-
negative bacteria, protozoans, viruses, and nematodes [15]; (b) peptides that contain an
unusually high proportion of specific amino acids, for example, proline-rich AMP, e.g.,
drosocin, apidaecin, and pyrrhocoricin, which mainly target Gram-negative bacteria [16],
and glycine-rich AMP, e.g., diptericins, gloverins, and attacins, which also have broad
activity [17]; (c) cysteine-stabilized AMPs, which form disulfide bridges between conserved
cysteine residues, including defensin and defensin-like compounds, e.g., drosomycin,
spodoptericin gallerimycin, and Alo, which are mainly active against Gram-positive bacte-
ria and fungi [18–20].

Collembola (springtails) are small (0.2 mm–0.6 mm long) non-insect hexapods liv-
ing in soil and decaying organic matter. They are classified into four taxonomic or-
ders: Poduromorpha, Entomobryomorpha, Symphypleona, and Neeliopleona. Currently,
8700 species have been described [21]. They are detritivores and feed on fungi, bacteria, al-
gae, and actinomycetes, thus playing an essential ecological role in the nutrient cycle [22,23].
Their unique life history challenged by many pathogens suggests that they should possess
an effective immune system that allows them to survive in a highly diverse soil micro-
bial community. Indeed, previous studies demonstrated that collembola tolerates some
entomopathogenic fungi and bacteria [24,25].

The genetic basis of the immune system to pathogens in collembola is still limited.
Most studies focus on responses to abiotic factors, such as heat stress and heavy met-
als [26,27]. In O. cincta, diapausin has been identified and suggested to have a dual role in
blocking the uptake of Ca2+ channels, aiding collembolan to tolerate heavy metals, and also
have antifungal properties [28,29]. Other types of immunity-related genes are also reported,
including C-type lectin. In F. candida, clusters of genes for penicillin biosynthesis (isopeni-
cillin N synthase and amino adipyl-cysteine-valine synthase) and betalactam synthesis
(cephamycin C genes: cmcI and cmcJ) are present in the genome and may explain how they
regulate the gut microbiome and internally protect them from soil pathogens [29,30].

Although a few collembola AMPs were identified by automated gene annotation of
the genome project [29], a comprehensive comparative study of collembola AMPs genes
has not been investigated. In recent years, collembola has gained attention as a model for
understanding the terrestrial adaptation of a hexapod lineage and a model for ecotoxicol-
ogy [27]. New genomes and transcriptomes from collembola, e.g., F. candida, H. duospinosa,
O. cincta, and Si. curviseta, have become available [27,29,31,32]. The availability of genetic
data provides the opportunity to examine the diversity of AMP genes of collembola.

Here, we explored the diversity of AMP genes in the genome and transcriptome of
collembola. We used homology-based in silico analysis to identify candidate collembola
AMP genes and predict their physicochemical and antimicrobial properties. We identified
five AMP families in collembola that reflect potential broad antimicrobial properties. Our
study shed light on how collembola adapted to diverse microbial community habitats
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and discovered new AMPs for future functional study, which may help cope with current
drug-resistant pathogen crises.

2. Materials and Methods
2.1. Collembola Species and Genetic Data

This study investigated AMP genes in five collembola species representing three major
collembolan taxonomic orders (Entomobryomorpha: O. cincta, Si. curviseta; Poduromorpha:
H. duospinosa, A. maritima; Symphypleona: Sm. viridis). These species were selected based
on the availability of their genetic data. They all have RNA-sequencing reads data, and
three of them, H. duospinosa, O. cincta, and Si. curviseta, have the whole-genome data
published [16,22,31,32]. For transcriptome analysis, the RNA-sequencing reads were down-
loaded from the NCBI database. For genome analysis, gene annotations were conducted
online using the NCBI-BLAST tool.

2.2. Transcriptome Assembly

To construct a transcriptome of each species, downloaded SRA data were de novo
assembled using programs equipped in OmicsBox [33]. In brief, the quality of initial reads
was examined using FASTQC [34] followed by removing low-quality bases and reads
using Trimmomatic [35]. Cleaned reads were then used to assemble a transcriptome using
Trinity [36]. The redundant transcripts, which share a sequence similarity higher than 95%,
were filtered using the CD-HIT-EST program [37]. The Busco analysis was then used to
evaluate the completeness of the transcriptomes [38]. Transcriptome basic statistics were
calculated using the Fasta statistics tool in the UseGalaxy server [39].

2.3. Identification of AMP Genes

We first downloaded all the reported animal AMP peptide sequences from UniProt
databases [40] using the keyword arthropod + antimicrobial peptide, leading to 711 proteins
in total (downloaded on 5 February 2021). We then manually filtered out non-AMPs such
as large enzymes (e.g., serine protease inhibitors, Toll-like receptors, and lysozymes). This
resulted in 698 AMPs used to construct an AMP database for our analysis. We performed
gene annotations for each species, one by one. DNA sequences in each collembolan
transcriptome were used in a BlastX search (e-value cut-off = 1 × 10−5) against the prepared
arthropod AMP database using OmicBox. Contigs that have BLAST hits were then grouped
according to AMP classes. We manually annotated these hits by retrieving DNA sequences
from transcriptomes and translating them using the Expasy translate tool [41]. Correct
translation frames were selected based on query sequences of the BLAST results. By the
end of these steps, we obtained candidate peptide sequences of AMPs from each species.
We refined the search by using these peptides as queries to blast (tBlastn) against other
collembola transcriptomes to find additional AMPs that might be missing in the previous
steps using the local BLAST program (NCBI-blast-2.12.0+) [42].

As some genes might be missing from the transcriptome due to low or nil expression
in the particular tissue/stage, gene annotations were performed to find potential additional
genes and complete gene models in three collembola species (O. cincta, Si. curviseta, and H.
duospinosa) that have genome data. AMP peptides identified from the transcriptomes were
used as queries for the tBlastn search against the whole-genome shotgun (WGS) databases
using an online NCBI BLAST (e-value cut-off = 1 × 10−5). DNA sequences from blast
hits were downloaded and used for predicting gene models using GeneWise [43]. The
cDNA and peptide sequences of each AMP gene were reported. Notes on the completeness
of the gene models were assigned to gene name as the following suffix: Full = N and C
terminus found, NTE = N terminus missing, CTE = C terminus missing, NC = N and C
terminus missing.
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2.4. Physicochemical Property and Functional Prediction

To understand the physicochemical property of candidate AMPs, we first used Inter-
ProScan [44] to predict the position of signal peptides and other signature domains. Signal
peptides were removed, and only the mature peptide sequences were used to estimate
physicochemical properties. We used EMBOSS PEPSTATS [45] to determine sequence
length, molecular weight, percentage of polar amino acids, percent positively charged,
percent negatively charged, and percent proline and glycine. The isoelectric point and hy-
drophobic ratio were estimated with the protein report tool found in CLC main workbench
V7.9.1 (QIAGEN, Aarhus, Denmark) [46]. The total net charge was calculated with the
APD3 [47]. We used Phyre2 to predict the 3D structures of the candidate AMPs based on
the most matched peptide [48].

The antimicrobial properties were predicted with SVM (Support Vector Machine), RF
(Random Forest), ANN (Artificial Neural Network), and DA (Discriminant Analysis), with
algorithmic programs available in Campr3 [49], SVM and RF available in ClassAmp [50],
and AB (antibacterial), AV (antiviral), AF (antifungal) prediction available in the iAmpPred
tool [51]. The probability scores were reported in the heatmap (probability = 1 is red, and
0 = green). The heatmap diagram was made using Microsoft Excel. We used the DBAASP
database [52,53] to predict the antimicrobial activities of collembolan AMPs against specific
strains of bacteria and fungi. Three available methods were utilized to predict antibacterial
activities against five bacterial strains: Escherichia coli ATCC 25922, Pseudomonas aeruginosa
ATCC 27853, Klebsiella pneumoniae, Staphylococcus aureus ATC 25923, and Bacillus subtilis.
The methods included a machine learning (ML) approach based on AMP sequences, a
clusterization approach based on AMP sequences, and an ML approach based on AMP
sequences and bacterial genomes. To predict antifungal activities against Candida albicans
and Saccharomyces cerevisiae, we used the only available tool, the ML approach based on
AMP sequences. For the antimicrobial prediction, active peptides were identified as those
with a predicted minimum inhibitory concentration (MIC) less than 25 µg/mL, while
non-active peptides were identified as those with a MIC greater than 100 µg/mL. Finally,
we used the ML approach based on AMP sequences to predict the toxicity (hemolytic
activity) of collembolan AMPs against human erythrocytes. Active peptides were predicted
to induce hemolysis greater than 40% at a concentration of less than 40 µg/mL.

2.5. Phylogenetic Analysis

We constructed the phylogenetic relationships of collembola and other arthropod
AMPs using the maximum likelihood method. To obtain related AMPs from other arthro-
pods, we performed a BlastP search (e-value cut-off = 1 × 10−3) against the arthro-
pod proteins in UniProtKB database using collembola AMPs as queries. Sequences
that produce significant blast hits were retrieved and used for phylogenetic analyses
(Supplementary Table S1). Peptide sequences of the same AMP family were aligned using
MAFFT (E-INS-i) [54]. Gappy regions were removed using Trimal [55]. Maximum like-
lihood trees were conducted using PhyML [56] and SMS automatic model selection [57].
Branch supports were evaluated using an approximate likelihood ratio test (SH-like). An
overview of this work procedure is shown in Figure 1.
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Figure 1. Overview of the AMP gene identification pipeline used in this study. Key steps include
transcriptome assembly, AMP genes identification from transcriptomes and genomes, prediction of
physicochemical properties, AMP activity, 3D structure, and phylogenetic analysis.

3. Results
3.1. Transcriptome Assembly

Our study constructed five collembola transcriptomes using RNA-sequencing reads
from the NCBI database. The number of reads used for the Trinity assembly ranged from
~10 to 52 million reads, in which H. duospinosa and Sm. viridis have the highest and lowest
number of reads, respectively (Table 1). In the final assembly, the number of non-redundant
Unigenes varies between ~31,000 and 72,000 unigenes. The average length and N50 value
vary from 616 to 1337 base pairs to 907 to 2873 base pairs, respectively. BUSCO analysis,
which examines the presence of conserved orthologous genes (Arthropoda_odb9), has a
generally high value (88–91.5% in four species and 72% in O. cincta), suggesting that the
assembled transcriptomes are suitable for gene annotation.

Table 1. Basic information and statistics of the transcriptome assemblies from five collembola.

Taxonomic Order Species (RNA-Seq
SRA ID)

Raw Sequence
Reads (Counts)

Unique Contigs
(Unigenes)

Contig Length
Average (bp) N50 (bp) BUSCO Analysis

(% Completeness)

Entomobryomorpha
Orchesella cincta

(SRR935330) 18,994,903 31,396 616 907 72%

Sinella curviseta
(SRR7948082) 26,192,990 68,491 1337 2725 91.5%

Poduromorpha
Anurida maritima

(SRR921564) 12,272,329 36,311 1314 2454 89%

Holacanthella
duospinosa

(SRR5626546)
52,089,655 72,356 1274 2873 90%

Symphypleona Sminthurus viridis
(SRR921641) 10,273,556 48,144 853 1454 88%

3.2. Overview of the Collembolan Candidate AMPs

Our analysis was analyzed using a homology-based method to identify candidate
AMP genes in collembola. All collembola Unigenes from five transcriptomes were searched
against a database of various types of >700 arthropod AMPs downloaded from the Uniprot
database. All possible orthologous AMP genes in collembola were reported and classified
according to the hits. We further searched the genome for species with genome data (O.
cincta, Si. curviseta, and H. duospinosa) to find additional genes and complete gene models.
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We identified only five classes of AMP genes (45 genes in total) in the five collembola species
representing three taxonomic orders that span over 250 MY of collembolan evolution
(Figure 2). The total number of AMP genes in each species varies between 5 and 13.
Diapausin is the only AMP that is present in all five species, whereas Alo is missing
in Sm. viridis and diptericin is missing in A. maritima and H. duospinosa. Cecropin and
defensin are present only in one species (Si. curviseta and Sm. viridis, respectively). As
genome annotation (O. cincta, Si. curviseta, and H. duospinosa) and transcriptome annotation
(A. maritima and Sm. viridis) yielded similar results, we believe that the number of genes
reported here reflect the limited number of direct orthologous genes of known arthropod
AMP genes in collembola.

Figure 2. Collembola AMP gene families and the number of genes. Five collembola AMP gene
families (diapausin, Alo, diptericin, cecropin, and defensin) are reported in this study. Phylogenetic
relationships of five collembola species and the divergent time are inferred from TimeTree.org (Date
access: 15 July 2022). Species with genome data are indicated with an asterisk.

3.3. Physicochemical Properties of Collembolan AMPs

To support that the identified collembola AMPs were assigned to the correct AMP
families, we investigated whether the mature sequences of collembola AMPs have the
same physicochemical properties as their orthologs using in silico prediction tools. These
candidate collembolan AMPs are short peptides with an average of 40–97.5 residues in
the mature sequences and have a low molecular weight (3930.4–9979.3 Dalton) (Table 2).
All of these peptides are cationic at pH 7. The hydrophobic amino acid ratio is low
(0.35–0.58), suggesting that these peptides are highly soluble. The percent positive charged
amino acid varies between families, with cecropin having the highest value (25.72%).
The percent positive charged amino acid is higher than those of negative charged amino
acids (10.87–25.72% vs. 2.55–8.57%). The percent proline and glycine also vary between
species, while the diptericin has the highest value (26.66%). In general, the physicochemical
properties of collembola AMPs are similar to those of their orthologs, particularly the
cationic property of all these AMP families and the glycine-rich property of diptericin.

TimeTree.org
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Table 2. Physicochemical properties of the mature sequence of collembola AMPs by families. Full
details for each AMP are reported in Supplementary Table S2.

Properties
Diapausin Alo Peptide Diptericin Cecropin Defensin

Mean SD Mean SD Mean SD Mean SD Mean SD

No. of amino acids 44.48 5.401 35.75 3.596 97.50 5.916 40.00 1.732 44.66 6.658
Molecular weight 4871.0 576.94 3930.4 545.26 9979.3 522.88 4423.2 318.77 4890.3 610.43

pI 8.19 1.345 6.91 1.973 11.1 0.645 11.57 0.607 7.65 1.769
Net charge at pH 7 2.05 2.416 0.44 3.631 7.56 1.546 7.5 1.639 0.92 2.184
Hydrophobic ratio 0.37 0.059 0.35 0.055 0.57 0.012 0.58 0.041 0.44 0.043

% polar amino acids 44.19 4.692 43.09 4.959 40.21 1.509 41.61 4.101 37.36 0.565
% positive charge 16.15 2.843 10.87 5.188 12.01 1.719 25.72 4.219 13.86 4.475
% negative charge 8.33 4.666 8.57 4.805 2.55 0.476 5.82 3.69 7.32 2.711

% proline and glycine 16.07 3.494 15.81 3.514 26.66 1.627 16.52 5.733 20.94 1.941

3.4. Collembola AMP Family Description
3.4.1. Diapausin Family

Diapausin is the only AMP family present in all five collembola species investigated
in this study. We identified 23 diapausin genes from H. duospinosa (10 genes), O. cincta
(six genes), Sm. viridis (four genes), Si. curviseta (two genes), and A. maritima (one
gene). Seventeen genes are complete gene models, and six genes are N-terminus-missing.
Collembola diapausin are 63–85 amino acids in length and 39–64 amino acids for the ma-
ture peptides. Collembola diapausins share six conserved cysteine residues with motif
C1,X3,C2,X9–14,C3C4,X9–11,C5,X6–9,C6 and potentially have three disulfide bridges between
C1 and C3, C2 and C5, and C4 and C6, which are features of insect diapausin (Figure 3a) [58].
Phyre2 predicted collembola diapausins to have two α-helices, and a triple-stranded β-
sheet. The predicted 3D structures are most similar to diapausin with antifungal property
(Supplementary Table S2).

Most collembola AMPs form a distinct lineage unique to collembola. However, Sm.
viridis diapausin genes (all four genes) and an O. cincta diapausin (OcinDiapausin4) are
more closely related to diapausin from other insects (Lepidoptera, Diptera, and Coleoptera)
(Figure 3b), suggesting that some collembola diapausins have diverged and evolved inde-
pendently from other insect diapausins.

3.4.2. Alo Peptide Family

We identified a total of 12 Alo peptides from A. maritima (four genes), H. duospinosa
(three genes), O. cincta (three genes), and Si. curviseta (two genes). Only two genes from
A. maritima are full gene models while the rest are N- and C-terminus-missing (8 genes)
and N-terminus-missing (two genes). The length of Alo peptides encoded from the full
gene models is 61–62 amino acids, and the mature sequences without signal peptides
are 34 amino acids. All 12 collembola Alo peptides share six conserved cysteine residues
with motif C1, X6, C2, X7–9, C3C4, X3, C5, X10, C6, which is a feature of the knottin do-
main, suggesting three disulfide bridges between C1 and C4, C2 and C5, and C3 and C6
(Figure 4a) [59]. Phyre2 predicted collembola Alo to have a 3D structure most similar to
Alo-3 from A. longimanus, which exhibits a knottin fold and has an antifungal property
(Supplementary Table S2).
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Figure 3. Sequence alignment and phylogenetic relationships of collembola diapausin: (a) protein
alignment showing disulfide bridges between six conserved cysteine residues; (b) Phylogenetic
tree of arthropod diapausins. Branch supports (aLRT) higher than 0.9 were indicated with black
dots on tree nodes (Abbreviation: Fcan = F. candida, Hduo = H. duospinosa, Amar = A. maritima,
Ocin = O. cincta, Scur = Si. curviseta, Svir = Sm. viridis, Slit = Spodoptera littoralis, Evar = Eumeta
variegata, Mart = Machimus arthriticus, Gatr = Gastrophysa atrocyanea).

Collembola Alo peptides do not form a single monophyletic clade (Figure 4b). Three
collembola Alo (AmarAlo1-2, HduoAlo3) are found within clades containing Alo pep-
tides from cowpea weevil, Callosobruchus maculatus, (Coleoptera). Seven collembola Alo
peptides are more closely related to each other as they form one clade with an Alo gene
from C. maculatus (Figure 4b). Although O. cincta, Si. curviseta, A. maritima, and H. du-
ospinosa have about the same number of Alo genes (2–4 genes), their Alo genes are not
direct orthologs (i.e., no 1:1 orthologous relationships), suggesting independent gene gain
and loss events in each species rather than the existence of conserved Alo genes in their
common ancestor.

3.4.3. Diptericin Family

We identified a total of four diptericin from Sm. viridis (two genes), O. cincta (one gene),
and Si. curviseta (one gene). All of them are full gene models. The lengths of diptericin
encoded from the full gene models are 108–125 amino acids and the mature sequences
without signal peptides are 89–102 amino acids. These proteins are glycine-rich, constituting
21.35–25.49% glycine and no cysteine in the mature peptides (Figure 5a). Phyre2 cannot
predict the structure of collembola diptericin with high confidence, possibly due to the
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fact that the 3D structure of diptericin has not been characterized, and none exist in the
PDB database.

Figure 4. Sequence alignment and phylogenetic relationships of collembola Alo peptides: (a) protein
alignment showing disulfide bridges between six conserved cysteine residues; (b) Phylogenetic
tree of arthropod Alo peptides. Branch supports (aLRT) higher than 0.9 were indicated
with black dots on tree nodes (Abbreviation: Hduo = H. duospinosa, Amar = A. maritima,
Ocin = O. cincta, Scur = Si. curviseta, Apla = Agrilus planipennis, Alon = Acrocinus longimanus,
Cmac = Callosobruchus maculatus, Prha = Platymeris rhadamanthus, Agif = Aphidius gifuensis, Msca
= Megaselia scalaris, Aori = Agelena orientalis, Aape = Agelenopsis aperta, Hcur = Hololena curta,
Dtin = Dinothrombium tinctorium).

Phylogenetic analysis shows that diptericins of Diptera, Myriapoda, and Chelicerata,
but not collembola, form monophyletic clades (Figure 5b). No orthologous genes were
found across these main lineages, suggesting that diptericins of the species in the same
lineage are the descendants of diptericins found in the common ancestor of each lineage.
The branch support values are high throughout the tree, suggesting that the degree of
sequence conservation is high; therefore, relationships within and among groups can
be inferred.
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Figure 5. Sequence alignment and phylogenetic relationships of collembola Diptericin:
(a) protein alignment; (b) Phylogenetic tree of arthropod diptericins. Branch sup-
ports (aLRT) higher than 0.9 were indicated with black dots on tree nodes (Abbrevi-
ation: Ocin = O. cincta, Scur = Si. curviseta, Svir = Sm. viridis Dmoj = Drosophila mojavensis,
Dnav = D. navojoa, Dvir = D. virilis, Dgri = D. grimshawi, Dalb = D. albomicans, Dleb = D. lebanonensis,
Bdor = Bactrocera dorsalis, Ccap = Ceratitis capitata, Dpse = D. pseudoobscura, Dper = D. persimilis,
Dgua = D. guanche, Dwil = D. willistoni, Dana = D. ananassae, Drho = D. rhopaloa, Dkik = D. kikkawai,
Dmel = D. melanogaster, Dsim = D. simulans, Dsec = D. sechellia, Pter = Protophormia terraenovae,
Anas = Armadillidium nasatum, Avul = A. vulgare, Aven = Araneus ventricosus).

3.4.4. Cecropin Family

We identified only three cecropins that are found only in Si. curviseta. All of them
are full gene models. The lengths of cecropin encoded from the full gene models are
61–62 amino acids, and the mature sequences without signal peptides are 38–41 amino
acids. The mature sequences do not have cysteine residues (Figure 6a). This family contains
the highest percentage of positively charged amino acids (mean = 25.72), mainly a high
frequency of K and R residues. Phyre2 predicted their 3D structure to have two α helices
similar to cecropin from the swallowtail butterfly, Papilio xuthus (Supplementary Table S2).
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Figure 6. Sequence alignment and phylogenetic relationships of collembola cecropins: (a) protein
alignment; (b) Phylogenetic tree of arthropod cecropins. Branch supports (aLRT) higher than 0.9
were indicated with black dots on tree nodes (Abbreviation: Scur = Si. curviseta, Hcun = Hyphantria
cunea, Sexi = Spodoptera exigua, Slit = Spodoptera litura, Bman = Bombyx mandarina, Bmor = B. mori,
Hcec = Hyalophora cecropia, Obru = Operophtera brumata, Dple = Danaus plexippus, Gmel = Galleria
mellonella, Evar = Eumeta variegata, Rfer = Rhynchophorus ferrugineus, Agam = Anopheles gambiae,
Adar = A. darlingi, Aalb = Aedes albopictus, Aaeg = A. aegypti).

Similar to the diptericin family, phylogenetic analysis reveals monophyletic relation-
ships of cecropins from insects in the same lineage, including lepidoptera, coleoptera (red
palm weevil), diptera (mosquitoes), and collembola (Si. curviseta) (Figure 6b). This suggests
that proteins are relatively conserved; thus, the relationship within and among groups can
be inferred. Gene family expansion was also observed, particularly eight cecropin genes in
Rhynchophorus ferrugineus.

3.4.5. Defensin Family

We identified only three defensins found only in Sm. viridis. All of them are full
gene models. The lengths of defensin encoded from the full gene models are 63–72 amino
acids, and the mature sequences without signal peptides are 37–49 amino acids. All three
defensins share six conserved cysteine residues with motif C1, X5–6, C2, X3, C3, X9–10, C4,
X7, C5, X1, C6, which are the unique structure of the defensin domain, suggesting three
disulfide bridges between C1 and C4, C2 and C5, and C3 and C6 (Figure 7a). Phyre2
predicted their 3D structure to have a knottin fold (Supplementary Table S2).
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Figure 7. Sequence alignment and phylogenetic relationships of collembola defensin: (a) protein
alignment showing disulfide bridges between six conserved cysteine residues; (b) Phylogenetic tree
of arthropod defensins. Branch supports (aLRT) higher than 0.9 were indicated with black dots on tree
nodes (Abbreviation: Svir = Sm. viridis, Mmar = Mesobuthus martensii, Osav = Ornithodoros savignyi,
Smim = Stegodyphus mimosarum, Tmer = Tropilaelaps mercedesae, Lheb = Leiurus hebraeus, Aaus = Androc-
tonus australis, Dvar = Dermacentor variabilis, Rmic = Rhipicephalus microplus, Isca = Ixodes scapularis,
Ocor = Ornithodoros coriaceus, Tdis = Tityus discrepans, Sper = Sarcophaga peregrina, Cvic = Calliphora
vicina, Pter = Protophormia terraenovae, Tcur = Temnothorax curvispinosus, Dleb = Drosophila lebanonensis,
Dmoj = D. mojavensis, Dvir = D. virilis, Hill = Hermetia illucens, Scal = Stomoxys calcitrans, Rfer = Rhyn-
chophorus ferrugineus, Hsal = Harpegnathos saltator, Sory = Sitophilus oryzae, Tcas = Tribolium castaneum,
Bdor = Bactrocera dorsalis, Aver = Asbolus verrucosus, Tmol = Tenebrio molitor, Zatr = Zophobas atratus,
Apla = Agrilus planipennis).

Phylogenetic analysis reveals two main lineages of defensin, one from insects and
another from Chelicerata, including three defensins from Sm. viridis (Figure 7b). SvirD-
efensin1 is more closely related to SvirDefensin2 than SvirDefensin3. Defensins in the
Chelicerata clade belong to a wide range of taxa, including mites, scorpions, and spiders.
In the insect lineage, defensin genes are also from different taxonomic orders, including
coleoptera, hymenoptera, and diptera. Of the five collembola species investigated, we can
only identify defensins from Sm. viridis. As collembola defensins are more closely related
to defensins from chelicerata, suggesting its ancient origin, defensin may have been lost in
many lineages of collembola rather than the recent gain in Sm. viridis.

3.5. Functional Prediction

We used three programs (ClassAMP, iAmpPred, and Campr3) to predict the antimi-
crobial properties of the candidate collembolan AMPs based on sequence properties, such
as amino acid composition, family signatures, and physicochemical properties. The results
(probability values) were reported as a heatmap (Figure 8a). These programs use different
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training sets and methods (support vector machine, random forest, artificial neural network,
discriminant analysis) and, thus, do not give identical results.

Figure 8. Prediction of antimicrobial activity: (a) heat map for the antimicrobial prediction of
collembolan AMPs based on three programs (ClassAMP, iAmpPred, and Campr3). The probability
value ranges from 0 to 1 and is indicated by the degree of color (SVM = Support Vector Machine, RF
= Random Forest, ANN = Artificial Neural Network, DA = Discriminant Analysis, AB = antibacterial
property, AV = antiviral property, AF = antifungal property); (b) hemolytic activity and strain-specific
antimicrobial prediction using DBAASP, where Gram-positive bacteria include E. coli, P. aeruginosa,
and K. pneumoniae; Gram-negative bacteria include S. aureus and B. subtilis; fungi include C. albicans
and S. cerevisiae.



Insects 2023, 14, 215 14 of 19

All candidate collembola AMPs were predicted to have antimicrobial properties
with high probability scores by at least one program. In general, ClassAmp predicted
higher probability values than iAmpPred and Campr3, and the SVM method predicted
higher scores than the RF method. The iAmpPred predicted higher probability scores
for antibacterial properties than antifungal and antiviral properties. Diptericins have the
highest probability scores in all three programs, whereas defensins have the lowest scores,
mainly from Campr3. ALOs, cecropins, and diapausins generally have good prediction
scores from ClassAMP and iAmpPred, but about 50% of them were predicted with lower
probability scores in Campr3. Campr3 (SVM and RF methods) have previously been
shown to outperform other tools [49], while ClassAMP may be prone to give false positive
results [51,60]. Based on these predictions, diptericin from O. cincta, Sm. viridis, and Si.
curviseta has the highest potential for antimicrobial properties. However, we note that the
low probability scores predicted by Campr3 can partly be explained by the limitation of
collembola AMP sequences in the training set, which limits the prediction power.

Except for OcinDiptericin1, all candidate collembola AMPs were predicted to be non-active
against human erythrocytes (Figure 8b), increasing their potential application for medicine.
According to the prediction tools in the DBAASP database (Supplementary Table S2), K. pneu-
moniae is sensitive to certain members of all AMP classes, while B. subtilis is sensitive to
all AMP classes except defensins. E. coli and S. aeruginosa are susceptible to cecropins and
diptericins, whereas S. aureus is susceptible to cecropin only. Finally, C. albicans and S.
cerevisiae are sensitive to Alos, cecropins, and diapausins. Among the five AMP classes,
cecropins show the most promising activities because all of them (ScurCecropin1-3) are
predicted to be active against both Gram-positive and Gram-negative bacteria and ScurCe-
cropin1 is also active against fungi.

4. Discussion
4.1. Roles of Antimicrobial Peptides in Collembola Immunity

Collembola AMPs identified in this study potentially have broad antimicrobial prop-
erties. We believe these peptides were assigned to correct AMP families based on sequence
homology and protein family signature (e.g., conserved cysteine residues, physicochemical
property, and phylogenetic analysis); thus, their functions may be inferred from other
arthropod orthologs. Diapausins, present in all five collembola species, have been reported
to have active roles against fungi, e.g., S. cerevisiae, C. albicans, C. krusei, and Beauveria
bassiana [61,62]. Alo-3 peptide from a beetle, A. longimanus, has an active role against fungi
C. albicans and C. glabrata [59]. The strain-specific AMP prediction using the DBAASP
database also indicated that two fungi, C. albicans and S. cerevisiae, are susceptible to Alos
and diapausins from collembola. Diptericins from flies were shown to have active roles
against Gram-negative bacteria, including Erwinia herbicola, Er. carotovora, E. coli, and
Providencia rettgeri [63–65]. Defensins have broad activity against bacteria, viruses, and
fungi but are most effective against Gram-positive bacteria, including S. aureus [66]. Insect
cecropins can kill both Gram-positive (Listeria monocytogenes) and Gram-negative bacteria
(Acinetobacter baumannii and P. aeruginosa), disrupt uropathogenic E. coli biofilms, and also
exhibit antifungal properties [67–70]. As functions of collembolan AMP families can only
be inferred from their orthologs in other arthropods, further functional analysis is crucial
to confirm the prediction.

Our findings have filled the knowledge gaps of how collembola defend themselves
against microbes in their natural habitats. Collembolan gut bacteria exhibited antimicro-
bial properties against various pathogenic bacteria and fungi, thus contributing to the
collembola immune system [71]. A cluster of beta-lactam biosynthesis genes producing
antibiotics, such as penicillins and cephalosporins, were identified from F. candida and other
collembolas from different families, but not from the protura, diplura, insects, and other
animals, suggesting a single horizontal gene transfer event from bacteria to the common
ancestor of collembola [30,72]. Genes in the pathways were upregulated under heat-shock
stress and produced beta-lactam products [30]. Although many collembola genomes have
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been published [27,29,31,32], the AMP families have not been thoroughly investigated and
reported. Our analysis shows that collembola have at least five AMP families, potentially
contributing to collembolan immunity by having broad activities against bacteria, fungi,
and viruses.

4.2. Evolution of Collembola AMPs

Our study reveals the dynamic evolution of the collembolan AMP gene families,
most importantly, frequent gene gains and losses. Previously, defensin was believed
to be the only known ortholog of insect AMP in collembola [20]. We investigated five
species of collembola representing three main collembola suborders (Entomobryomorpha,
Poduromorpha, Symphypleona) and showed that collembola has at least five AMP families.
Diapausins are present in all five collembolan species, suggesting the presence of the
diapausin gene in the common ancestor of collembola. Diapausins have been identified in
a few insect orders, including coleoptera and lepidoptera; thus, multiple gene gains and
losses in different insect lineages may explain the evolution of diapausin in hexapods.

Alo peptides present in four collembolan species from the suborder Entomobryomor-
pha and Poduromorpha suggest that Alo is another ancient immunity gene of collembola.
Previously, Alo peptides present in Hemiptera and Coleoptera were proposed to evolve
via horizontal gene transfer from plants or fungi based on the idea that its knottin domain
is unique to plants and fungi [20]. However, recent studies show that proteins containing
knottin domain play essential roles in many animal toxins, including nettle caterpillars,
spiders, scorpions, and cone snails [73]. Thus, the evolution of arthropod Alo peptides may
also be explained by multiple gene gains and loss events.

For diptericin, O. cincta, and Si. curviseta, each has a single gene and Sm. viridis has two
genes. It seems that diptericin might have been lost in the Poduromorpha lineage, but it
has to be confirmed by further analysis that includes more species with complete genomes.
Cecropin and defensin are only found in Si. curviseta and Sm. viridis, respectively. As these
two AMPs are widely distributed among insect taxa [20], the origin of these peptides could
be dated back to at least the common ancestor of the hexapod. However, these genes might
have been lost in many collembola species. Multiple insect AMPs, e.g., drosomycins and
thaumatins, have a scattered distribution over insect taxa [20], supporting the fact that
gene gain and loss events observed in collembola AMPs are a common phenomenon of
hexapod AMPs. We proposed that frequent gene gain and loss in AMP evolution may be
due to the broad activities of AMPs, and also, there are many classes of AMP in the genome
that can compensate for the function of lost or newly duplicated genes. This process
explains the dynamic gene gain and loss events in the evolution of the insect chemoreceptor
gene family [74,75]. However, we do not observe a large lineage-specific gene expansion
in collembolan AMPs. A recent study on the evolution of Dipteran diptericin suggests
trade-offs between having diptericins to combat pathogens and potential risks due to their
neuronal toxicity [76]. It might explain the purifying selection against having many copies
of genes in the genome. We noted that future analysis on more collembolan species with
complete genomes would improve the estimation of gene gain and loss events.

4.3. Significance and Implications

Our study supports that collembola are promising new sources for novel AMP dis-
covery. We have identified 45 AMPs from five collembola species that potentially have
broad activities against fungi (diapausin, Alo, defensin, and cecropin), bacteria (diptericin,
defensin, and cecropin), and viruses (defensin). As the number of AMPs per species is few
(5–13 genes), we suspected that collembola might have novel AMPs that are not orthologs
of any described AMPs. Future analysis using existing annotation pipelines for novel
AMPs [77,78] may reveal the hidden diversity of the collembola AMPs.

Identification of AMPs from unexplored species could lead to numerous candidates,
which limit further functional studies when resources are limited. We propose using in
silico AMP prediction tools to help choose promising candidates. In our case, we consider
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Campr3 as the most stringent tool. Therefore, collembolan diptericins, the AMPs that
passed all programs (ClassAMP, iAmpPred, and Campr3) with high probability scores,
are favorable candidates for further analysis. We note, however, that the novel AMPs
distinctly different from the training sets may not be recognized by the AI tools, i.e., give
false negative results. Other filtering criteria, such as expression profiles, e.g., AMP genes
that show upregulation after organisms were experimentally immunized with pathogens,
could be a powerful tool for the screening [79].

Our study serves as a primer for the investigation of collembolan AMPs, which
could lead to a better understanding of how collembola can survive in a pathogen-rich
environment. It also opens a new road to identifying AMPs that may have a potential use
in medicine to help combat the current crisis from multidrug-resistant pathogens.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects14030215/s1, Table S1: List of arthropod AMPs UniProt
ID used for phylogenetic analyses; Table S2: Collembola AMPs: (a) peptide and DNA sequences,
(b) InterProsScan result, (c) Physicochemical property, (d) Phyre2 3D structure prediction, and
(4) Predicted antimicrobial properties.
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