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Simple Summary: The yellow fever mosquito, Aedes aegypti, is a vector for several viruses in-
cluding yellow fever, Zika, and dengue virus, which infect millions of people worldwide every
year. Novel methods for population control of mosquitoes are an important research topic. The
sodium/potassium ATPase pump is vital for ion transport across cell membranes, making it indis-
pensable to many biological processes including nervous signaling and muscle contraction. This
pump contains three subunits: alpha, beta, and FXYD, with the alpha subunit serving to transport
ions, and the beta and FXYD subunits serving to regulate the function of the alpha subunit. In this
study, we analyzed tissue expression of the sodium/potassium ATPase beta 2 subunit in Ae. aegypti.
We also knocked down expression of this gene and measured the fecundity and mortality of treated
mosquitoes. Expression levels of sodium/potassium ATPase beta 2 were highest in ovaries com-
pared to other analyzed tissues. The total number of eggs laid by sodium/potassium ATPase beta 2
knockdown mosquitoes were significantly less than the control treated group. Overall, our findings
suggest that sodium/potassium ATPase beta subunit 2 plays a role in regulating egg development in
Ae. aegypti, and may therefore serve as a target for future mosquito control studies.

Abstract: The Na+/K+ ATPase (NKA) is present in the cellular membrane of most eukaryotic cells.
It utilizes energy released by ATP hydrolysis to pump sodium ions out of the cell and potassium
ions into the cell, which establishes and controls ion gradients. Functional NKA pumps consist
of three subunits, alpha, beta, and FXYD. The alpha subunit serves as the catalytic subunit while
the beta and FXYD subunits regulate the proper folding and localization, and ion affinity of the
alpha subunit, respectively. Here we demonstrate that knockdown of NKA beta subunit 2 mRNA
(nkaβ2) reduces fecundity in female Ae. aegypti. We determined the expression pattern of nkaβ2
in several adult mosquito organs using qRT-PCR. We performed RNAi-mediated knockdown of
nkaβ2 and assayed for lethality, and effects on female fecundity. Tissue expression levels of nkaβ2
mRNA were highest in the ovaries with the fat body, midgut and thorax having similar expression
levels, while Malpighian tubules had significantly lower expression. Survival curves recorded post
dsRNA injection showed a non-significant decrease in survival of nkaβ2 dsRNA-injected mosquitoes
compared to GFP dsRNA-injected mosquitoes. We observed a significant reduction in the number
of eggs laid by nkaβ2 dsRNA-injected mosquitoes compared to control mosquitoes. These results,
coupled with the tissue expression profile of nkaβ2, indicate that this subunit plays a role in normal
female Ae. aegypti fecundity. Additional research needs to be conducted to determine the exact role
played by NKAβ2 in mosquito post-blood meal nutrient sensing, transport, yolk precursor protein
(YPP) synthesis and yolk deposition.

Keywords: NKAβ2; sodium/potassium ATPase; cationic amino acid transporter; Aedes aegypti;
nutrient sensor; fecundity

1. Introduction

The Na+/K+-ATPase (NKA) is a member of the P-Type family of ATPase transport
proteins [1]. The predominant function of NKA is active transport using ATP hydrolysis to
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facilitate the efflux of sodium ions and influx of potassium ions in eukaryotic cells. The
establishment of sodium and potassium ion gradients across the plasma membrane by
NKA is necessary for several homeostatic processes. These ion gradients can be used by
cells to power secondary active transport, using the energy of the flow of either sodium or
potassium ions back down their concentration gradients to power the transport of other
substrates against their concentration gradients [2]. Recovery of the resting membrane
potential in excitatory cells after action potential propagation is another important function
of NKA pumps, making them indispensable for coordinated neural signaling and muscle
contraction [3]. As a central transporter involved in maintaining the electrochemical
gradient of multiple ions, NKA pumps also play a vital role in maintenance of cellular
osmolarity, and by extension, cell volume [4,5]. In addition to ion transport functions, NKA
pumps play a role in cell–cell adhesion through association of N-linked glycans on the
extracellular domains of their beta subunits. [6,7]. Finally, populations of NKA pumps
localized to caveolae in cell membranes can act as receptors for a class of molecules called
cardiac glycosides, demonstrating their importance in cell signaling in addition to their
vital role in the maintenance of electrochemical gradients [8,9].

NKA is comprised of three independent subunits: alpha, beta, and FXYD. The alpha
subunit is the catalytic subunit, containing 10 transmembrane domains [10], and it utilizes
energy from ATP hydrolysis to pump sodium ions out of the cell and potassium ions
into the cell at a rate of 3:2 [11,12]. Mammalian genomes contain multiple alpha subunit
genes which code for tissue-specific subunit expression. The alpha one isoform is largely
distributed within all cell types [13,14], the alpha 2 isoform is predominantly located in
the muscle, heart, and brain [13–17], the alpha 3 isoform is predominantly found within
nervous tissue [13,16,18], and the alpha 4 isoform is predominately located in the sper-
matozoa [19]. In contrast to vertebrates, many insects only possess a single gene coding
for the alpha subunit. However, this single gene codes for many splice variants, allowing
for potentially similar levels of complexity in expression and function. For example, the
Drosophila melanogaster NKA alpha gene (Entrez ID: 48971) has 11 annotated splice vari-
ants, while the Aedes aegypti NKA alpha gene (Entrez ID: 5575790) has over 20 annotated
splice variants.

While the remaining two subunits in the NKA protein do not play a direct role in ion
transport, they are important for regulating the proper folding, localization, and function
of the alpha subunit. Additionally, multiple genes code for different isoforms of each
regulatory subunit, allowing for complex assemblies of different subunit isoforms in tissue-
specific or function-specific patterns. The beta subunit is composed of one transmembrane
domain with a large glycosylated extracellular region that facilitates maturation and translo-
cation of the catalytic alpha subunit to the plasma membrane [20–22] and is also involved in
establishing tight junctions between cells through interaction with other beta subunits [23].
All animals possess multiple genes coding for unique beta subunit isoforms. The beta
1 isoform may play a role in oxidative stress [24], while the beta 2 isoform is involved
with cell–cell contact and dominantly facilitates the establishment of the electrochemical
gradient by reducing the potassium affinity and raising the binding affinity to extracellular
sodium [25]. The final subunit of the oligomeric protein is the FXYD subunit which, like the
beta subunit, has many isoforms coded for by different genes, and regulates the function of
NKA by affecting the affinity for potassium ions [26,27].

The fat body of the yellow fever mosquito, Ae. aegypti plays an important role in
metabolism by absorbing nutrients from digested blood meals to incorporate them into
newly synthesized macromolecules such as proteins, lipids, and carbohydrates [28]. These
nutrients can be stored for later use, but most of these molecules are exported from the
fat body to be deposited as yolk during vitellogenesis, or the development of a clutch of
eggs. As the fat body plays a central role in vitellogenesis, this organ must maintain a
robust nutrient sensor system to monitor for changes in organismal nutrient content and
respond accordingly. To this end, fat body cells integrate input from several signaling
pathways including the hormone signals, insulin-like hormone, juvenile hormone and
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20-hydroxyecdysone, as well as intracellular signaling mediated by the mechanistic target of
rapamycin (mTOR) network (reviewed in [29]). The main role of nutrient sensors is to detect
extracellular and intracellular nutrient availability and induce cellular signal transduction
leading to changes in cellular function [30,31]. In the Ae. aegypti fat body, a major nutrient
sensor is the mTOR complex 1 (mTORC1), which has been demonstrated to play an
indispensable role in yolk precursor protein (YPP) synthesis during vitellogenesis [29,32,33].
In response to hormone signaling, and increased nutrient influx after blood feeding, the
TOR kinase phosphorylates the p70-S6 Kinase, which in turn phosphorylates ribosomal
protein S6, stimulating translation of YPPs [29,32,33].

Amino acid influx through amino acid transporters, particularly the family of cationic
amino acid transporters (CATs) is necessary for mTORC1 activation and initiation of YPP
synthesis [34]. The CAT family in Ae. aegypti consists of five genes coding for transceptors
that sense extracellular cationic amino acids and transport them into the cell where they
can be used for new protein synthesis [35,36]. Previous research has demonstrated the
importance of CATs in vitellogenesis [37] and has identified a set of putative protein
interactors for one of the CAT family members, CAT1 [38]. These potential interaction
partners include NKA subunit beta 2 (Entrez ID: 5573862; NKAβ2) [38]. As NKA has been
demonstrated to play a variety of important roles, including regulation of cellular tonicity,
maintenance of charge balance across the plasma membrane and signal reception, this
putative interaction between NKAβ2 and CAT1 is of interest to determine if NKA pumps
play a role in Ae. aegypti vitellogenesis.

In this study, we determined the expression pattern of NKAβ2 in multiple structures
of adult female Ae. aegypti using quantitative RT-PCR (qRT-PCR). We then used RNAi
to knockdown nkaβ2 expression in adult female mosquitoes and assayed for changes in
fecundity and flight performance in NKAβ2 knockdowns relative to controls. Our results
show that NKAβ2 has tissue-specific expression in female Ae. aegypti, and loss of NKAβ2
in adult females reduces clutch sizes after a blood meal.

2. Materials and Methods
2.1. Mosquito Rearing

Aedes aegypti Liverpool mosquitoes were reared under standard laboratory conditions
as previously described [38]. Briefly, eggs were hatched in pans of deionized water, and
larvae were kept at 27 ◦C and fed on dry cat food pellets. Pupae were collected and stored
in Bug Dorm-1 insect cages (Bugdorm, Taichung, Taiwan). After emergence, adults were
allowed to feed on 20% sucrose solution ad libitum. All adults were maintained under
standard conditions (14 h: 10 h light-dark cycle, 27 ◦C, 80% humidity) in our insectary. All
experiments were performed on mosquitoes five to seven days post-eclosion. For blood
feeding experiments, female mosquitoes were fed on defibrinated bovine blood (HemoStat
Laboratories, Dixon, CA, USA) warmed to 37 ◦C for 1 h.

2.2. Total RNA Isolation and cDNA Synthesis

Total RNA was isolated from either three (n = 3) pools of 10 organs and structures
(determination of nkaβ2 expression profile), or three (n = 3) pools of 10 mosquitoes with
heads removed (determination of nkaβ2 dsRNA knockdown effect) using a Qiagen RNeasy
kit (Qiagen, Germantown, MD, USA) following the manufacturer’s protocol. Total RNA
concentrations were measured using a NanoDrop 1000 (Thermo Scientific, Waltham, MA,
USA). To generate cDNA, 250 ng of RNA from each sample was reverse-transcribed using
Bio-Rad iScriptTM Reverse Transcription Supermix for RT-qPCR (Bio-Rad, Hercules, CA,
USA) following the manufacturer’s instructions. To control for potential genomic DNA
contamination, a set of non-reverse transcribed (noRT) samples was generated using
iScriptTM noRT Supermix (Bio-Rad, Hercules, CA, USA).
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2.3. qRT-PCR

Primers for nkaβ2 (Gene ID: 5573862) and ribosomal protein s7 (rps7) were designed
using PrimerBLAST [39] and NetPrimer (Premier Biosoft, Palo Alto, CA, USA) as previously
described [40] (see Table 1 for primer sequences).

Table 1. qRT-PCR primers.

Primer Sequence Tm (◦C)

sodium/potassium ATPase subunit beta
2 (nkaβ2) forward TCCCACTGAGGAGCAGAAATACC

60
nkaβ2 reverse TGCTGCGGGCAAACTCTACC

ribosomal protein s7 (rps7) forward * TCAGTGTACAAGAAGCTGACCGGA
60rps7 reverse * TTCCGCGCGCGCTCACTTATTAGATT

* Internal reference gene.

All qRT-PCR reactions were prepared as previously described [38,40]. Briefly, cDNA
samples were diluted 1:1 in nuclease-free water, and mixed with iTaq Universal SYBR-
green Supermix (Bio-Rad, Hercules, CA, USA), qRT-PCR primers, and nuclease-free water
following the manufacturer’s instructions. Reactions were prepared with two technical
replicates for each sample, and one noRT reaction for each sample to control for genomic
DNA contamination. Each plate was run on a CFX96 Touch Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA) with the following protocol: initial denaturation
at 95 ◦C for 30 s followed by 40 cycles of denaturation at 95 ◦C for 5 s and combined
annealing/elongation at 60 ◦C for 30 s. SYBRgreen fluorescence was detected after each
elongation step. Immediately after each PCR completed, melting curves were run on each
plate with the following parameters: 65–95 ◦C temperature ramp in 0.5 ◦C increments
with a five second hold at each step. Raw fluorescence data from each qRT-PCR run were
analyzed using Bio-Rad CFX Maestro software (Bio-Rad, Hercules, CA, USA). Average
Cq values from technical replicates of each sample were analyzed by normalization of
nkaβ2 data to rps7 data prior to quantification of changes in nkaβ2 expression. Relative
gene expression was determined using the 2−∆∆CT method [41] using the average ovary
∆CT as a calibrator for tissue expression samples, and average GFP ∆CT as a calibrator for
dsRNA-injected samples.

2.4. Na+/K+ ATPase Subunit β2 (nkaβ2) Annotation

Phylogenetic analysis of Ae. aegypti NKA alpha and beta subunit protein sequences
was performed as previously described [38]. Ae. aegypti NKA alpha and beta subunit
protein sequences were accessed NCBI protein database. Drosophila melanogaster NKA
alpha subunit and Nervana (beta subunits) protein sequences were also accessed from the
NCBI protein database. All protein sequences were aligned using the MUSCLE algorithm
in MEGA version 11 [42], and a neighbor-joining tree was constructed to visualize the
orthology between Ae. aegypti and D. melanogaster NKA subunits.

2.5. RNAi Knockdown of nkaβ2

Double-stranded RNA (dsRNA) targeting nkaβ2 and targeting GFP were synthesized
to perform RNAi knockdowns [43]. Anti-GFP dsRNA was used as a negative injection
control since Ae. aegypti do not have a gene encoding GFP, and therefore, anti-GFP dsRNA
should not target native mosquito mRNAs. Briefly, dsRNA synthesis primers for nkaβ2
were designed using PrimerBLAST, and T7 promoter sequences were added on to the 5′

ends of both the forward and reverse primers to facilitate in vitro dsRNA synthesis. GFP
dsRNA primers were taken from a previous study [44]. All dsRNA synthesis primers are
listed in Table 2. T7-tagged nkaβ2 DNA was generated by PCR using whole mosquito cDNA
as a template, and the PCR-generated fragment was cloned into the TOPO4 expression
vector. Cloned plasmids were transformed into chemically competent E. coli, plated on LB
agar with ampicillin, and incubated overnight at 37 ◦C. Individual colonies were picked
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and transferred to 5 mL LB broth with ampicillin and grown overnight at 37 ◦C and
220 rpm shaking. Plasmids were extracted from bacteria using a Qiagen Plasmid Mini
kit (Qiagen, Germantown, MD), and the presence of the nkaβ2 insert was validated by
sequencing (MCLAB, South San Francisco, CA, USA). TOPO plasmids with confirmed
nkaβ2 inserts were used as templates for the synthesis of T7-tagged nkaβ2 template DNA. A
GFP-containing plasmid (3′ EGFP pXOON) was used as the template to produce T7-tagged
GFP dsDNA. T7-tagged dsDNA fragments were generated by PCR, and PCR product sizes
were confirmed by agarose gel electrophoresis prior to purification using a Qiagen PCR
Purification kit (Qiagen, Germantown, MD, USA). Purified products were then used as the
template for dsRNA synthesis using a MegascriptTM RNAi Kit (ThermoFisher Scientific,
Waltham, MA, USA). dsRNA synthesis reactions were allowed to run for four hours, frozen
overnight, and finished for another four hours for a total of minimum eight hours of
synthesis time. Reaction mixes, nuclease digestion, and dsRNA clean-up were performed
following the kit instructions.

Table 2. dsRNA synthesis primers.

Primer Sequence Size (bp)

NKAβ2 forward TAATACGACTCACTATAGGGAGAAATCGACTTCCTTCCTTTGGGG
618

NKAβ2 reverse TAATACGACTCACTATAGGGAGATTCTTCTTGGTGGTATGGCTCC

GFP forward TAATACGACTCACTATAGGGCGATGCCACCT
518

GFP reverse TAATACGACTCACTATAGGGCGGACTGGGTG

T7 promoter regions used for dsRNA synthesis are marked in bold. GFP dsRNA primers were previously
reported [44].

Adult female mosquitoes (5–7 days post-eclosion) were injected with dsRNA as pre-
viously described [38]. Briefly, mosquitoes were injected intrathoracically using a mouth
injector with approximately 1 µg (concentration of 1µg/µL) of either nkaβ2 or GFP dsRNA
and given one hour to recover. Surviving mosquitoes were maintained as described above
until use in other experiments. Effectiveness of dsRNA knockdown of nkaβ2 was assayed
using qRT-PCR with total RNA extracted from whole mosquitoes using the qRT-PCR
methods described above.

2.6. Mortality Assay

To determine the effects of nkaβ2 knockdown on mosquito mortality, a survival assay
was conducted on mosquitoes injected with either nkaβ2 dsRNA (n = 73) or GFP dsRNA
(n = 67). For a 72 h period post-injection (PI), mosquito mortality was counted every 24 h
for both the GFP dsRNA injected mosquitoes and the nkaβ2 dsRNA injected mosquitoes.
After each count was performed, dead mosquitoes were removed to prevent interference
with future mortality counts.

2.7. Ovary Morphology Assay

Groups of adult female mosquitoes were injected with either nkaβ2 or GFP dsRNA as
described above. Three days PI, mosquitoes from each treatment group were given a blood
meal as described in the “Mosquito rearing” section above. Immediately prior to feeding,
10 mosquitoes from each group were collected for use as unfed baseline samples. Ovaries
from 10 blood fed mosquitoes were dissected at 24, 48, and 72 h PBM, and both ovaries from
each mosquito were imaged using an Olympus SZX12 stereo microscope (Olympus Life
Science, Waltham, MA, USA). Ovary lengths were measured in ImageJ [45] using a scale of
1 mm, and ovary pairs from each mosquito were averaged to determine the mean ovary
length of each individual mosquito. The mean ovary lengths from all mosquitoes in each
treatment/time group were averaged to determine the change in ovary length over time in
nkaβ2 dsRNA-injected and GFP dsRNA-injected mosquitoes. Additionally, five follicles
from each mosquito were measured to determine the change in average follicle length over
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time in nkaβ2 dsRNA-injected and GFP dsRNA-injected mosquitoes. The follicle lengths
from each mosquito were averaged to generate mean follicle lengths for each mosquito, and
the mean lengths from all mosquitoes in each treatment/time group point were averaged
to determine the change in follicle length over time.

2.8. Clutch Size and Hatch Rate Assay

Groups of adult female mosquitoes were injected with either nkaβ2 or GFP dsRNA
as described above. Three days PI, mosquitoes from each treatment group were given a
blood meal as described in the “Mosquito rearing” section above. Individual engorged
mosquitoes were moved to egg laying chambers and allowed to lay eggs as previously
described [38]. Egg papers with eggs were desiccated for 96 h, and then egg numbers were
counted using an Olympus SZX12 stereo microscope (Olympus Life Science, Waltham, MA,
USA). After counting, egg clutches were desiccated for at least 72 additional hours, and
then egg clutches were hatched under the same conditions as described in the “Mosquito
rearing” section above. Numbers of larvae from each clutch were counted and compared
to the egg count from their clutch to determine hatch rates.

2.9. Statistical Analysis

Normality tests of the distributions of all data were performed with Shapiro–Wilk
tests prior to selection of additional statistical analyses. A one-way ANOVA was used to
test for statistically significant differences in tissue and structure-specific nkaβ2 localization
measured by qRT-PCR. Statistical significance of RNAi knockdown of nkaβ2 relative to
GFP control was determined using an unpaired t-test. Differences in percent survival
of nkaβ2 dsRNA-injected and GFP dsRNA-injected mosquitoes was determined using a
Mantel–Cox log-rank test. Statistical significance in average ovary lengths and follicle
lengths between nkaβ2 dsRNA-injected and GFP dsRNA-injected mosquitoes was deter-
mined using unpaired t-tests at each time point. Significant differences in clutch sizes and
hatch rates between nkaβ2 dsRNA-injected and GFP dsRNA-injected mosquitoes was de-
termined using Mann–Whitney U tests. For all assays, a p-value threshold of p ≤ 0.05 was
considered statistically significant. All statistical analyses were performed using GraphPad
Prism8 software (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. nkaβ2 Expression Is High in Ovaries of Female Ae. aegypti

We profiled nkaβ2 expression in five tissues and structures of female Ae. aegypti by qRT-
PCR: fat bodies (FB), midguts (MG), Malpighian tubules (MT), ovaries (OV), and thoraxes
(TX) (Figure 1a). The various tissue types analyzed showed no significant difference in
nkaβ2 expression levels (Figure 1a). The expression of nkaβ2 was highest in ovaries relative
to the other four tissue types (FB, MG, TX, MT) (Figure 1a).

3.2. nkaβ2 Is an Ortholog of Drosophila Melanogaster Nervana 3

The D. melanogaster nervana (nrv) gene family (nrv1, nrv2, and nrv3) are orthologs of
the Ae. aegypti nka beta subunit genes, so we predicted that our nkaβ2 gene may serve a
similar function as its nrv ortholog. Therefore, we performed phylogenetic analysis of all
Ae. aegypti NKA alpha and beta subunit genes annotated in the NCBI Gene database using
the D. melanogaster NKA alpha subunit and nrv genes and determined that our nkaβ2 (Gene
ID: 5573862) gene is orthologous nrv3 (Figure S1).

3.3. dsRNA Reduces nkaβ2 Transcript Levels in Mosquitoes

We injected groups of female Ae. aegypti mosquitoes with approximately 1 µL of either
anti-GFP dsRNA or anti-nkaβ2 dsRNA at a concentration of 1 µg/µL. Three days post-
injection, we sacrificed the mosquitoes, extracted total RNA, and synthesized cDNA for
qRT-PCR. We performed qRT-PCR using four pools of mosquitoes injected with GFP dsRNA
(n = 4) and nkaβ2 dsRNA (n = 4) to assay for nkaβ2 expression after RNAi treatment. The
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expression of nkaβ2 mRNA was significantly reduced in nkaβ2 dsRNA-injected mosquitoes
relative to GFP dsRNA-injected mosquitoes (unpaired t-test: t = 3.0433, df = 6, p = 0.0227,
Cohen’s d = 2.152618) (Figure 1b).
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expression of nkaβ2 mRNA in ovaries relative to other tissues. While mean nkaβ2 expression was
highest in ovaries, expression was not significantly different between any tissue types. FB: fat body;
MG: midgut; MT: Malpighian tubules; OV: ovary; TX: thorax. Statistical analysis was performed
using a one-way ANOVA. (b). RNAi knockdown of nkaβ2 (Na/K) results in significantly reduced
nkaβ2 mRNA expression in nkaβ2 dsRNA-injected mosquitoes relative to GFP dsRNA-injected control
mosquitoes 3 days PI. Significant differences between injected groups were determined using an
unpaired t-test. Significant differences are marked with an asterisk. (c). RNAi knockdown of nkaβ2
expression caused reduction in survival of female Ae. aegypti relative to GFP dsRNA-injected female
Ae. aegypti through 72 h PI. Significance between survival curves was determined using a Mantel–Cox
log-rank test.

3.4. Na/K ATPase Subunit Beta Knockdown Does/Does Not Cause Significantly Increased
Mortality Relative to Control

We injected two groups of female Ae. aegypti mosquitoes with either anti-GFP dsRNA
(n = 67) or anti-nkaβ2 dsRNA (n = 73). After 24 h, 83.6% of nkaβ2-injected mosquitoes were
alive compared to 91% of GFP-injected mosquitoes (Figure 1c). After 48 h, 78.1% of nkaβ2-
injected mosquitoes survived while 89.60% of GFP-injected mosquitoes remained alive
(Figure 1c). After 72 h no more nkaβ2-injected mosquitoes had died (78.1% survival), and
85.1% of GFP-injected mosquitoes had still survived (Figure 1c). Overall, nkaβ2 injection
caused increased mortality at all time points measured PI but these differences were not
statistically significant.

3.5. Na/K ATPase Subunit Beta Knockdown Has No Significant Effect on Ovary or Follicle Size

We injected two groups of female Ae. aegypti with either nkaβ2 dsRNA or GFP dsRNA,
and three days PI, we offered them a blood meal. We sampled injected mosquitoes at
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the following times post-blood meal (PBM): unfed, 24 h PBM, 48 h PBM, and 72 h PBM
(Figure 2a). After blood feeding, mean NKAβ2 ovary lengths demonstrated a similar trend
in growth to that of the GFP injected mosquitoes (Figure 2b). Follicle lengths between
nkab2 dsRNA-injected and GFP injected mosquitoes were not significantly different at any
time point measured (Figure 2c).
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Figure 2. Effects of nkaβ2 knockdown on vitellogenesis and fecundity. (a). Representative ovaries
imaged from mosquitoes injected with either nkaβ2 dsRNA or GFP dsRNA at stated times PBM.
Scale bars in each image are 500 µm. (b,c). Average ovary lengths (b) and average follicle
lengths (c) measured from pairs of ovaries dissected from 10 nkaβ2 dsRNA-injected or 10 GFP dsRNA-
injected mosquitoes at the following time points: unfed (0 h PBM), 24 h PBM, 48 h PBM, and 72 h
PBM. Data points are represented as the average ovary lengths of 10 mosquitoes at each time
point ± SEM (b) or the average of five individual follicle lengths measured from 10 mosquitoes at
each time point ± SEM (c). Paired t-tests were used to determine significant differences in either
average ovary lengths (b) or average follicle lengths (c) at each time point. (d,e). Egg numbers (d) and
hatch rates (e) from nkaβ2 dsRNA-injected (n = 23) and GFP dsRNA-injected (n = 25) female
mosquitoes. Lines and whiskers represent median egg number or percent hatch rates ± interquartile
range (IQR). Red dots and black squares represent data from individual mosquitoes. Statistical signif-
icance between median egg numbers (d) and hatch rates (e) was determined using Mann–Whitney U
tests. Significant differences are marked with an asterisk.

3.6. Na/K ATPase Subunit Beta Knockdown Significantly Reduces Egg Numbers but Not
Hatch Rates

We injected two groups of female Ae. aegypti with either nkaβ2 dsRNA (n = 23) or
GFP dsRNA (n = 25). Three days PI, we blood fed each group of mosquitoes and placed
individual blood-fed mosquitoes into egg laying chambers. A total of 96 h PBM, we
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collected egg paper with clutches of eggs from each chamber. Egg counts from clutches
laid by nkaβ2 dsRNA-injected mosquitoes were significantly lower than egg counts from
GFP dsRNA-injected mosquitoes (Mann–Whitney U: U = 171, df = 46, p = 0.0154, Cohen’s
d = 0.576826) (Figure 2d). We observed a decrease in hatch rate of eggs laid by nkaβ2
dsRNA-injected mosquitoes relative to eggs laid by GFP dsRNA-injected mosquitoes,
but this difference was not statistically significant (Mann–Whitney U: U = 202, df = 46,
p = 0.0781, Cohen’s d = 0.491782) (Figure 2e).

4. Discussion

Ae. aegypti mosquitoes are prominent vectors of many insect-borne diseases such
as dengue, yellow fever, Zika, and chikungunya [46,47]. Mosquito-borne diseases have
detrimental effects on the human population, infecting hundreds of millions of people
every year [48]. Disease transmission is influenced by the need for female mosquitoes to
acquire nutrient rich blood from hosts for the development of follicles within their ovaries.
As more of the world becomes habitable for aedine mosquitoes due to accidental human
transport and climate change [49], and growing numbers of mosquito populations evolve
resistance to many currently used insecticides [50–58], novel means of reducing mosquito
populations are necessary.

Nutrient-sensing pathways are promising targets for novel insect control treatments,
as inadequate absorption of nutrients can cause adverse effects on female fecundity. After
blood feeding, the insect fat body is responsible for uptake, metabolism, storage, and
distribution of blood meal-derived nutrients during vitellogenesis [59]. Cationic amino
acid transporters (CATs) are a vital component of sensing the digested amino acids from
the blood meal and transporting positively charged amino acids into fat body cells [35,36].
We previously used a yeast two-hybrid assay to identify putative binding partners of the
cationic amino acid transporter, CAT1 and identified NKAβ2 as a potential interacting
partner [38]. In this study, we focused our efforts on understanding how nkaβ2 RNAi
knockdown affects female mosquito fecundity and have reported the effects of nkaβ2
knockdown on survival rate, follicle size, ovary size, clutch sizes, and hatch rates.

Ion gradients established by NKA are vital for the survival of any organism, con-
tributing to the reestablishment of the resting membrane potential [60], maintenance of
cellular tonicity [61], and powering transport of other solutes across the cell membrane [62].
Disruption of ion transport by NKA in rabbit cells may also lead to secondary transport
inhibition by improper ion gradient control [63]. Additionally, a lack of proper ion transport
function leads to imbalanced ion concentrations causing cell death in D. melanogaster neural
tissues [64]. Thus, we propose that knockdown of nkaβ2 contributes to the decreased
folding and localization of the catalytic NKAα subunit to the plasma membrane leading to
the inhibition of neural functions and possibly contributing to the non-significant reduction
in survival rates observed in nkaβ2 knockdowns relative to controls (Figure 1c). Future
studies analyzing the expression and localization of the NKAα subunit in response to nkaβ2
knockdown will be important for determining how NKAβ2 may affect ion transport in
neural and vitellogenic tissues.

We propose two hypotheses to explain the effects of nkaβ2 knockdown on female
fecundity. Our first hypothesis is that the effects of nkaβ2 knockdown are due to reduced
follicle cell patency in the ovaries of blood fed female Ae. aegypti. Induction of follicle cell
patency during vitellogenesis is a well-documented mechanism of yolk protein passage
to oocytes in many insects [65,66]. NKA pumps have been proposed to play a role in
this process, as altered ion gradients in follicle cells, coupled with alterations in NKA
subunit interactions at cell–cell junctions, can lead to shrinkage of follicle cells, producing
intercellular gaps for yolk proteins to flow through [67,68]. Ouabain treatment has been
demonstrated to decrease follicle patency, lending evidence to support the role of NKA
pumps in this process [69]. Additional support for the role of NKA pump activity in follicle
cell patency has been provided by studies demonstrating that signaling by hormones asso-
ciated with vitellogenesis alter NKA pump activity in ovaries [68]. Interestingly, evidence
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of follicle cell patency in Ae. aegypti is mixed, with reports both reporting and refuting the
opening of wider intracellular channels during vitellogenesis [47,70–72]. Whether follicle
cell channels do indeed expand, evidence indicates that follicle cells seem to retract from the
oocyte, leaving a wider perioocytic space for yolk nutrients to collect prior to uptake into
the developing oocyte [70]. Decreased space for vitellogenin flux and storage for uptake
by oocytes due to decreased NKA localization to the plasma membrane of follicle cells
could be a possible mechanism by which the knockdown of nkaβ2 leads to significantly
decreased clutch sizes compared to the control group in our study. Knockdown studies
using ouabain as a positive control for loss of NKA activity coupled with confocal and
electron microscopy using fluorescent or electron-dense labels adapted from previously
established protocols [70,73] would allow for elucidation of any potential role for nkaβ2 in
follicle cell patency. Additionally, detection of nkaβ2 expression in ovaries after knockdown
will provide crucial for determining if any effects observed in these experiments may be
directly correlated with loss of nkaβ2 expression in ovaries.

Our second proposed hypothesis for the role of nkaβ2 knockdown in reduced fe-
cundity is that reduction in cation transport across membranes of fat body cells alters
the charge gradient of these cell membranes, decreasing transport efficiency of charged
amino acids, which in turn reduces yolk precursor protein (YPP) synthesis. As described
by [74], positively charged amino acids induce YPP synthesis through activation of the
mTOR pathway, placing CATs in a central role during vitellogenesis [34,75]. Proteins that
may interact with these CATs may then also be important for proper transport of amino
acids, and activation of YPP synthesis in the fat body. While nkaβ2 was expressed at
highest levels in ovaries of Ae. aegypti as measured by qRT-PCR (Figure 1a), it was not
significantly higher than in fat body, meaning that the effects of nkaβ2 knockdown may be
due to alterations in fat body NKA activity. Influx of cationic amino acids must alter the
local membrane charge gradient, making it progressively more difficult to maintain the
necessary amino acid flux without some way of maintaining the electrochemical gradient
for these amino acids. Synthesis of amino acyl-tRNAs can maintain the chemical gradient
for these amino acids, but the potential interaction between CAT1 and NKAβ2 that we
previously identified [38] may be useful for stabilizing the local membrane charge gradient,
thereby maintaining efficient intake of cationic amino acids. The knockdown of nkaβ2
could possibly lead to insufficient synthesis of YPP’s, causing smaller clutch sizes as female
mosquitoes must use the smaller amount of YPP’s to produce a smaller set of nutrient-rich
oocytes. Research in D. melanogaster has demonstrated that nutrient deprivation leads to
reduced fecundity [76]. When nutrient-deprived flies were fed a diet supplemented with
essential amino acids, fecundity was increased compared to flies which were deprived of
essential amino acids [76]. Additionally, RNAi knockdown of two other CATs, CAT2 and
CAT3 significantly reduced mTOR signaling activity in Ae. aegypti after blood feeding [34].
As all three cationic amino acids (arginine, histidine, and lysine) are essential amino acids,
and CAT1 is a histidine-specific transporter, these studies showing that essential amino
acid depravation reduces fecundity in D. melanogaster, and CAT loss of function alters
vitellogenesis provide support for our second hypothesis. Our lab has previously reported
a method for culturing individual mosquito abdominal fat body organs to experimentally
isolate the fat body from other mosquito organs [77]. Using this fat body culture system,
radiolabeled amino acid uptake and YPP gene and protein expression studies in nkaβ2
knockdown, or CRISPR/Cas9-mediated knockout mosquitoes using ouabain as a positive
control for NKA loss of function can be performed to elucidate how reduced NKA function
may affect YPP synthesis in Ae. aegypti mosquitoes. Additionally, ouabain treatment will
affect the overall signaling and ion transport behavior of the NKAα subunit, so compar-
isons between ouabain-treated fat bodies and nkaβ2 loss-of-function fat bodies will provide
valuable insight into how nkaβ2 loss-of-function affects NKAα activity, either by altering
signaling, ion transport, or both.

In addition to the experiments described above to test each of our two stated hypothe-
ses, metabolomic and proteomic studies of ovaries and fat body tissues at different time
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points post-blood meal in nkaβ2 or GFP control dsRNA knockdown mosquitoes will also
help to determine whether nkaβ2 knockdown is affecting nutrient processing in the fat
body or nutrient uptake in the ovaries. Dissections of treated mosquitoes after egg laying
to look for any developed, but unlaid eggs in the ovaries may also provide insight into
whether reduced egg counts are due to improper yolk deposition and egg development,
or improper egg deposition. These experiments combined with microscopic analysis of
follicle cell patency, and molecular analysis of amino acid transport in the fat body will be
important for fully understanding how nkaβ2 knockdown produces reduced egg numbers
in Ae. aegypti. Along with the proposed metabolic and anatomical studies, knockdowns
in mosquitoes at different time points post-eclosion may also provide valuable insight on
what effect loss of nkaβ2 function at different points before and after sexual maturity may
have on the fecundity of these mosquitoes, and therefore how NKA activity at different
times during sexual maturation may be important for female fecundity.

As the nkaβ2 isoform we analyzed is orthologous to D. melanogaster nrv3 (Figure S1), it
is possible that nkaβ2 may localize to similar tissues and serve similar functions as nrv3.
Drosophila nrv3 expression has been detected in a variety of cell types in different body
regions including the central nervous system, Johnson’s Organs, chordotonal organs, and
enteroendocrine cells [78–80]. Several of these regions, particularly the chordotonal organs
which involve mechanosensation [81], and enteroendocrine cells that sense changes in
midgut content and release chemical signals in response [78] have functions that could
be analogous to important early post-blood meal processes of sensing abdominal stretch
and midgut contents after blood feeding. Thus, it is possible that nkaβ2 knockdown may
influence Ae. aegypti fecundity by altering signaling of abdominal stretch receptors or
enteroendocrine cells, thereby disrupting downstream nutrient and vitellogenic signaling,
leading to decreased fecundity.

5. Conclusions

NKAβ2 plays a role in female Ae. aegypti fecundity as evidenced by smaller clutch
sizes produced in nkaβ2 knockdown mosquitoes relative to GFP knockdown controls.
NKAβ2 expression patterns provide evidence for the development of multiple hypotheses
to describe how nkaβ2 knockdown affects Ae. aegypti egg numbers. Additional analysis
needs to be performed to confirm the mechanistic pathways by which nkaβ2 knockdown
affects clutch sizes laid by female Ae. aegypti. However, the present research demon-
strates an important role for the NKA pump in reproductive fitness of a medically im-
portant disease vector and provides a potential novel target for the design of new insect
control treatments.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/insects14010050/s1, Figure S1. Neighbor-joining tree produces clades that
represent orthology between Ae. aegypti Na+/K+ ATPase beta (NKAβ) subunits and D. melanogaster
Nervana (Nrv) proteins. Ae. aegypti NKAβ and D. melanogaster Nrv protein sequences were down-
loaded from the NCBI protein database and aligned using the MUSCLE algorithm in MEGA11 [42].
A neighbor-joining tree was generated in MEGA11 from this multiple sequence alignment. Numbers
next to each node represent bootstrap values based on 1000 replications. The branch in bold represents
the NKAβ2 isoform that we targeted for all knock-down experiments described in the manuscript.
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