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Simple Summary: The name ‘wireworm’ refers to the subterranean larvae of click beetle (Coleoptera:
Elateridae) species, of which several are serious pests of a wide range of crops. The limited effec-
tiveness of the available insecticides, their wide host range, their long life cycle, and their cryptic
subterranean habitat make wireworms a challenging pest to control. Integrated pest management
(IPM) strategies have been recommended to reduce wireworm damage. Although IPM is generally
considered to be an approach that is relatively more compatible with the environment and non-target
organisms, the implementation of some of the tactics of managing subterranean wireworms is ex-
pected to induce stress in the rhizosphere and the established ecological interactions within, some of
which could negatively impact various soil health parameters and, subsequently, plant growth. In this
paper, we highlight some of the IPM tactics against wireworms and their effects on the rhizosphere
and soil microbiome. Awareness of the potential impacts of IPM approaches to the management of
subterranean pests will help professionals to develop and implement IPM strategies that minimize
disturbance in the rhizosphere and support agroecosystem sustainability.

Abstract: The rhizosphere is where plant roots, physical soil, and subterranean organisms interact
to contribute to soil fertility and plant growth. In agroecosystems, the nature of the ecological
interactions within the rhizosphere is highly dynamic due to constant disruptions from agricultural
practices. The concept of integrated pest management (IPM) was developed in order to promote an
approach which is complementary to the environment and non-target organisms, including natural
enemies, by reducing the sole reliance on synthetic pesticides to control pests. However, some of
the implemented integrated cultural and biological control practices may impact the rhizosphere,
especially when targeting subterranean pests. Wireworms, the larval stage of click beetles (Coleoptera:
Elateridae), are generalist herbivores and a voracious group of pests that are difficult to control. This
paper introduces some existing challenges in wireworm IPM, and discusses the potential impacts of
various control methods on the rhizosphere. The awareness of the potential implications of different
pest management approaches on the rhizosphere will assist in decision-making and the selection of
the control tactics with the least long-term adverse effects on the rhizosphere.

Keywords: wireworms; rhizosphere; IPM; click beetle; soil microbial communities

1. Introduction

Subterranean wireworms are the larvae of click beetles (Coleoptera: Elateridae;
Figure 1A–C), and are one of the most challenging pests to manage in agroecosystems.
The adult beetles emerge in spring and early summer, between April and June in the
Pacific Northwest (PNW) and the Intermountain West regions of the US, to mate and lay
eggs. After egg hatching, the emerged larvae can live in the soil for multiple years, where
they complete seven to nine instar larvae within two to four years [1,2]. Wireworms are
generalist herbivores [2], and they can cause damage to almost any crop in the rotation
because of their multiyear larval stage and broad host range. The damage from wireworms
can be reflected in yield reduction and quality loss (Figure 2A–C). The stand thinning
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resulting from their feeding on seed, emerging sprouts, and young seedlings allows for
the establishment of weeds in the wireworm-infested areas [2]. At the field scale, the
damage is often patchy, corresponding to the patchiness of wireworm distribution within
fields, likely due to the adults’ oviposition site preference [3]. The duration of the larval
stage can be influenced by food availability and environmental conditions; wireworms can
survive extended periods without live vegetation, and nonliving organic matter constitutes
a negligible portion of their diets [4–6].
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Prior to the early 2000s, persistent broad-spectrum organochlorine insecticides were
used to keep wireworm populations in check [1,2,7,8]. After the de-registration of organochlo-
rines in the USA, due to their negative impact on non-target organisms and environmental
risks, and as the persistent residual activity started to fade away, wireworms re-emerged as
a key pest in several regions [9,10]. Despite recent developments in the chemical control of
wireworms, insecticides have often failed to adequately control the wireworm population
in most crops, especially small grains [11].

Integrated pest management (IPM) is an ecologically based approach that promotes a
biorational use of pesticides based on some decision-making guidelines [12–15]. Although
there has been growing interest in the implementation of IPM against wireworms, their sub-
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terranean habitat, patchy distribution, vertical movement in the soil, long life-cycle, broad
host range, and most importantly, limited location and the species-specific knowledge of
their ecology and phenology have made them a difficult pest to control. Despite being a
biorational strategy, the implementation of IPM tactics for the management of wireworms
can potentially alter the rhizosphere and the ecological interactions within; these effects
are often overlooked [16]. The rhizosphere is an interface where plant roots, soil, subter-
ranean pests, and beneficial organisms interact [16]. The agroecosystem’s productivity is
dependent on soil fertility and healthy plant development, both of which are influenced by
the microbial composition and an array of ecological interactions in the rhizosphere [17,18].
The ecological interactions in the rhizosphere are constantly disrupted by changes in plant
species (e.g., crop selection and rotation), the crop developmental stage [19–21], pest man-
agement [22,23], and other farming practices [16,24,25]. For example, pesticide applications
in non-organic production systems are known to alter the chemical and biological soil
properties [26–28] that are essential for both soil and crop health [27,29,30]. Shifts in the
soil microbiome can also, directly and indirectly, influence pest survival and susceptibility
to the implemented control practices. For example, some soil microorganisms are known
to influence insect feeding [31] or contribute to insecticide detoxification [32].

Therefore, practices that can alter the ecological interactions in the rhizosphere are
expected to influence both target (i.e., subterranean pests) and non-target organisms (i.e.,
beneficial organisms, plants). It is important to note that the ultimate goal of pest manage-
ment is to maximize the productivity of the agroecosystem. Awareness of the potential
impacts of various recommended control tactics on the rhizosphere will assist with the
development of IPM strategies that can more effectively contribute to the resilience and
sustainability of the agroecosystem. This brief review will first provide an overview of
the IPM components associated with the decision-making process which are pertinent to
wireworm control. We will then discuss the effectiveness of each recommended control
practice in the management of wireworm populations and damage. Under each approach,
we will highlight the potential impacts on the rhizosphere and soil microbiome. Finally, we
will discuss the implications of those effects on agroecosystem productivity and resilience,
and identify the existing gaps needing further investigations.

2. Implementation of IPM Principles to Control Wireworms
2.1. World Fauna and Species Identification

Our current understanding of the global distribution of click beetles is limited, and
the existing information is based on studies conducted in specific regions and countries.
Moreover, species composition can change over time at both the field and global scales.
The appearance of some of the European Agriotes spp. in North America also suggests
that human activities can contribute to click beetle dispersal [2]. Overall, there are about
10,000 species (400 genera) of click beetles worldwide [33], of which 921 species (91 genera)
are described in North America [34]. Three hundred and sixty-nine species have been
reported from Canada and Alaska [35], of which 30 species are of economic importance [36].
In the PNW, Limonius spp. is the most common pest species of click beetles devastating
sugar beets, small grains, potatoes, and organic vegetables [37–40].

In the Holarctic regions of Europe, North Africa, the Middle East, and North Asia, there
are about 100 economically important species of click beetles [1,41]. Agriotes spp.—specifically
A. lineatus, A. obscurus, and A. sputator—are Europe’s most damaging wireworm species [42].
Agriotes spp. have also been reported in North America [43], damaging various crops such
as corn, potato, strawberries, and organic vegetables [44]. Agriotes spp. often is not consid-
ered to be a major pest taxon in most of the USA, where Limonius spp., Selatosomus spp.,
Conoderus spp., Melanotus spp., and Dalopius spp. represent some of the most damaging
genera [2,45].

Several identification keys are available to determine adult genera and/or species [46–49].
However, the identification of the damaging immature wireworms is required in order to
inform the selection of adequate and timely control tactics. The limited development of
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some morphological characteristics in the early larval instars [46], the absence of distinct
features to distinguish some species [2], and/or worn-off morphological traits in late instars
make larval identification a challenging task. Despite these constraints, the recent advances
in molecular techniques have helped clarify several ambiguities in species identification.
The Agriotes species complex [3] is one example in which species identification based
on the larval morphology is challenging, and the cytochrome oxidase I (COI) and 16 S
regions of the mitochondrial DNA helped determine species, and even revealed several
haplotypes [50]. Moreover, DNA barcoding was used successfully to identify cryptic
species within Hadromorphus glaucus Germer and Hypnoidus bicolor Eschscholtz [51,52].
More recently, COI and 16 S rRNA sequences and nuclear genome-wide single nucleotide
polymorphisms generated from restriction site-associated DNA identified cryptic species
within the L. californicus and L. infuscatus, where potential genomic responses to broad-
spectrum insecticides were also detected [53]. Determining the effects of agricultural
practices on population genetic diversity and identifying ecological variables that predict
the evolution of adaptations and dispersal patterns [54] based on molecular data are
emerging areas of research, and long-term studies with large sample sizes are needed in
order to allow for the precise characterization of such effects.

2.2. Monitoring
2.2.1. Adult Monitoring

Sex pheromone lures have been used to estimate the abundance and distribution of
the male click beetles [3]. Synthesized female sex pheromones are now available for a
few species of click beetles, including several European species [55], and a few pestiferous
species in North America, including Cardiophorus tenebrosus [56], Limonius spp. [57,58], and
Melanotus communis [59].

In order to estimate the subterranean wireworm populations and species composition,
the monitoring of the adult click beetles with the pheromone traps was initially sought [2].
However, establishing the relation between the number of collected adult males and wire-
worms is complex, and is reflected in inconsistencies across study outcomes. For example,
although a field study on Agriotes spp. by Benefer et al. [36] detected no associations
between the number of click beetles and wireworms, Furlan et al. [60] reported a significant
relationship between male click beetle numbers, wireworm populations, and the extent of
damage to maize in Agriotes spp. Furlan et al. [60] also demonstrated that monitoring click
beetle populations two years before planting maize could be a practical risk assessment
method; in the case of A. ustulatus, capturing > 1000 click beetles/trap two years before
planting was associated with a more-than-12-times probability of >15% crop damage. Click
beetle behavior and their movement [61,62], the range of pheromone attractiveness [63,64],
trapping time and intensity [3], sex ratio, climate, and agricultural practices [65] are exam-
ples of the variables that can influence the precision of adult monitoring in the prediction
of subterranean wireworm populations. Although the development of pheromone lures
provides us with sensitive tools to monitor click beetles [66] and the opportunity to develop
distribution maps across landscapes [41], more large-scale species-specific data are needed
in order to solidify associations between adult pheromone traps and wireworm bait trap
data (Section 2.2.2).

2.2.2. Wireworm Monitoring

Soil core removal [67] and solar bait traps [39] are two of the most frequently used
field sampling methods [1]. Soil core sampling can be time-consuming [67,68]. Because
the wireworm distribution is often patchy [5], many core samples would be needed in
order to accurately estimate the field infestation status. Solar bait traps, on the other
hand, are designed to attract wireworms [1], and typically stay in the soil for several days.
Germinating cereal seeds are commonly used in solar bait traps as effective baits [69–71],
attracting wireworms to the CO2 and other volatiles released from the sprouting seed [72].
Covering bait traps with soil, plastic [73,74], and charcoal dust [73] helps to increase the
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temperature and trap the released CO2 and volatiles in order to maximize wireworm
attraction from a distance. Soil temperature [75], moisture [5,76], texture, and other existing
sources of CO2 [68] may influence the effectiveness of the bait traps.

The effectiveness of wireworm monitoring also depends on the species-specific phe-
nology and distribution patterns within fields [4,5,40,77]. Wireworm activity is influenced
by food availability, molting, and abiotic variables such as moisture and temperature [2,7].
Wireworms dive deeper into the soil profile when the environment is unfavorable and/or
become inactive [41,78,79]. Monitoring efforts when the wireworms are inactive or not
present in the topsoil may not yield reliable results. Early-season sampling and prophy-
lactic seed treatment application may miss the wireworm species that are active later in
the growing season. For example, seed treatment in the PNW is expected to protect plants
against L. infuscatus, which is active early in the season, but may not be as effective against
L. californicus, which remains active throughout the season [40]. Continuous monitoring
during the growing season can help capture an accurate estimate of wireworm populations,
species composition, and distribution.

Wireworm distribution within an infested field is often patchy, and multiple species
of wireworms can be present within a field [2,36] (AN and AR, unpublished). Because
wireworms have limited ability to disperse within the soil [80], their patchy distribution
may be explained by the adult female preference for oviposition sites [3]. The adult
click beetles are attracted to grasslands for oviposition [2,3,81], and higher wireworm
populations can be found in pastures, cereal fields lacking proper rotation, and natural
vegetations within and surrounding fields [82,83]. Wireworm distribution and the accuracy
of field monitoring can also be driven by other environmental constraints such as soil
characteristics and texture [3,84].

2.3. The Risk of Wireworm Damage
2.3.1. Wireworm Economic Threshold

The number of wireworms is not the only variable determining the risk of damage;
threshold assessments should also consider wireworm species and the crop of interest [85–87].
Cherry et al. [88] estimated that nine larvae of Melanotus communis in 25 soil samples
collected from infested sugarcane fields could cause severe economic damage. In another
study, Furlan [87] evaluated the damage of Agriotes spp. in corn, and showed that the effect
is influenced by both the number and species of the wireworms. The damage by one larva
of A. brevis was equal to damage caused by two A. sordidus, or five A. ustulatus. In potatoes,
seed treatment is recommended if the number of collected L. californicus or L. canus per trap
exceeds two larvae [89]. Moreover, different crops show different levels of susceptibility to
wireworm damage; Agriotes spp. can cause 100% and 50% damage in sugar beet and corn,
respectively, whereas the damage in soybean remains negligible [77].

2.3.2. Soil Properties and the Risk of Wireworm Damage

Soil temperature, moisture, and texture are among the most important variables
associated with wireworm damage [2,68,78,79,90–93].

In a study conducted in eastern Canada, wireworms started their activity when
soil temperatures reached slightly above 1.5 ◦C, and their movement peaked when soil
temperatures reached 12 ◦C; Dalopius pallidus, Ctenicera lobata, A. mancus, and H. abbreviatus
were the five species in the study sites [94]. These reported temperatures are similar to those
experienced by wireworms in the early spring when spring-seeded crops are sprouting. Soil
temperatures between 8 and 14 ◦C and soil moistures between 30 and 32% are associated
with a high risk of crop damage by Agriotes spp. [79]. The preferred soil moisture of
wireworms is also influenced by the soil’s physical structure [79]; the soil texture and
compaction influence fluctuations in moisture and temperature, and affect the ability of
wireworms to relocate and survive [95–98]. Soil porosity can also affect the diffusion
of carbon dioxide (CO2) and other volatile compounds released from the germinating
seeds and roots, which are cues that wireworms use to navigate food sources [41,81,99]. A
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greenhouse study showed that the frequency of damage by L. californicus to small grains
increases in sand-dominated media [100]. Hermann et al. [95] also reported a positive
association between sandy soil and potato tuber damage by Agriotes sp. Rapid changes
in moisture levels in sandy soil have been proposed as a factor triggering wireworms to
burrow into succulent tuber tissue in search of moisture.

Other soil variables that are studied in relation to the risk of wireworm damage are
the pH and the organic matter content [101]. However, it is also important to note that
the wireworm response to soil pH and soil organic matter can be species-dependent. For
example, Agriotes and Melanotus prefer acidic soils [83], whereas Limonius spp. can be active
in both alkaline and acidic soils [83]. Soil organic matter is not a major food source for
wireworms [6,102], and a long-term survey has suggested an increased risk of Agriotes spp.
presence and damage in soils with a high organic matter content [103]. The contribution
of soil organic matter to retaining moisture is likely to make conditions favorable for
wireworm survival. While the influence of environmental variables on wireworms is
often studied (or presented) in isolation, wireworms (and all living organisms) are always
exposed to a combination of variables. An understanding of the species-specific wireworm
response to combinations of interacting abiotic factors in the rhizosphere is expected to
help with the development of relatively more effective control methods (see Section 3.1.4,
for an example).

2.3.3. Landscape and Field History and the Risk of Wireworm Damage

The landscape surrounding farmlands and cropping history can also predict the risk of
wireworm infestation [95]. Specifically, grassland’s (including small grains with no rotation)
presence and duration are strong predictors of the likelihood of wireworm presence [97].

Anecdotal observations are also suggestive of increased wireworm damage on hillsides
and slopes (Rashed, personal observations), which supports the trend observed by Parker
and Seeney [97], who reported a higher frequency of wireworm infestation in south-facing
fields. As mentioned earlier, meadows, natural grass patches (including those dedicated to
the ‘Conservation Reserve Program’), and grassy and weedy field margins considerably
increase the wireworm damage risk because they attract adult females and provide a
favorable place for oviposition and larval development [7,68,95,103,104].

Poggi et al. [105] provided a comprehensive list of factors, including agricultural
practices studied for their impacts on the damage risk of wireworms. However, often
overlooked are the potential implications of the implemented control practices on the rhizo-
sphere and the ecological interactions involving subterranean micro- and macro-organisms.

3. Wireworm Control Tactics and Impacts on the Rhizosphere
3.1. Cultural Practices
3.1.1. Trap Crop and Intercropping

Because wireworms are limited in their mobility, it may appear that trap cropping
would not be a practical approach to reducing crop damage. However, placing attractive
trap crops within the main crop has been shown to protect the main crop [43,106]. Intercrop-
ping with wheat as the trap crop helped reduce wireworm damage in strawberries [107]
and maize [108]. The effectiveness of an attract-and-kill strategy, using insecticide-treated
wheat as a trap crop, has also been tested and proven successful in potatoes [109].

Intercropping can negatively impact pests by interfering with their ability to locate
host plants and/or by providing an environment which is suitable for the pest’s natural
enemies [16,110]. There is also evidence that diversity in trap crops (i.e., using seed
mixes) can increase wireworm attraction away from the main crop. Staudacher et al. [111]
compared the effectiveness of wheat and a mixture of the wheat, bean, lupine, white
mustard, buckwheat, and ryegrass as trap crops in maize; greater protection of maize
seedlings was achieved with the mixed-species trap crop.

Intercropping can also positively impact the agroecosystem and soil microbial com-
munities, enhancing plant productivity [112–115] . However, the microbial community
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composition and diversity in the rhizosphere can also shift in response to the soil type,
plant root exudates, and the interaction between plant species, i.e., nutrient availability
and uptake efficiency [112,116–120]. Therefore, selecting suitable plant species for trap
cropping is essential in order to sustain soil health, support vigorous plant development,
and protect the main crop.

The associations between the nitrogen (N) fixing soil bacteria in legumes make pulse
crops suitable candidates for intercropping [115,119,121]. The root tissues of legumes are a
source of high organic phosphorus (P) [122], and through the nitrogen-fixing process they
increase N in the soil [123]. Intercropping with legumes reduces the need for fertilizers;
therefore, it minimizes nitrate and nitrite pollution in the soil [115]. In cereal production,
using legumes as intercrops enhances yield and increases microbial diversity and biomass
in the rhizosphere [112,113,117–119,124,125]. Legumes, such as pea and lentil, are also ef-
fective trap crops, attracting wireworms away from the main wheat crop and, subsequently,
reducing damage [126–128]. Peas planted in potato fields have also been more attractive
than wheat and oilseed to wireworms in field trials [126].

Although intercropping with legumes can potentially reduce wireworm damage in
some crops, such as small grains and potatoes, the contribution of this approach to N
fixation and improved microbial activity could also, in turn, create an environment in
the rhizosphere that supports wireworm development and survival through improved
N metabolism and availability [129,130] and/or by suppressing the efficacy of ento-
mopathogens [131,132]. When it is abundant, wireworm activity can also increase the
microbiome density, functional diversity, and mineralization rate [129]. For example, in
higher N and carbon contents, wireworms can shift the soil bacterial composition to in-
crease the abundance of Azotobacter bacteria, which contribute to nitrogen fixation in the
soil [129,130].

3.1.2. Crop Rotation

Crop rotation can reduce pest incidence (i.e., pathogens, weeds, and arthropods) [133,134]
and contribute to N recovery, nutrient availability, and an increased rate of mineraliza-
tion [135,136]. However, because wireworms are polyphagous, they can feed on various
crops in rotations. Therefore, finding a proper diversified rotation to minimize wire-
worm damage is particularly challenging. The continuous rotation of small grains with
susceptible crops such as potato and sugar beet is not expected to reduce wireworm dam-
age [7,82,93,104,137]. However, rotations with relatively less-susceptible crops such as
mustard, soybean, sorghum, cabbage, French marigold, clover, and flax could help to
reduce wireworm damage when followed with more susceptible target crops [138]. Long
rotations with alfalfa can negatively impact the wireworm population [139]; this effect is
attributed to the soil drying and compaction in the rhizosphere due to the high root density
developed over the years [140].

A diverse crop rotation plan is expected to enhance the soil microbiome richness [109,136],
diversity [24,136,141,142], and crop yield [136,143]. This is because crops differ in the carbon
resources that they contribute to the rhizosphere, either through the release of species-
specific root exudates or the plant residue that they leave behind in the soil [144–147],
continuously selecting for the microbiome that can utilize the available resources. As
discussed earlier, an increase in the diversity and activity of the microbial community in
the rhizosphere may not directly negatively impact wireworm populations. Still, it could
indirectly reduce damage by supporting vigorous plant growth (i.e., the subsequent crop),
which may withstand and overcome feeding by the pest. Moreover, some of the N-fixing
crops, such as pea, bean, lentil, and alfalfa, which are relatively more tolerant of wireworm
damage, may be potential candidates for rotation with susceptible crops [138]. The selection
of a crop rotation plan that fits the regional cropping system and the soil’s physicochemical
characteristics is of particular importance. In relation to this, Nettles [148] states: “Several
rotations have been suggested by research workers on the wireworm problem, but it
should be borne in mind that no one rotation plan will suite all farmers.” In the PNW, peas
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and lentils are among the most common crops planted in rotation with cereals in rainfed
production systems, which are relatively more tolerant of wireworm damage. Promoting
diverse long-term rotation with legumes benefits the soil agroecosystem and may help to
keep wireworm damage in check.

3.1.3. Tillage

Overall, conventional tillage can negatively impact the wireworm population and
reduce the risk of damage to several economically important crops [82,99,149,150]. The
effectiveness of tillage as a control method depends on the wireworm’s seasonal activity
and life cycle; tillage can be a practical approach when larvae are active in the upper layer
of the soil surface [5,149]. Disturbing the topsoil with tillage can expose the click beetle
eggs and the newly hatched wireworms to predators, heat, and desiccation [5,77,151].
However, tillage can also stress the rhizosphere by altering the physical structure, aeration,
moisture, organic matter decomposition and nutrients, and ecological interactions in the
subterranean community that support root development and plant growth [152]. As such,
in recent years, conservation agriculture has been promoting minimum soil disturbance
(i.e., reduced or no tillage) to improve and conserve soil quality, preserve water, and
minimize soil erosion [153–155]. The no-tillage practice, with the coverage of plant residue
on the soil surface, improves soil microbial diversity and soil organic matter compared
to the conventional tillage system [25,141,156], and contributes to the resilience of the
agroecosystem [152]. The relatively more stable rhizosphere under no-tillage is expected
to provide a suitable environment for wireworms to survive, and has been proposed as
an underlying cause for their resurgence as a key pest (e.g., [7]). However, a recent study
concluded that in the maize production system, no-tillage neither increased wireworm
populations (primarily A. sordidus) nor the rate of damage [157].

While no-tillage and reduced tillage can contribute to soil health and the resilience
of the agroecosystem, their impact on wireworm populations and damage require further
studies that are species-, crop- and location-specific [41].

3.1.4. Soil Flooding and Drying

Due to the importance of soil moisture in wireworm survival [37,40], water manipula-
tion has been recommended as a possible control approach for wireworms [98,107,158,159].
The effect of soil drying is species-specific; withholding irrigation soon after oviposition to
dry topsoil reduced Agriotes spp. [5,68], L. californicus, and L. canus [78] numbers. However,
this approach was proven to be ineffective against the dryland species Selatosomus pruininus,
known as the Great Basin wireworm [159].

The efficacy of flooding as a control approach against wireworms is both species-
and temperature-dependent. Flooding can effectively control L. californicus when the soil
temperature exceeds 21 ◦C [158]. Similarly, in flooded soil, A. obscurus and A. lineatus died
more rapidly in 20 ◦C—an effect which was more pronounced in soils with high salinity [98].
Unlike the Agriotes and Limonius species complexes, the prairie grain wireworm, Selatosomus
destructor (AKA. Ctenicera destructor), can feed and molt while submerged in water for up
to 6 weeks [160].

Although water manipulation may help to reduce some species of wireworms, both
flooding and drought are known to influence biotic and abiotic interactions in the rhi-
zosphere. For example, soil microbial biomass and the bacteria:fungi ratio of the micro-
biome have been reported to decrease in the flooded, anaerobic environment, especially
in 10–20 cm soil depths [161]. A reduction in soil microorganisms may provide the en-
tomopathogenic fungi and nematodes with a competitive edge, improving their efficacy
against wireworms. There are studies demonstrating the antagonistic effects of indigenous
soil microbes on the applied entomopathogenic agents [162]. The entomopathogenic ne-
matodes Heterorhabditis bacteriophora and Steinernema feltiae have been shown to be more
effective against mealworms (Tenebrio molitor) in sterilized compared to non-sterilized
soil [131]. In another study, Mazzola [163] suppressed beneficial soil bacteria using soil
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fumigation in order to apply biological control agents against apple soil-borne pathogens
more effectively.

Prolonged periods of drought before planting can also have adverse and long-lasting
effects on soil bacterial communities; the addition of N fertilizer failed to improve soil
fertility and recover the soil bacterial community [164]. The potential negative impacts of
soil drying and flooding as a wireworm control method on soil health parameters need to
be further studied and quantified.

3.2. Host Plant Resistance and Tolerance

Because of the wireworms’ subterranean habitat and often-unknown species-specific
seasonality, planting resistant and tolerant host plants can be a reliable approach to reducing
the damage risk. Potato, corn, and sweet potato are the better-studied crops for variations
in susceptibility to wireworm damage. Johnson et al. [165] studied the susceptibility of
12 potato varieties to wireworm feeding. There, the glycoalkaloid concentrations were sug-
gested as one of the mechanisms contributing to the observed differences in susceptibility
to Agriotes spp.

Differences in susceptibility to A. sordidus were also reported among corn varieties [166],
where the less susceptible corn cultivars released higher concentrations and a more di-
verse blend of volatile compounds such as hexanal, heptanal, and 2,3-octenanedione than
the susceptible genotypes [166]. Hexanal and several other aldehydes have also been
detected in barley roots [167], which are a more tolerant crop to wireworm feeding than
wheat [100,168]. Oats show resistance to wireworms [168], likely because of their vigorous
root development and the presence of defensive steroidal and triterpenoid saponins [169].

Plant roots influence soil microbial composition and activity because they (the roots)
shed cells and release various species-specific metabolites into the rhizosphere [170,171].
At the same time, these interactions may develop into a plant-specific microbiome in
the rhizosphere (e.g., [116,172,173]). The persistence of such effects needs to be studied
in agroecosystems where crop rotations are common. The potential impact of plant de-
fenses on non-pathogenic microorganisms in the rhizosphere is an area that needs further
investigation (see [174] for a review).

3.3. Biological Control
3.3.1. Predators

Besides general vertebrate predators such as birds [175], moles and amphibians [2],
arthropods including carabid beetles, rove beetles (Coleoptera: Staphylinidae) [176,177]
and the stiletto fly Thereva nobilitata (Diptera: Therevidae) larvae [178] have been reported
to prey upon wireworms. It is conceivable that, like wireworms, the soil-dwelling predatory
beetles and their subterranean larvae are susceptible to some of the agricultural practices
that disturb the rhizosphere. Although the impact of these predatory insects on wireworms
is more limited than the entomopathogenic organisms, additional studies are needed in
order to quantify their impact as biological control agents. Several species of parasitoid
wasps from the families Proctotupidae, Bethylidae, and Ichneumonidae, and flies from
the family Tachinidae have also been reported to attack several species of wireworms, but
again the extent of parasitism in the field appears to be limited [2].

3.3.2. Entomopathogenic Bacteria

Among the resident bacteria in the rhizosphere, Pseudomonas aeruginosa has been
reported to infect wireworms during the susceptible molting process [179]. Although the
application of entomopathogenic bacteria to control wireworms has not been thoroughly in-
vestigated, the modification of the endosymbiotic bacteria associated with wireworms as a
biological control method has been the subject of a few studies [180–182]. Lacey et al. [183]
isolated Rahnella aquatilis, a common bacterium in the rhizosphere in the potato agroecosys-
tem, from L. canus. The genetically modified R. aquatilis expressed wireworm-active toxins
and successfully protected seed potatoes from wireworm damage [182]. Rickettsiella agrio-
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tidis isolated from Agriotes spp. [181], and Arthrobacter gandavensis, Bacillus thuringiensis, and
Pseudomonas plecoglossicida isolated from A. lineatus are a few more examples of bacteria [180]
with the potential to be developed into biological control agents against wireworms.

3.3.3. Entomopathogenic Nematodes

Steinernema and Heterorhabditis (Nematoda: Steinernematidae, Heterorhabditidae),
along with their endosymbiont bacteria Xenorhabdus spp. and Photorhabdus spp., respec-
tively, are the two main genera of entomopathogenic nematodes (hereafter, EPN) [183].
Although the EPN are expected to perform well in protected and moist habitats, a few
challenges exist with regard to wireworms [184]. Their resilience, physical barriers, and
behavioral responses make wireworms a difficult host to infect [185]. In the laboratory,
Steinernema carpocapsae, S. riobrave and, S. glaseri reduced damage caused by the sugar
beet wireworm, L. californicus [186,187]. Heterorhabditis bacteriophora, S. carpocapsae, and S.
feltiae were used to manage A. lineatus [188,189], A. obscrus, and A. sputator [189]; the three
entomopathogenic nematodes were effective against Agriotes spp. However, S. feltiae has
not been effective in controlling S. aeneus [190].

Differences in the efficacy of EPN species may be explained by differences in their for-
aging behavior [183,191] and/or species-specific differences in wireworm ecology [40]. The
efficacy of EPN is also influenced by biotic and abiotic environmental variables [192–194].
Therefore, naturally occurring EPN adapted to their soil habitat and endemic hosts might be
better than commercial nematode species for the management of local wireworms [184,195–197].
More studies are needed in order to evaluate the efficacy of naturally occurring nematodes
against wireworms.

3.3.4. Entomopathogenic Fungi (EPF)

Overall, EPF are a promising tool in the management of wireworms. Metarhizium
anisopliae (Clavicipitaceae) and Beauveria bassiana (Cordicipitaceae) recovered from the
larvae and adults of Hypolithus bicolor caused significant mortality in H. bicolor and S.
aeripennis destructor [198]. The B. bassiana isolated from the genera Agriotes, Conoderus, and
Hypnoidus [2] successfully reduced Agriotes spp. damage in potatoes [199]. The in-furrow
application of B. bassiana also reduced the number of Limonius spp. collected in bait traps
in organic fields (unpublished data). However, in a study by Kölliker and colleagues [200],
comparing efficacies of M. anisopliae (isolate ART-2825) and the commercial B. bassiana
against Agriotes spp., the two EPF species differed significantly in their efficacy against the
wireworm, with B. bassiana being ineffective. This finding supported Ansari et al. [189],
who determined B. bassiana to be non-pathogenic against A. lineatus. Although the efficacy
of M. anisopliae reached as high as 97% against A. obscurus, it was considerably less virulent
against A. lineatus and A. sputator [200].

Ansari et al. [189] also demonstrated that M. anisopliae can cause mortality in A. lineatus;
however, the mortality rate varied between 10 and 100%, depending on the EPF isolate.
Later, Reddy and colleagues [66] reported a reduced number of L. californicus and H. bicolor
in experimental plots treated with M. brunneum (F52), M. robertsii (DWR346), and B. bassiana
(GHA), with no difference being detected in the efficacy of the EPF species. Field-collected
EPF isolates have also shown promise in the reduction of wireworms. For example, M.
anisopliae isolated from field-collected A. obscurus was effective against that species in field
trials when applied at the high rate of 4 million conidia/cm3 [201].

Application methods that facilitate contact between the biological control agent and
wireworms can result in successful infection in the rhizosphere where wireworms are
most active; in-furrow and soil drench applications of EPF were more effective than seed
coating applications [66,202,203]. However, M. brunneum (1154) still successfully reduced
the wireworm population and crop damage when applied as a seed coating [204].

Biotic and abiotic environmental variables in the rhizosphere can determine the
efficacy of entomopathogens. The soil temperature [205–207], moisture [201,208], and
texture [192,209]; the duration of exposure; the pathogen concentrations [206]; the wire-
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worm location at the time of application [202]; and interactions with the soil micro-
biome [131,132,162,210] are examples of factors that can predict the efficacy of the en-
tomopathogenic organisms against wireworms.

Fluctuations in soil moisture and temperature are affected by the soil porosity and com-
paction, which are traits that also influence the ability of wireworms and entomopathogens
to relocate and survive [95–98,192]. For example, a porous sandy texture can facilitate EPN
locomotion and foraging success [192,193], but it may also increase the rate of damage
by wireworms [100]. High soil organic matter is expected to support EPF, likely because
soils with high organic matter help with moisture retention [211]. Therefore, selecting
entomopathogens which are compatible with environmental and field conditions is critical
if the biological control approach is being implemented alone or as a component of IPM
against wireworms [66,206].

Soil temperatures above 18 ◦C are optimal for M. anisopliae to infect wireworms success-
fully. As wireworms move deeper into the soil in order to evade increasing temperatures
and the dry topsoil, fungal conidia may not be able to reach the wireworms [202] effec-
tively; the fatal exposure time for wireworms at 18 ◦C is estimated to be at least 48 h [206].
Moreover, soil moisture below 6–18% [201] negatively impacts the viability of the fungal
conidia, further reducing the efficacy of the EPF.

The optimal temperature to reach higher infectivity differs among EPN species. For
example, the pathogenicity of S. carpocapsae [194] and H. bacteriophora [212] at temperatures
ranging from 5–25 ◦C is greater than 35 ◦C, whereas S. glaseri shows higher pathogenicity at
temperatures ranging between 15 and 35 ◦C [194]. Understanding the species-specific ecol-
ogy of wireworms and identifying the most effective species and strain of entomopathogens
for the environmental conditions are essential variables that can determine the success of
the biological control.

The subterranean entomopathogens continuously interact with the microbial organ-
isms in the rhizosphere. These interactions may affect the virulence of the entomopathogens,
as well as their ability to survive, move, and locate the host. Susurluk [131] and Shah [132]
showed that the efficacy of H. bacteriophora, S. feltiae, and M. anisopliae in sterilized soil is
significantly higher than that in non-sterile soil due to microbial suppression in sterilized
soil. As mentioned earlier, cultural practices such as trap cropping/intercropping [112–115]
and no-tillage [25,141,156] promote the microbial biomass, diversity, and activity in the
rhizosphere, which in turn could interfere with the efficacy of the entomopathogens against
subterranean pests. Future studies are warranted to evaluate these potential trade-offs in
agroecosystems. Moreover, while wireworms may directly benefit by contributing to N fix-
ation in the soil and enhancing microbial activity and biomass [129], they could also benefit
indirectly as the effectiveness of the entomopathogenic organisms is reduced. However, it
is also important to note that some entomopathogens, such as Metarhizium, are also known
to colonize plant roots, promoting growth, drought resistance, and nitrogen acquisition by
the host in the rhizosphere [213–215].

One of the less-studied aspects of wireworm management is the role that the as-
sociated endosymbionts may play in the determination of wireworm susceptibility to
entomopathogenic organisms. Kabaluk et al. [216] reported that the four endosymbiont
bacteria Pantoea agglomerans, Pandoraea pnommenusa, Nacardia pseudovaccinii, and Mycobac-
terium frederiksbergense, associated with wireworm species A. obscurus and A. lineatus, can
suppress infection by efficacious M. brunneum.

Although several studies examined the efficacy of various strains of entomopathogenic
organisms in isolation, in the rhizosphere wireworms are often exposed to multiple natural
enemies simultaneously [217]. A few studies examined the efficacy of a combination of
EPF and EPN against wireworms, which yielded inconsistent results [217–220]. The co-
application of EPN and EPF has been reported to result in synergistic [218], additive [219],
or even antagonistic [220] outcomes. The time and order of the applications, the devel-
opmental stage of the pest [221], the species and strain of the entomopathogens [222],
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and soil conditions [223] are examples of the variables that may influence the outcome of
co-applications of the entomopathogens.

Entomopathogenic organisms have also been used in combination with insecticides. In
the laboratory, combining M. anisopliae with the insecticide spinosad, a natural insecticide
produced by the soil bacterium Saccharopolyspora spinosa, increased mortality in A. obscurus
and A. lineatus [224]. In the field, corn seed coated with M. anisopliae and either spinosad
or clothianidin (neonicotinoid) was ineffective against A. obscurus [213]. However, the
application of M. anisopliae alone significantly increased the yield [213]. Mixed applications
of the bioinsecticides spinosad, azadirachtin, pyrethrin, M. brunneum F52, B. bassiana
ANT-03, and B. bassina GHA with each other and in combinations with the neonicotinoid
imidacloprid have also been evaluated against the three wireworm species L. californicus, H.
bicolor, and Aeolus mellillus in spring wheat [207]. The combined applications of imidacloprid
+ M. brunneum and M. brunneum + spinosad protected wheat seedlings from the wireworms
L. californicus and H. bicolor. However, the wireworm population treated with M. brunneum
+ spinosad was significantly higher compared to the control [207].

The attract-and-kill approach, based on wireworm responses to attractants such as
CO2 and other plant volatiles has also been used to increase contact between biocontrol
agents and wireworms [109]. Brandle et al. [209] used M. brunneum in combination with
capsules of baker’s yeast as an artificial source of CO2 to attract Agriotes spp. in organic
potato fields, and reported a significant reduction in crop damage. Millet grain has also
been used as an attractant to draw wireworms to B. bassiana and M. brunneum in spring
wheat [208]. Kabaluk et al. [201] used germinating wheat seeds coated with M. anisopliae as
a bait trap against A. obscurus in the field. Finally, in the laboratory, alginate beads loaded
with a combination of potato extract (as an attractant) and EPN (either S. carpocapsae or H.
bacteriophora) were effective in attracting and killing A. obscurus [225].

Using natural enemies to reduce wireworm populations can be costly, especially
in large-scale production systems. Therefore, if the natural enemies can persist in the
rhizosphere and remain viable for extended periods, their use as a control tactic could be
justified from an economic standpoint. In agroecosystems, the rhizosphere is disturbed
frequently by various cultural practices, which could influence the populations of natural
enemies. For example, entomopathogenic fungi densities are higher in habitats with less
soil disturbance, such as grasslands, than cultivated fields [226]. Location-specific studies
are needed in order to evaluate further the persistency of the applied biological control
agents and the naturally occurring entomopathogens in relation to cultural practices in
various agroecosystems.

3.4. Cover Crops and Plant-Derived Biocides as Green Manure

The integration of cover crops into the crop rotation plans can contribute to functional
biodiversity, improved pest management [227,228], and nutrient availability [229–231]
in agroecosystems. There are several species of plants from the family Brassicaceae that
contain biocidal glucosinolates, which are used to manage arthropod, pathogen, and weed
pests in agricultural systems [110,232–235]. When hydrolyzed, the biologically inactive
glucosinolates produce species-specific and active biocidal compounds [236]. The major glu-
cosinolate in the yellow mustard Sinapis alba is sinalbin, which produces ionic thiocyanate
SCN-, a phytotoxic biocidal product [237]. SCN- is ineffective against wireworms [238,239],
and is known primarily for its herbicidal effects [240,241]. In the brown mustard Brassica
juncea, sinigrin hydrolyzes to produce the volatile 2-propenyl isothiocyanate, a product
with proven efficacy against insect pests such as wireworms [242]. The glucosinolates in B.
carinata, B. oleracea, and B. nigra are also known for their insecticidal effects on soil-borne
insects [243–245]. Mustard products with a concentrated glucosinolate content have also
been developed and tested against wireworms. For example, defatted B. carinata seed meal
caused higher mortality in Agriotes spp. compared to soil-incorporated B. juncea plant
tissue [238,245]. Although mustard seed meal can have higher efficacy against wireworms,
its application in the field has been challenging due to its bulkiness. In order to address this
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limitation, a highly concentrated seed meal extract has been developed from B. juncea seed
meal [236], which successfully suppressed the reproduction of the plant pathogenic cyst
nematode, Globodera spp. [246]. This concentrated seed meal extract also effectively reduced
the L. californicus population in the laboratory (unpublished data). Although these newly
developed concentrated extracts are relatively easier to apply in the field, their effectiveness
and potential impact on the activities of soil microorganisms have yet to be evaluated in
the field.

Plant biofumigants are expected to degrade rapidly in the soil [243,245,247]. Hence,
green manuring the mustard cover crop is thought to benefit the soil by contributing
nutrients and organic matter and, subsequently, improving yield [235]. However, Hansen
et al. [248] reported a significant reduction in fungal and mycorrhizal community and
microbial biomass in general in the long-term wheat/canola (B. napus L.) rotation compared
to the spring wheat/winter wheat rotation. Although the canola contains considerably
lower concentrations of glucosinolates than either B. juncea or S. alba, the continuous release
of glucosinolates was proposed as a reason for the decline in the microbial community and,
subsequently, the wheat yield [248,249]. The effects of glucosinolates and their bioactive
derivatives are not limited to soil microorganisms and insect pests; beneficial organisms
such as entomopathogenic nematodes and fungi are also negatively impacted [110], which
may interfere with the effectiveness of wireworm IPM. However, as discussed earlier, the
post-fumigation soil application of entomopathogens has been reported to enhance the
efficacy of biological control agents because it reduces the competition with the microbial
communities in the rhizosphere [163].

The effects of mustard and its products on soil health in various cropping systems
need thorough investigations. The effective dosage based on the infestation rate, the
degradation parameters, the homogenous spread of seed meal products across the field,
effective incorporation into the soil, the optimal soil temperature and moisture, and most
importantly, the timely incorporation of green manure with respect to species-specific
wireworm ecology, are a few factors that can predict the probability of success in wireworm
management using biofumigants [41,77,238].

3.5. Insecticides

Organochlorines are a group of insecticides with persistent environmental effects [250];
they were used for decades to control agricultural pests, including wireworms [1,3]. This
group of insecticides is now banned in the USA and Canada due to environmental and hu-
man health risks. Organophosphates (chlorpyrifos, fonofos) and carbamates are two other
groups of relatively less persistent insecticides which are used to control soil-dwelling pests
such as wireworms, and are again mostly deregistered in the USA [11,251]. Phenylpyrazole,
pyrethroids, and neonicotinoids are now the most common groups of insecticides used to
control wireworms, offering various degrees of efficacy against this pest [9,11,252,253].

Some pyrethroids, such as tefluthrin [9,11,252], and neonicotinoids, such as thi-
amethoxam, imidacloprid, and clothianidin [9,10], are known to act as feeding deterrents,
and are used as seed treatments to reduce wireworm damage. Although these insecticides
are not effective in lowering wireworm populations [252], they are expected to provide crop
protection during the vulnerable stages of plant development [254]. The mixed application
of insecticides can also improve their efficacy against wireworms [10,252,254]. In the labora-
tory, combinations of thiamethoxam + fipronil [254,255], thiamethoxam + chlorpyrifos [254],
and thiamethoxam + pyrethroid [253] showed higher efficacy against different wireworm
species than individual applications of those insecticides.

The soil microbiome plays a critical role in degrading pesticides and removing them
from the rhizosphere [251]. Applying insecticides against subterranean pests could al-
ter the chemical and biological properties of the soil. Neonicotinoids, which are one of
the most commonly used seed treatments in small grains, are known to alter the struc-
ture, genetic diversity, and bioactivity of the soil microbial communities, at least in the
short-term [32,256–258]. Applying a higher dosage of the neonicotinoid imidacloprid can
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result in long-term changes in the soil’s microbial composition and metabolic activity [256].
Another neonicotinoid, thiamethoxam, has been reported to temporarily reduce the bac-
terial abundance of some of plant growth-promoting bacteria, such as Actinobacteria. In
contrast, pollutant-degrading bacteria (Firmicutes) are increased in the rhizosphere fol-
lowing insecticide applications [32]. The soil microbiome influences the composition of
endosymbionts associated with herbivorous insects [21,23,31]. Therefore, changes in the
soil microbial community following insecticide applications could potentially impact the
endosymbionts associated with wireworms. Understanding the functional role of various
endosymbionts in the life history traits of wireworms is a developing area of research.
Symbiotic microorganisms are known to promote insect resistance to biological control
agents like B. thuringiensis in gypsy moth [259], M. brunneum in wireworms [216], and
parasitoid wasps in aphids [259]. In the context of resistance to insecticides, Burkholderia
is an insecticide-degrading group of bacteria present in the soil, and can also be found
in the midgut of the stink bug, Riptortus pedestrist [22,260]. There, the soil application of
the organophosphate fenitrothion resulted in a shift in the composition of the soil micro-
biome, increasing insecticide-degrading bacteria, which can be ingested by the herbivores,
promoting resistance to insecticides [22].

Despite these reported impacts on the soil microbiome after insecticide applications,
the rhizosphere microbiome is expected to reach a stable status within months [257]; soil
organic matter, pH, and texture, have direct implications for the leaching, adsorption, and
desorption of the applied insecticides [261,262].

The metadiamide broflanilide is the most recent insecticide developed to reduce
wireworms in small grains. Although this insecticide has been very effective in knock-
ing down wireworm numbers, little is known about its impact on the rhizosphere and
non-target organisms. Nonetheless, our current knowledge of pesticide impacts on the
agroecosystem-specific rhizosphere microbiome with respect to soil physiochemical prop-
erties is limited [28,263], and additional studies are needed in order to determine whether
the adverse effects of pesticides on the non-target organisms in the rhizosphere outweigh
the benefits of reduced wireworm damage.

4. Conclusions and Future Directions

The abiotic components of the rhizosphere, e.g., the soil texture, mineral compo-
sition, organic matter, and moisture, can be directly affected by the cultural practices
recommended for wireworm management, such as tillage, soil flooding and drying, and
long-term crop rotations (e.g., alfalfa). However, several soil health parameters—such as mi-
crobial biomass, diversity, and activity—can also be negatively impacted by such practices.

Intercropping, planting less susceptible crops, and incorporating biofumigants and
cover crops into rotation plans to reduce wireworm populations can cause fluctuations
in the microbial community structure and its functional role. The soil microbiome and
function can also be impacted by the plant species, variety, and physiological stage of
plant development [264–267]. Moreover, although insecticides may temporarily reduce
wireworm losses, they can negatively impact the microorganisms that support healthy
plant development. Alternatively, or in addition, the increase in pesticide-degrading
bacteria following insecticide applications may increase the rate of their ingestion by
herbivores, thereby promoting resistance to the chemistry, which could become heritable in
a population [22]. This is a critical area of investigation with regard to the development of
sustainable pest management strategies, which to our knowledge have yet to be studied
in wireworms.

This brief review was intended to bring attention to the fact that the ultimate goals
of IPM are to minimize losses to insect pests and to contribute to the sustainability of
the production systems. However, many of the recommended management practices to
reduce wireworm populations and damage could potentially negatively impact variables
that contribute to soil and crop health. While studies are needed to examine the tradeoffs
among various practices, recognizing some of these antagonistic effects may also help to
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improve the effectiveness of integrated control strategies. For example, the efficacy of ento-
mopathogens against wireworms may be improved if they are applied after biofumigation
or soil flooding or drying, which are practices that are expected to temporarily suppress
microbial populations in the topsoil.

Our knowledge of the endosymbionts associated with wireworms is limited to a
few studies on a very limited number of species [130,180–182,216,268]. Future studies are
warranted in order to further learn about the species-specific wireworm endosymbionts in
relation to the location-specific soil microbiome and understand their functional roles with
respect to wireworm development and survival (e.g., resistance to stress).

The understanding of the wider impact of IPM practices on the sustainability of
agroecosystems is a developing and continuously evolving area of research, which requires
a transdisciplinary framework based on an in-depth interdisciplinary approach to future
studies of complex ecological interactions.
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