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Simple Summary: Immune responses of Lepidopteran pests to Bacillus thuringiensis (Bt) or Bt toxins,
including pattern recognition proteins, antimicrobial peptides (AMPs) and their synthetic signaling
pathways, the prophenoloxidase system, reactive oxygen species (ROS) generation, nodulation,
encapsulation, phagocytosis, cell-free aggregates, contribute to the evolution of insect resistance to
Bt. Targeting the insect immune response and resistance to Bt or Bt toxins may help to improve
insecticidal activity and manage insect resistance.

Abstract: Bacillus thuringiensis (Bt) is the safest, economically successful entomopathogen to date. It is
extensively produced in transgenic crops or used in spray formulations to control Lepidopteran pests.
The most serious threat to the sustainable usage of Bt is insect resistance. The resistance mechanisms
to Bt toxins depend not only on alterations in insect receptors, but also on the enhancement of
insect immune responses. In this work, we review the current knowledge of the immune response
and resistance of insects to Bt formulations and Bt proteins, mainly in Lepidopteran pests. We
discuss the pattern recognition proteins for recognizing Bt, antimicrobial peptides (AMPs) and
their synthetic signaling pathways, the prophenoloxidase system, reactive oxygen species (ROS)
generation, nodulation, encapsulation, phagocytosis, and cell-free aggregates, which are involved in
immune response reactions or resistance to Bt. This review also analyzes immune priming, which
contributes to the evolution of insect resistance to Bt, and puts forward strategies to improve the
insecticidal activity of Bt formulations and manage insect resistance, targeting the insect immune
responses and resistance.

Keywords: Bacillus thuringiensis; immune response; immune priming; resistance mechanism;
resistance management

1. Introduction

Bacillus thuringiensis (Bt) is a Gram-positive bacterium with entomopathogenic proper-
ties that can produce spores and insecticidal proteins [including Crystal (Cry), Cytolytic
(Cyt) proteins, and vegetative (Vip) insecticidal proteins]. It is widely used to control
Lepidopteran pests, Coleoptera, Diptera, and nematodes by spraying Bt formulations or
planting transgenic crops (expressing Bt proteins). Bt formulations are considered more
specific and safer than chemical pesticides. They are used in the vast majority of formu-
lated sprayable bacterial microbial pesticides [1–4], which contain viable Bt spores and
Cry toxins as active ingredients [5]. Moreover, Bt crops that express Bt proteins have
been extensively planted in 29 countries, accounting for a global area of more than 108
million hectares worldwide, which represents more than 53% of the global planted area of
transgenic crops [6].

Due to the commercial interest in Bt formulations and Bt crops, the exploration of their
modes of action has received considerable attention. As an entomopathogenic bacterium,
the killing mechanisms of Bt involve the pore-forming toxins induced by Bt proteins [7–11]
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and septicemia induced by Bt or midgut bacteria [12–16]. Furthermore, one of the unavoid-
able outcomes of the continual and extensive pest control with Bt formulations and Bt crops
has been the emergence of insect tolerance or resistance to Bt [17–20]. However, researchers
of host resistance mechanisms to Bt are primarily concerned about the genetic resistance
to Bt toxins, as they induce a high level of resistance based on mutations of target sites
or the reduction of receptor abundance on the midgut epithelium [10,21–23]. Indeed, the
host immune responses could be activated by Bt and Bt proteins to counteract the toxic
effects [20,24,25]. In particular, the inducible low-level resistance or tolerance, which may
be caused by gene and protein regulatory mechanisms, could be related to the relative
activities and amounts of immune components, thereby resulting in the sequestration or
inactivation of the toxin [26–31]. Importantly, insects show a phenomenon called “immune
priming”, wherein insects can prolong the activation of immune responses and transmit
their immune status to the next generation. This immune priming could cause the evolution
of resistance acquired upon repeated individual infections or from immune-challenged
parent(s) [29].

Bt formulations and Bt crops are mainly used to control agriculture pests, especially,
Lepidopteran pests. These pest insects have a robust immune system based on hemocytes,
antimicrobial peptides (AMPs), phenoloxidase (PO), lysozyme, nodulation, encapsula-
tion, phagocytosis, and other mechanisms acting in different immune pathways, which
are activated in response to infection [26–34], including that caused by the Bt bacterium
and Bt proteins [20,25,31,35]. In addition, changes in immune-related genes or proteins
in the above immune pathways participate in insect resistance to Bt bacterium or Bt
proteins [26–31,36–39]. For example, Ma et al. reported that laboratory Bt-resistant strains
of Helicoverpa armigera showed increased melanization and coagulation reaction (due to
high levels of a soluble toxin-binding glycoprotein), and this resistance mechanism against
toxins based on a systemic immune induction could be transmitted to the next generation
by a maternal effect [26]. Currently, the response mechanisms and immune resistance
of insects is attracting worldwide attention to improve the insecticidal activity of Bt and
managing insect resistance to Bt. In fact, understanding the host response mechanisms and
immune resistance to Bt and Bt proteins will enable us to identify more ways of pest control
and resistance management [40–45]. In this review, we will focus on the involvement of
enhanced immune defense of insects against Bt, including the pattern recognition proteins
for recognizing Bt, AMPs and their synthetic signaling pathways, the prophenoloxidase
system, ROS generation, nodulation, encapsulation, phagocytosis, and cell-free aggregates.
Importantly, on the basis of these immune responses and resistance, we provide some
suggestions to improve Bt insecticidal activity and manage insect resistance.

2. Immunity Induced by Bt

Researchers confirmed that Bt has specific effects on insect immunity when adminis-
tered either orally or by injection [28,31,46]. The immune barriers include the gut lumen,
but mainly consist in the hemocoel that Bt spores, toxins, and enteric microbes could enter
through midgut lesions that are caused by Bt toxins [12–16]. The insects depend on their
innate immunity to quickly recognize and destroy or immobilize invasive pathogens. The
immune responses comprise humoral and cellular factors [47,48]. The humoral component
includes the synthesis of AMPs, PO-mediated melanization, bacteriolytic enzymes, the
production of proteases, heat shock proteins, and lectins [49–55]. Hemocytes are key ele-
ments in cellular immune responses and are involved in the killing of pathogens through
the production of pattern recognition proteins/receptors (PRPs), proteins responsible for
nodulation, encapsulation, phagocytosis, and other molecules (AMPs, melanization mod-
ulators and enzymes, stress response proteins, and signal transduction proteins) that are
involved in the killing of pathogens [56]. As reported, sublethal doses of Bt widely induced
the humoral and cellular immune response in insects, even leading to immune resistance
to Bt [27,28,47,48,57,58].
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2.1. Recognition of B. thuringiensis

In both humoral or cellular immunity, the first step in the initiation of the immune
response is pathogen recognition. This step is achieved by the recognition of and the inter-
action between pathogen-associated molecular patterns (PAMPs) located on the surface of
the pathogen and PRPs [59–61]. The most commonly characterized PRPs are peptidoglycan-
recognizing proteins (PGRPs), C-type lectins, scavenger receptor, and apolipophorin III
(ApoLp-III) [62–64]. It is reported that the expression of PGRPs in Plutella xylostella and
Ostrinia furnacalis was induced to activate the immune response to Bt [65,66]. The silencing
of PxPGRP-S1 by RNA interference (RNAi) significantly reduced the expression of AMP,
which caused high mortality under Bt treatment [67]. The scavenger receptor C can bind
the Bt bacterium to enhance AMP expression in hemocytes via the Toll pathway and protect
Bombyx mori from Bt pathogens [36].

ApoLp-III is a pattern recognition protein that participates in humoral immune reac-
tions against invading pathogens [68], activates the PPO cascade [69,70], induces antibacte-
rial activity [37], and works in cellular immune reactions to stimulate encapsulation and
phagocytosis [68,71]. Meanwhile, an ApoLp precursor of Diatraea saccharalis in a resistant
strain of Cry1Ab was significantly upregulated compared with its levels in a susceptible
strain [72]. The ApoLp-III protein was also upregulated under treatment with spore–crystal
mixtures of Bt strains producing Cry3Ba toxins in Tribolium castaneum (Tc) to regulate PO
enzyme activity [73].

C-type lectins are PRPs involved in innate immunity in invertebrates. They play
important roles in pathogen recognition, AMP synthesis, melanization, and encapsulation
or in the direct killing of bacteria [74–79]. C-type lectins from H. armigera can agglutinate
Bt in the presence of Ca2+ and inhibit the growth of Bt in vivo by increasing hemocyte
phagocytosis [80]. In T. castaneum, C-type lectins also bind to Bt toxins in the presence of
Ca2+, playing a key role in the immune response toward pathogen infection by affecting
the expression of AMPs and the agglutination of bacteria in the presence of Ca2+ [81]. In P.
xylostella, C-type lectins can bind to the PAMPs of Bt 8010 and mediate innate immunity, e.g.,
by enhancing the adsorption ability of hemocytes and PO activity and melanization [82].

2.2. Antimicrobial Peptides and Their Synthetic Signaling Pathways Participate in Fighting Bt

Once a foreign element is detected by PRPs, a series of signaling molecules are acti-
vated. One of the first insect defense mechanisms identified was the generation of AMPs via
the Toll and IMD pathways [83,84]. In response to Bt or Bt proteins infection, the expression
of AMPs (gloverin, moricin, lebocin, attacin, cecropins, cobatoxin A, etc.) is induced in
several insects [24,38,39,66,85–90]. Insect resistance to Bt is also reportedly associated with
insect AMPs [91,92]. In S. exigua and Galleria mellonella, RNAi-mediated knockdown of
gloverin enhanced the susceptibility to Bt [39,93]. AMPs may act in the immune responses
and resistance to Bt by killing the bacteria or blocking their growth, thus clearing Bt from
the midgut [39,93–96]. After exposure to Bt, the surviving resistant G. mellonella with
higher levels of AMPs (specifically, of gloverin) successfully purged Bt from the midgut,
and ~30% of the perished insects contained Bt subpopulations that were blocked in two
stages, namely, necrotrophy and sporulation [39]. Other mechanisms mediated by AMPs
in the immune response and resistance to Bt may help to screen and establish certain flora
in the gut or kill the bacteria that enter the humoral system after all the host microbiota
has participated in septicemia during infection with Bt [39,96,97]. The composition and
activities of the gut microbiota that are linked to host immunity and Bt toxicity have been
well reviewed [31].

AMPs are synthesized via the Toll, Imd, and JAK/STAT pathways (Figure 1) [84].
Generally, insects respond to Gram-positive bacterial and fungal infections through the
Toll pathway, while Gram-negative bacteria activate AMP synthesis through the Imd
pathway [98]. MyD88 acts downstream of Toll to activate the translocation of Dorsal or
Dorsal-related immune factors (which belong to the nuclear factor-κB family) into the
nucleus to activate the transcription of AMPs [83]. MyD88 has been reported to participate



Insects 2023, 14, 151 4 of 15

in regulating the expression of AMPs to resist Bt infection in O. furnacalis larvae [38].
Knocking down Dorsal expression in P. xylostella increaseed the susceptibility of P. xylostella
larvae to live Bt [99]. However, studies showed that Dorsal could bind to Cry1Ab1 toxin
in P. xylostella and S. exigua [100]. How these bindings affect AMP expression and the
insecticidal activities of Bt toxins remain unclear.

Figure 1. A simplified overview of innate immunity mechanisms activating synthetic signaling
pathways of AMPs induced by Bacillus thuringiensis and/or its toxins. Toll pathway, IMD pathway,
JAK–STAT pathway, and calcineurin (CaN) pathway promote the production of antimicrobial pep-
tides (AMPs) to counter B. thuringiensis and/or its toxins. PGN: peptidoglycan; NF-κB: nuclear
factor-κB; PRPs: pattern recognition proteins.

Interestingly, the wall of Bacillus spp. also contains DAP-type peptidoglycan (PGN), typical
for Gram-negative bacterium, and the Imd pathway is induced by Bt (Figure 1) [66,101,102]. In
the Imd pathway, signal transduction causes the cleavage of Relish, and the rel domain
translocates to the nucleus to activate AMP synthesis [98]. The JAK–STAT pathway can
control the production of AMPs in the insect midgut and promote the repair of insect
midgut epithelial cells destroyed by Bt8010 [66,103].

In many insects, Cry or Vip toxins alone can kill insect larvae (used in transgenic crops
that express the activated Cry or Vip toxins), and the Cry or Vip toxins could also trigger
the transcriptional activation of AMPs [35]. Additionally, when heat-killed Bt suspension
cells were injected into the B. mori larval hemocoel, AMPs including attacin, gloverin,
lebocin, and moricin, were found to be significantly upregulated [24]. However, how do
Bt proteins induce AMP expression? It was reported that Drosophila calcineurin (CaN,
Ca2+-dependent phosphatase) promotes the induction of innate immunity through Toll
and Imd (Figure 1) [104]. CaN serves as an immune activator by interacting with Relish to
regulate AMP (gloverin, cecropin D, and attacin) expression in H. armigera (Figure 1) [105].
Importantly, CaN activity could be induced by Cry1Ac and Cry2Ab [40,41]. Consequently,
AMP expression was promoted.

2.3. Melanization Reaction for Fighting Bt

Melanization is an immune response that is locally triggered in response to systemical
microbial invasion following hemocoel or cuticle injury [106]. During melanization, PO is
a key enzyme. Active PO is produced from prophenoloxidase (PPO) zymogen by a clip
domain serine proteinase (Figure 2) [106]. The PPO-activating proteinase cascade involves
the interaction of PRPs, serine protease inhibitors (serpins), serine proteases, PPO-activating
proteinase (PAP), and other enzymes (Figure 2) [107–110]. PO converts tyrosine into the
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precursors of melanin [111] (Figure 2). Melanin is toxic to parasites, bacteria, fungi, and
viruses [106]. It was reported that the expression of Serpin and PAPs was significantly
affected by Bt HD73 in P. xylostella [112]. Serine proteases and serine protease inhibitors
are also highly regulated in Bt-susceptible and -resistant Anticarsia gemmatalis strains in
response to Bt [113]. In the midgut of P. xylostella larvae, the PPO cascade is induced after
infection with Bt8010 (the Bt strain) [66]. Similar to Bt and Bt Cry toxins, Cry1Ac induces
Serpin expression [36], and the upregulated serpin gene was involved in the resistance
mechanism in H. armigera to Cry1Ac [110]. The PPO cascade and highly expressed genes
involved in the midgut melanization of S. exigua and S. litura were also triggered by the
Vip3A toxin [89,114]. It was also found that the PPO protein directly binds to Cry1Ah toxin
in O. furnacalis [115]. As a product of PPO, PO activity could also be induced by Bt in
E. kuehniella and G. melonella larvae [27,28,57,116]. PO activity in Cry1Ac-resistant
P. xylostella was higher than in a Cry1Ac-susceptible strain [117]. Importantly, insect
larvae are prone to melanization and develop resistance by increasing melanization in the
process of Bt infection [26,27,57,118], indicating that melanization may play a key role in
the process of resisting infections with B. thuringiensis or Bt toxins.

Figure 2. Schematic diagram of the DUOX (dual oxidase) pathway and hemocytes-mediated immune
responses to Bacillus thuringiensis and/or its toxins. DUOX pathway, phenoloxidase (PO)-dependent
melanization, nodulation, encapsulation, phagocytosis and cell free aggregates work in immune
responses to Bt and/or its toxins. ROS: reactive oxygen species; PPO: prophenoloxidase; DSP1: dorsal
switch protein 1; PLA2: phospholipase A2; PGE2: prostaglandin E2.

2.4. Dual Oxidase (DUOX) Pathway against Bt

The DUOX pathway regulates the production of reactive oxygen species (ROS)
(Figure 2). ROS are one of the most important molecular effectors in the regulation of
insect gut immune responses. Upon infection by a pathogenic bacterium, dorsal switch pro-
tein 1 (DSP1) is released to the hemocoel, and then DSP1 activates phospholipase A2 (PLA2)
to produce eicosanoids [119,120]. In Lepidopterans, activated PLA2 also increases the level
of prostaglandin E2 (PGE2) and subsequently increases Ca2+ signal in the gut [119,120].
Meanwhile, eicosanoids activate DUOX [43,121], which promotes the generation of ROS
(Figure 2) [119,120]. Infection with BtK or Bt toxins can induce the upregulation of ROS in
the gut lumen [43,122]. ROS are a direct and effective weapon against pathogens [123,124].
In addition, when insects were exposed to Bt, a functional binding between the Bt toxin
and its receptors (cadherin or ABCC) in the midgut epithelium triggered a damage signal.
This phenomenon promoted DSP1 release into the hemocoel and then activated PLA2,
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which upregulated the expression of Repat33 (response to pathogen) inducing the immune
response and counteracting Bt and Bt toxins (Figure 2) [119,120].

2.5. Cellular Responses

Cellular responses recruit various hemocytes, leading to nodulation, encapsulation,
and phagocytosis (Figure 2) [34]. Nodulation is triggered by infection with small struc-
tures or when the initial immune response is insufficient (Figure 2). First, the infection
causes the formation of multicellular hemocyte aggregates, and then these aggregates are
quickly entrapped. Subsequently, melanization of microorganisms occurs because of the
activation of the PO cascade. Finally, these melanized nodules efficiently isolate bacteria
from the hemolymph [34,63,125,126]. Encapsulation occurs when the pathogens are rel-
atively larger in size, such as parasites and nematodes. This type of immune response
also recruits various hemocytes (Figure 2) [34,125,126]. The invading organisms are killed
by reactive cytotoxic products or by asphyxia [127], and melanization involved in the
process of encapsulation helps to eliminate the infection from the hemolymph [108,128].
In insects, phagocytosis is performed by a subset of hemocytes in the hemolymph [129]
and includes cell recognition, binding, and ingestion of relatively large particles [130] and
PPO activation (Figure 2) [131]. Nodulation, encapsulation, and phagocytosis share some
common elements, including melanization and ROS, which function in concert to clear
pathogens from the hemolymph. Bt initiates nodule formation in S. litura and H. zea larvae,
including PO activity and even melanization that are observed after Bt infection [116,132].
Doubovskiy et al. [133] and Grizaniva et al. [28] showed that injecting or providing by feed-
ing a spore and crystal mixture of Bt with sublethal mortality could increase the phagocytic
activity and encapsulation rates in G. mellonella. Moreover, live and killed Bt bacteria were
phagocytosed by macroplasmatocytes and microplasmatocytes [134]. Sl102 was found to
control the nodulation and encapsulation responses. The silencing of Sl102 by RNAi caused
an impairment in the nodulation and encapsulation responses of the hemocytes [16,44,135].
This was associated with a significantly increased susceptibility of the host larvae to the
Cry toxin and Bt [16,44,135,136].

2.6. Cell-Free Aggregates

Another way to diminish the bacterial toxicity in many insects is to produce cell-
free aggregates in the lumen and hemolymph (Figure 2). The binding proteins involved
in aggregation include hexamerins (a type of inducible immune proteins), lectin, lipids,
glycolipids, etc. Hexamerins interact with GalNAc-specific lectin and Cry1Ac to form
insoluble aggregates in the hemolymph and midgut lumen of H. armigera [137]. In an-
other case, the sequestration of the Cry protein in the insect gut lumen is caused by
glycolipids. GalNAc-specific lectins contributed to the interaction between soluble toxin-
binding glycoprotein and Cry1Ac, thus forming an insoluble aggregate in Cry1Ac-resistant
H. armigera [26]. In addition, the aggregation and sequestration of Cry2Ab and Cry1Aa by
lipid particles were also found by Ma et al. [138]. These toxin–lipid aggregates are similar
to the immune-mediated lipid particle aggregates around lectins [139], which prevent the
interaction between specific membrane receptors with Bt toxins and cause the inactivation
of the Cry protein in the gut lumen. In addition to acting as a PGRP in pathogen recognition,
lectin interacts with Bt proteins. Some members of the lectin family were upregulated
after feeding Bt [113,140], thereby diminishing the toxicity in many insects and causing
resistance to Bt toxin by forming cell aggregates. C-type lectin-20 interacts with alkaline
phosphatase 1 (ALP1, a receptor of Bt toxins), decreasing the insecticidal activity of Cry
toxin in Aedes aegypti [141]. Galectins are a family of β-galactoside-binding lectins with
similar binding sites as Bt toxins, which enable them to bind to Bt receptors; this leads to
Caenorhabditis elegans resistance to Cry5Ba [142]. In A. aegypti, galectin-14 can compete with
Cry11Aa by binding to the Cry receptor ALP1 [143]. Consistently, galectin-6 was found to
interact with ALP1, thus affecting the toxicity of Cry proteins [144].
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3. Immune Priming

In invertebrates, immune priming is an immune memory-like response. It implies
that a previous sublethal exposure to a pathogen confers subsequent immune protection
against the same pathogen. Notably, insects could transmit their immune status to the next
generation [145–147], which may promote the evolution of resistance. As mentioned above,
numerous immune genes including PRPs and AMPs are involved in the innate response
to Bt and are in part responsible for differences between Bt-resistant and Bt-susceptible
strains. Insect resistance to Bt formulations or Bt crops has been widely reported [17–20],
and the resistance mechanism to Bt toxicity is caused by the alteration of host receptors and
is associated with increased host immune responses [10,21–23,57,148]. Gomez et al. [149]
reported that priming with Bt resulted in lower mortality in Tenebrio molitor. The immune
priming of this pest is involved in Bt-resistance and can be transmitted to the next generation
through a maternal effect [27,150]. Eggert et al. [151] found that the offspring of an immune
primed male with increased PGRP expression and PO activity had decreased mortality upon
Bt bacterial challenge. G. mellonella larvae showed an almost 11-fold enhanced resistance to
Bt compared with a control group after being exposed to Bt for over 30 generations [152].
It was reported that amino acids may also help organisms synthesize immune effectors
participating in the immune priming response to Bt [153]. As a result, immune priming
leads to increased resistance to Bt [29].

4. Inhibition of the Immune Response or of Genes Induced by Bt to Improve the
Insecticidal Activities of Bt

Insect response and resistance to Bt or Bt toxins indicate that the insect immune system
should be a good target for pest control, especially to improve the toxicity to Bt or Bt
toxins and manage insect resistance to Bt. Owing to the extensive use of Bt crops and
Bt formulations [1–4,6], the problem of insect resistance is very serious [17–19]. Recently,
some new strategies involving Bt have been used to improve the insecticidal activity of
formulations and prolong the use of Bt, avoiding resistance (Figure 3).

Figure 3. Strategies that inhibit the immune response or genes induced by Bt to improve the
insecticidal activity of Bt. RNAi: RNA interference.

4.1. Entomopathogenicity Inhibits Insect Immunity to Improve the Toxicity of Bt

Some entomopathogenic inhibitors that suppress the immune system can enhance the
insecticidal activities of Bt formulations (Figure 3). In the Colorado potato beetle (CPB),
co-infection of C. freundii and Bt can lead to the development of septicemia, and C. freundii
may affect the humoral and cellular immunity of insects to enhance Bt pathogenesis [45].
Photorhabdus and Xenorhabdus are entomopathogenic bacteria that can synthesize and se-
crete eicosanoid biosynthesis inhibitors to block the upregulation of ROS in the gut lumen
in response to Bt infection. In the absence of ROS, the growth of bacteria within the gut
lumen increased, leading to enhanced virulence of Bt against different target insects, such
as P. xylostella [43]. Moreover, synergistic toxicity between Bt and entomopathogenic fungi
was also observed. Bt can suppress insect feeding and delay development, thereby in-
creasing the mortality induced by fungus infection [154,155]. The inhibition of cellular
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immunity in CPB larvae with a sublethal dose of bacteria led to the synergy between the
Bt sp. Morrisoni and the fungus Metarhizium robertsii [156]. Consequently, the combina-
tion of insect entomopathogenic bacteria or fungi and Bt can inhibit insect immunity to
improve toxicity.

4.2. Inhibitors of Immune Pathways to Improve the Toxicity of Bt

Insect immunity contributes to the defense against Bt. The suppression of the insect
immune system significantly increased the entomopathogenicity of Bt (Figure 3) [157–159].
Some commercial PLA2 inhibitors significantly enhance the toxicity of Bt by suppress-
ing ROS in the gut lumen [43]. A recombinant immunosuppressive wasp venom pro-
tein (rVPr1), derived from the venom gland of Pimpla hypochondriaca (an endoparasitic
wasp) [160], can suppress the encapsulation response, thus increasing the susceptibility
of Mamestra brassicae and Lacanobia oleracea to Bt [161]. Additionally, the inhibition of
CaN activity (which may contribute to activate the IMD and Toll pathways to regulate
AMP expression) by FK506 or CsA can increase the insecticidal activity of Bt toxins in
Lepidopteran pests [40,41,162–164] and can even be used to manage Cry1Ac resistance in
H. armigera [42]. Immune inhibitors that improve the insecticidal activity of Bt toxins can
be used in Bt formulations.

4.3. RNAi Targeting Immune Genes to Improve the Toxicity of Bt

As aforementioned, Bt or Bt toxins induce the expression of numerous immune genes
in insects. RNAi can be attempted to reduce the expression of these genes and thus theoret-
ically increase the virulence of Bt, e.g., by knocking down AMP expression (Figure 3). In S.
exigua and G. mellonella, RNAi-mediated knockdown of gloverin expression enhanced the
susceptibility to Bt [39,93]. Sl102 downregulation in S. littoralis larvae and feeding bacteria
expressing dsRNA enhanced the insecticidal activity of Bt kurstaki [44]. RNAi-mediated
knockdown of the hemocyte-specific cathepsin L-like cysteine protease gene in B. mori can
enhance the toxicity of Bt-based biopesticides [165]. In addition, a pyramid combining the
protection from RNAi and Bt toxins is also recommended as a next-generation transgenic
to counter insect resistance [166,167]. These immune genes may be candidate targets to
enhance the control of pests by Bt [38]. RNAi technology can be applied to Bt GM crops or
used as in formulas with Bt.

5. Conclusions

Bt or Bt toxins access insect organism to trigger humoral and cellular immune re-
sponses. The humoral response includes the synthesis of AMPs, the activation of the PO
system, the generation of ROS, and cellular immune responses (nodulation, encapsula-
tion, and phagocytosis). In addition, cell-free aggregates are widely involved in immune
responses to protect insects from Bt infection. In addition, insects use immune priming
to promote the evolution of resistance to Bt. To improve the insecticidal activity of Bt
formulations and Bt crops and also manage insect resistance, it is suggested to explore
new entomopathogenicity, immunosuppressant or dsRNA technologies in the future to
overcome insect immune protection.
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