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Simple Summary: Feeding habits were the main factor affecting the gut microbial community
structure of Ensifera (Insecta: Orthoptera). The gut microbial communities of Ensifera with different
feeding habits were significantly different, as insects with more diverse feeding habits had gut
microorganisms with less specific functions. However, feeding habits are not the only factors that
affect the gut microbial community structure of Ensifera. Factors related to energy and nutrition
acquisition also affect them, such as the abundance of some microbial functional genes unrelated to
feeding habits but related to survival.

Abstract: Feeding habits were the primary factor affecting the gut bacterial communities in Ensifera.
However, the interaction mechanism between the gut microbiota and feeding characteristics is
not precisely understood. Here, the gut microbiota of Ensifera with diverse feeding habits was
analyzed by shotgun metagenomic sequencing to further clarify the composition and function
of the gut microbiota and its relationship with feeding characteristics. Our results indicate that
under the influence of feeding habits, the gut microbial communities of Ensifera showed specific
characteristics. Firstly, the gut microbial communities of the Ensifera with different feeding habits
differed significantly, among which the gut microbial diversity of the herbivorous Mecopoda niponensis
was the highest. Secondly, the functional genes related to feeding habits were in high abundance.
Thirdly, the specific function of the gut microbial species in the omnivorous Gryllotalpa orientalis
showed that the more diverse the feeding behavior of Ensifera, the worse the functional specificity
related to the feeding characteristics of its gut microbiota. However, feeding habits were not the only
factors affecting the gut microbiota of Ensifera. Some microorganisms’ genes, whose functions were
unrelated to feeding characteristics but were relevant to energy acquisition and nutrient absorption,
were detected in high abundance. Our results were the first to report on the composition and function
of the gut microbiota of Ensifera based on shotgun metagenomic sequencing and to explore the
potential mechanism of the gut microbiota’s association with diverse feeding habits.

Keywords: metagenomic; gut microbiota; feeding habits; KEGG; CAZymes; Ensifera

1. Introduction

Insects are the main group of arthropods, as well as one of the most diverse groups
of animals on earth [1,2]. The diversification and successful evolution of insects were
closely related to the symbiotic relationship between them and gut microorganisms in the
long-term coevolution process [3,4]. In particular, many symbiotic microorganisms have
explicitly adapted to insects as hosts and may participate in numerous metabolic activities.
Microorganisms play crucial roles in acquiring and absorbing nutrients [5], secreting
digestive enzymes [6], secreting immune-related compounds [7], enhancing pathogen
resistance [8,9], and influencing social interactions [10], among other roles. However,
identifying these microorganisms and determining their function remains challenging [11].
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Microbiota is studied using both culture-dependent [12] and culture-independent [13]
methods. However, due to the limitations associated with culture-dependent techniques,
most gut microorganisms remain uncultured, limiting the possibility of describing the gut
microbial community characteristics through culture techniques [14]. With the develop-
ment of high-throughput sequencing (HTS) technology, significant progress was made in
studying the gut microbiota through molecular biotechnology [15–17]. Furthermore, it
allowed us to better understand the microbiota’s structure, function, and diversity without
culturing [18]. The 16S rRNA gene and shotgun metagenomic sequencing methods, with
the characteristic of being microbial culture-independent, are the two main HTS tools that
provide insights into microbial community composition and function [18,19]. However,
16S rRNA gene sequencing has limited genomic scope and amplification biases toward
particular taxonomic groups. Therefore, no data are provided regarding the functional
capacity of a microbial community [20]. More recently, shotgun metagenomic sequencing
was applied to describe the viruses, bacteria, archaea, and eukaryotes that compose a given
microbiota and explore their implications in metabolism [21–23].

Many factors can influence insect gut microbial community structure, such as feeding
behavior, host taxonomy, life stage, and host environment [2,24–27]. A previous study
found that the feeding characteristics affect the structure of the insect gut microbial commu-
nity, which in turn affects the growth and development of the insect [28]. Studies also found
that changes in the ecological environment will affect the type of food consumed, leading
to changes in the gut microbial community of insects, which may harm their survival [29].
Meanwhile, gut microorganisms play an essential role in promoting the digestion and
absorption of the host. Some insects evolved to use lignocellulose substrates as energy by
using microbial metabolites [30]. Some symbiotic microorganisms secrete gut enzymes
through the hydrolysis of ingested plant cell wall polysaccharides [31]. In other words, the
host’s feeding behavior and gut microbial community interact. However, the mechanism
by which the host feeding behavior modifies the gut microbial community is unclear.

The suborder Ensifera (Insecta: Orthoptera) records about 7971 species and 19 sub-
families, many of which are endemic to China. Chinese Ensifera includes species of
katydids, crickets, mole crickets, and wetas, with high species diversity and diversified
feeding habits [32–34]. These species are major agricultural and forestry pests and potential
resources for biological control. Ensifera is thoroughly studied taxonomically and phyloge-
netically, providing resources for studying the gut microbiota [35]. In our previous study,
the 16S rRNA amplicon sequencing technology was used for sequence analysis of the gut
bacterial communities of 12 species of Ensifera from 5 families. It was found that feed-
ing habits were the primary factors affecting the gut bacterial communities, and samples
from different taxa with the same feeding habit showed similar gut bacterial community
structures [36]. However, the microbial composition and functional diversity of the gut
microbiota in Ensifera, especially the potential mechanism of the relationship between
the function of the gut microbiota and feeding habits, remains undetermined. Here, we
performed shotgun metagenomic sequencing of three selected Ensifera species from our
previous study mentioned above. Then, we directed our attention to the composition of the
gut microbial community to better describe the relationship between specific microbiota
functions and feeding characteristics.

2. Materials and Methods
2.1. Sample Collection and DNA Extraction

The adult Ensifera species were collected from two national nature reserve sites and
one farmland site in China in 2019 (Table 1), and were immediately submerged in 99% (v/v)
ethanol after capture until identification and dissection [37]. Based on morphological char-
acteristics, these samples were identified by the Katydids Laboratory of Hebei University
as Mecopoda niponensis (Mec) belonging to the family Tettigoniidae, Ocellarnaca emeiensis
(Oce) belonging to the family Gryllacrididae, and Gryllotalpa orientalis (Gry) belonging to
the family Gryllotalpidae, which were characterized as herbivore, carnivore, and omnivore
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feeding habits, respectively. The Department of Forestry of Guangxi Zhuang Autonomous
Region approved our entry to the Daming Mountains National Nature Reserve to collect
insect samples. The Zhejiang Tianmu Mountains National Nature Reserve Administration
approved our entry to the Tianmu Mountains National Nature Reserve to collect insect
samples. Samples from Hebei Province were collected from farmland. No endangered or
protected species were used in this study.

Table 1. Overview of sample information.

Taxonomy
Feeding
Habits

Location
Abbreviations

Family Species County/Mountain,
Province

Geographic
Coordinates

Tettigoniidae Mecopoda niponensis Herbivore Tianmu Mountains National
Nature Reserve, Zhejiang 30◦35′ N 119◦43′ E Mec

Gryllacrididae Ocellarnaca emeiensis Carnivore Daming Mountains National
Nature Reserve, Guangxi 23◦52′ N 108◦34′ E Oce

Gryllotalpidae Gryllotalpa orientalis Omnivore Quyang County, Hebei 38◦59′ N 114◦78′ E Gry

Gut dissection was performed as follows: Each insect species (n = 15) was gently
dissected by collecting the midgut and hindgut with gut contents under sterilized condi-
tions [38–40], and 5 guts were randomly pooled together as one biological replicate sample.
Then each sample was processed to extract DNA individually, using the TIANamp Stool
DNA Kit (TIANGEN, Beijing, China) according to the manufacturer’s protocols [13,41].
Sample blanks consisted of unused swabs processed through DNA extraction and were
tested to contain no DNA amplicons. Following the extraction, the total DNA in each gut
sample was measured using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and stored at −20 ◦C until sequencing by LC-Bio Technologies Co.,
Ltd., Hangzhou, China.

2.2. DNA Library Construction

After the DNA library was constructed and passed the quality test, Novaseq 6000 was
used for high-throughput sequencing. The sequencing mode was PE150. The sequencing
kit was the TruSeq Nano DNA LT Library Preparation Kit (FC-121-4001, Illumina, San
Diego, CA, USA) and was fragmented by dsDNA Fragmentase (NEB, M0348S, Ipswich,
MA, USA) at 37 ◦C for 30 min. The construction began with fragmented cDNA generated
using a combination of fill-in reactions and exonuclease activity, and size selection was
performed with the provided sample purification beads. The A-base was added to each
strand’s blunt ends to prepare them for ligation to the indexed adapters. Each adapter
contained a T-base overhang for ligating the adapter to the A-tailed fragmented DNA and
the full complement of the sequencing primer hybridization sites for single, paired-end,
and indexed reads. Single- or dual-index adapters were ligated to the fragments [42]. Then,
they were amplified with PCR using the following conditions: initial denaturation at 95 ◦C
for 3 min; 8 cycles of denaturation at 98 ◦C for 15 s, annealing at 60 ◦C for 15 s, and extension
at 72 ◦C for 30 s; and then final extension at 72 ◦C for 5 min.

2.3. Metagenomics Data Assembly and Analysis

Raw sequencing data were removed from the connector sequences to obtain valid
reads. Firstly, sequencing adapters were removed using cutadapt (v 1.9, https://github.
com/marcelm/cutadapt, accessed on 8 November 2020). Secondly, low-quality reads were
trimmed by fqtrim (v 0.94, http://ccb.jhu.edu/software/fqtrim/, accessed on 8 Novem-
ber 2020) using a sliding window algorithm. Thirdly, reads were aligned to the host
genome using bowtie2 (v2.2.0, http://bowtie-bio.sourceforge.net/bowtie2/, accessed
on 10 November 2020) to remove host contamination. After data preprocessing, the
quality-filtered reads were de novo assembled into contigs using IDBA-UD (v1.1.1, http:

https://github.com/marcelm/cutadapt
https://github.com/marcelm/cutadapt
http://ccb.jhu.edu/software/fqtrim/
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http://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/
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//i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/, accessed on 12 November 2020) [43].
QUAST (v3.2, St. Petersburg Academic University of the Russian Academy of Sciences,
St Petersburg, Russian) was used to visualize the mapping of the genome bin contigs
against the closest reference genome [44]. MetaGeneMark (v3.26, Georgia Tech, At-
lanta, GA, USA) was used to predict the coding region (CDS) of assembled contigs
(≥500 bp), and the CDS sequences less than 100 NT were filtered. Then, CD-HIT (v4.6.1,
http://www.bioinformatics.org/cd-hit/, accessed on 12 November 2020) was used to re-
move redundancy, and 95% of identity and 90% of coverage were used to cluster [45]. Then,
bowtie2 (v2.2.0, http://bowtie-bio.sourceforge.net/bowtie2/, accessed on 13 November
2020) was used to compare each sample’s clean data to the gene sequence, and the number
of reads was calculated. The genome sequence with fewer reads (≤2) was filtered out
to obtain unigenes for subsequent analysis. The taxonomy was annotated by searching
against the NR_ Meta database (blastp, evalue ≤ 1 × 10−5) using DIAMOND (v0.9.14, Max
Planck Institute for Biology, Tübingen, Germany) [46]. Combined with NCBI’s species
classification system, species annotation information at different taxonomic levels was
obtained [47]. Similarly, the unigenes’ functional annotation by the KEGG and CAZymes
databases was obtained.

The reference genomes from Teleogryllus occipitalis (https://www.ncbi.nlm.nih.gov/
genome/?term=GCA_011170035.1, accessed on 10 November 2020) and Laupala kohalen-
sis (https://www.ncbi.nlm.nih.gov/genome/?term=GCA_002313205.1, accessed on 10
November 2020), which are closely related to the samples in this study, were retrieved from
the NCBI database.

2.4. Statistical Analyses

Statistical analyses were carried out via R software (v4.1.2, http://cran.r-project.org,
accessed on 25 May 2022) [48]. The alpha diversity was calculated using species-level
annotation information statistics, and differences between the groups were assessed using
the Kruskal–Wallis test [47], with p < 0.05 as a significant difference. The beta diversity of
PCoA was tested with analysis of similarities (ANOSIM) [49] to analyze the differences
between samples, with p < 0.05 as a significant difference. LEfSe analysis [50] (LDA
score > 4) was used to find the biomarkers of the samples, with p < 0.05 as a significant
difference. UpSet analysis (threshold > 0.1) was used to show each sample’s shared and
unique microorganism. Unigenes were compared with the KEGG [51] and CAZymes
databases [52,53] (blastp, evalue ≤ 1 × 10−5) to obtain the annotation enrichment of
each database. The statistical analysis was carried out by pairwise comparisons with
Welch’s t-test [54] at KEGG levels 1 and 2, and CAZy level 2, with p < 0.05 as a significant
difference. In addition, among the KO entry metabolic pathways of different feeding
habits, the pathways related to carbohydrate metabolism, lipid metabolism, and amino
acid metabolism with significant differences (p < 0.05) were compared and analyzed. The
genes with 100% identity in the CAZymes database were screened, and their annotated
species information, as well as the annotated enzyme information of CAZy level 2, was
analyzed for correlation.

3. Results

In a previous study, we investigated the diversity of the gut bacterial communities of
Ensifera from twelve species of five families. We found that feeding characteristics were
the main factor affecting the structure of the gut bacterial communities. The gut bacterial
communities’ structure in Ensifera, from different taxa but with the same feeding habit,
was similar [36]. Therefore, we selected three Ensifera species (Mec, Oce, and Gry) with
high bacterial community diversity and minor intraspecific differences from the above
samples to explore the similarities and differences in the gut microbiota’s composition and
function mediated by feeding characteristics.

After extracting DNA from each gut sample, the collected samples were analyzed
by shotgun metagenomic sequencing. Since the raw sequencing data may contain splice

http://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/
http://i.cs.hku.hk/~alse/hkubrg/projects/idba_ud/
http://www.bioinformatics.org/cd-hit/
http://bowtie-bio.sourceforge.net/bowtie2/
https://www.ncbi.nlm.nih.gov/genome/?term=GCA_011170035.1
https://www.ncbi.nlm.nih.gov/genome/?term=GCA_011170035.1
https://www.ncbi.nlm.nih.gov/genome/?term=GCA_002313205.1
http://cran.r-project.org
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sequences and a certain proportion of low-quality data, clean data for subsequent analysis
could be obtained after quality trimming and host genome filtering. The preprocessing
results are shown in Table S1. Gry obtained the most sequencing reads, with a value of
85,662,373, followed by Oce and Mec, with 82,575,455 and 79,442,693, respectively. After
data preprocessing, IDBA-UD was assembled using a single sample, and QUAST evaluated
the assembly results. The assembly results are shown in Table S2. A co-assembly of samples
of Mec, Oce, and Gry generated 71,476, 129,921, and 417,677 contigs, respectively.

3.1. The Diversity and Composition of the Gut Microbiota

The alpha diversity analysis of the three species showed that the richness and diversity
of the gut microbiota in Mec were the highest. In contrast, Gry and Oce’s gut microbiota
was with high diversity similarity. There was no significant difference in the alpha diversity
index among the three species, however, with a significant difference between Mec and
Oce (Kruskal–Wallis, p < 0.05) (Figure 1A). Based on Bray–Curtis distances, the beta diver-
sity from the principal coordinate analysis (PCoA) showed significant differences in gut
microbial structure among the three species (ANOSIM: R = 1, p = 0.005). Meanwhile, the
sample of each feeding habit clustered together indicated that the intraspecific similarity of
the species was high (Figure 1B).
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Figure 1. Gut microbiota composition of the three species. Relative abundance of gut microbial
composition, (A) Alpha diversity of the gut microbial community based on Shannon, Chao1, Simpson,
and observed_species (ns, p > 0.05; *, p < 0.05). (B) Beta diversity of PCoA analysis based on Bray–
Curtis distances to compare differences between species.

The genes obtained from preprocessing were compared in the NR database (blastp,
evalue ≤ 1 × 10−5), and then the species annotation at different taxonomic levels was
obtained. Subsequently, the species abundance at each taxonomic level was obtained by
combining the species classification with the gene abundance. The classified sequences
were assigned to bacteria, eukaryotes, viruses, and archaea. Among the annotated classified
species, the abundance of bacteria was the highest, and the bacterial abundances of Mec,
Oce, and Gry were 81.91%, 88.71%, and 86.03%, respectively. Viruses were the next most
abundant in the gut microbiota of Mec and Gry, while eukaryotes were the next most
abundant in Oce (Table S3).

At the phylum level, the structure of the gut microbiota of the three species was differ-
ent. For instance, Firmicutes were the highest abundance of microbiota in Gry, Whereas
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Proteobacteria had the highest abundance of microbiota in Mec and Oce. Although the
bacterial abundance of Mec and Oce occupied the first place, there were several eukaryotic
phyla with high abundances, such as Mucoromycota and Basidiomycota. At the species
level, the dominant species of the three species were quite different. In particular, Intestini-
monas massiliensis, with the highest abundance in Gry, were not detected in Mec and Oce.
Meanwhile, both Gry and Oce had a high abundance of microbiota as dominant species
(Gry: Intestinimonas massiliensis; Oce: Lactococcus lactis). However, although Mec had a
highly diverse microbiota, no dominant taxonomic group was detected (Table 2).

At the phylum level, the main microbial phyla of bacteria (Figure 2A), eukaryotes
(Figure 2C), and viruses (Figure S1A) were the same, except archaea (Figure S1C). However,
the relative abundance and the dominant microbial components differed. Furthermore,
the microbial composition of viruses and archaea was low diversity, and few viruses were
detected in Oce. At the species level, bacteria (Figure 2B) specific to three species were
found in the dominant bacterial populations, such as Intestinimonas massiliensis in Gry,
Leclercia adecarboxylata in Mec, and Lactococcus lactis in Oce. However, although more
specific eukaryotes with high abundance (Figure 2D) were found in Gry (Metarhizium
majus and Endogone sp. FLAS-F59071) and Oce (Synchytrium microbalum and Sparassis
crispa), eukaryotes with high abundance (Rhizophagus irregularis, Puccinia striiformis and
Rhizophagus clarus) in Mec were also detected in other species. The composition and
structure of gut viruses (Figure S1B) were completely different. Archaea (Figure S1D)
accounted for less than 0.2% of Ensifera’s gut microbiota and showed little difference
except that Mec was the only one containing Thaumarchaeota archaeon.
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Table 2. Top 4 abundances in the gut microbiota at the phylum and species levels of samples with different feeding habits.

Samples Gryllotalpa orientalis Mecopoda niponensis Ocellarnaca emeiensis

Microbial Taxonomy Phylum/% Species/% Phylum/% Species/% Phylum/% Species/%

Identification
of microbiota

Top1 Firmicutes/47.09 Intestinimonas
massiliensis/42.12 Proteobacteria/77.65 Leclercia adecarboxy

lata/12.80 Proteobacteria/40.34 Lactococcus
lactis/23.82

Top2 Proteobacteria/31.80 Acinetobacter
baumannii/15.42 Mucoromycota/7.43 Kluyvera

cryocrescens/9.51 Firmicutes/20.04 Acinetobacter
baumannii/20.86

Top3 Bacteroidetes/8.69 Cotesia sesamiae
bracovirus/10.82 Basidiomycota/2.94 Pseudomonas

aeruginosa/9.16 Basidiomycota/14.64 Rhizophagus
irregularis/8.16

Top4 Candidatus_Tectomicrobia/2.61 Pseudomonas
aeruginosa/7.8 Firmicutes/2.51 Acinetobacter

baumannii/8.47 Mucoromycota/7.01 Solemya velum gill
symbiont/8.14
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3.2. The Characteristics of the Gut Microbiota

Based on the analysis of the three species’ gut microbiota structure and diversity, the
shared and unique microorganisms at the phylum and species level were displayed by
UpSet analysis (threshold > 0.1). At the phylum level (Figure 3A), the number of shared
microorganisms (28) of the three species was more than unique microorganisms, and most
of them were in high abundance. However, the number of unique microorganisms of
Gry was nine, while for Mec and Oce, it was seven and one, respectively. At the species
level (Figure 3B), the numbers of unique microorganisms of Mec (483) and Gry (436) were
more than the number of shared microorganisms (298), which overlapped in the three
species. The number of unique microorganisms in Oce was about 1/4 of that in the other
species. From the relationship between the two species, the number of microorganisms
that overlapped among Mec and Oce was 527, which was more than the number of
unique microorganisms.

To further explore the differences in the gut microbiota, LEfSe analysis (LDA score > 4,
p < 0.05) was used to find the biomarkers in bacteria (Figure 3C), eukaryotes (Figure S2A),
viruses (Figure S2B), and archaea (Figure 3D), with significant abundance differences
among the three species. In terms of the biomarker numbers, there was little difference
in gut eukaryotes and viruses among the samples. However, with significant differences
between gut bacteria and archaea. Among them, no biomarker was found in the gut
bacteria of Mec, whereas the number of biomarkers in the gut archaea of Mec was the
highest. In terms of the biomarker species, bacteria and viruses were the main biomarkers
of Gry, mainly including Firmicutes, Proteobacteria, Bacteroidetes, and Cotesia sesamiae
bracovirus. Archaea were the main biomarkers of Mec, mainly Thermoplasmata.

3.3. Metabolic Potential Functions of Gut Microbiota According to the KEGG Database

The functional annotation of gut microbiota in the KEGG database was investigated,
and these annotated biological functions were divided into six categories. In Mec and Oce,
more than 65% of the genes were mapped onto metabolism, followed by genes mapped
onto genetic information processing and environmental information processing. However,
nearly 85% of the genes were mapped onto human diseases in Gry, followed by genes
related to metabolism (Table 3). At KEGG level 1, genetic information processing was
the dominant pathway in Oce through pairwise comparison (Welch’s t-test, p < 0.05),
and human diseases were the dominant pathway in Gry (Figure 4A). At KEGG level 2,
metabolism of other amino acids and translation was the dominant pathway in Oce through
pairwise comparison (Welch’s t-test, p < 0.05), and drug resistance was the dominant
pathway in Gry (Figure 4B). No metabolic pathway significantly higher than the other
species was found in Mec.

Table 3. The percent of gut microbiota was assigned to biological functions.

KEGG Pathway
Percent of Genes (%)

Mec Oce Gry

Organismal systems 0.00 0.06 0.00
Metabolism 72.78 65.35 10.95

Human diseases 1.86 2.03 83.60
Genetic information processing 8.66 17.58 4.00

Environmental information processing 11.22 10.49 0.79
Cellular processes 5.48 4.49 0.66
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In order to deeply explore the relationship between the metabolic function of the
gut microbiota and feeding characteristics, we performed a difference analysis on KEGG
ORTHOLOGY (KO) database entry. Then, the carbohydrate metabolism, lipid metabolism,
and amino acid metabolism pathways, which were significantly different (p < 0.05) and
related to food digestion and absorption, were further explored. Among them, the gene
abundance of Mec in the carbohydrate metabolism pathway was higher than that of
the other species, such as fructose and mannose metabolism (ID: map00051) (Figure 4C)
and galactose metabolism (ID: map00052) (Figure S3A). However, in starch and sucrose
metabolism (ID: map00500) (Figure 4D), Gry showed the most substantial ability to convert
cellulose into glucose, and Oce showed the most substantial ability to convert maltose
into glucose. Interestingly, there was no high abundance of sequences related to lipid
metabolism on Oce. In amino acid metabolism, it was found that Mec and Oce have high
gene abundance in the biosynthesis of some amino acids, such as arginine biosynthesis (ID:
map00220) (Figure S3B) in Oce and phenylalanine, tyrosine and tryptophan biosynthesis
(ID: map00400) (Figure S3C) in Mec. Importantly, we did not find a high abundance of
genes related to nutrition in Gry. However, we found a high gene abundance (k02172: bla
regulator protein blaR1) involved in beta lactam resistance (ID: map01501) (Figure S3D)
in Gry.
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3.4. Metabolic Potential Functions of Gut Microbiota According to CAZymes Database

Based on the analysis of carbohydrate metabolism in Ensifera using the KEGG
database, we performed a detailed pathway analysis using the carbohydrate-active en-
zymes from the CAZymes database. A correlation between the gut microbiota and
CAZymes was established. The annotated genes belonged to six classes of CAZymes,
mainly glycosyl transferases (GTs), glycoside hydrolases (GHs), and carbohydrate esterases
(CEs). GTs involved in catalyzing the transfer of sugar moieties forming glycosidic bonds
and GHs involved in the hydrolysis of glycosidic bonds and carbohydrate esters were the
most abundant CAZymes, which combined contributed 83.67%, 83.65%, and 94.78% of the
abundance of Mec, Oce, and Gry, respectively (Figure 5A). Interestingly, CEs represented a
small amount in Mec and were almost absent in Gry, whereas their abundance was 11.77%
in Oce.

A deeper analysis of the abundance and diversity of CAZymes (CAZy level 2) revealed
that GT1, GH17, GH38, and CE8 were the dominant enzyme families in Oce through
pairwise comparison (Welch’s t-test, p < 0.01), while CE3 and CBM10 were the dominant
enzyme families in Mec (Welch’s t-test, p < 0.05) (Figure 5B). Notably, the CAZymes
family with significant differences in Mec was a unique enzyme family. No enzyme family
significantly higher than the other species was found in Gry (Table 4). The enzyme families
with the highest abundance among the samples were GT1, GT2, GT4, GT47, GH3, and CE8.
GT2, as an enzyme with high abundance, mainly existed in Mec and Gry. It was found in
all types of microorganisms, but mainly existed in bacteria. The representative enzyme
was cellulose synthase (EC 2.4.1.12), which was involved in cellulose synthesis, and chitin
synthase (EC 2.4.1.16), which converted UDP-N-acetyl-α-D-glucosamine into chitin and
UDP. CE8, the enzyme family with the second highest abundance in Oce, was almost absent

https://www.omicstudio.cn/tool
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in Gry, as it mainly existed in bacteria and eukaryotes. The representative enzyme was
pectin methyl esterase (EC 3.1.1.11), which catalyzed pectin hydrolysis to produce pectinic
acid and methanol. Meanwhile, GH3, with β-glucosidase as the representative enzyme,
was involved in the hydrolysis β-D-glucosyl residues with the release of β-D-glucose.
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In order to identify what microbial species play an essential role in the carbohydrate
active enzyme families, we screened 109 genes with an identity of 100% in the CAZymes
database and analyzed the correlation with the CAZy level 2 (Figure 5C). The results show
that Kluyvera, Enterobacteriaceae_unclassified, Enterobacter, Enterobacteriaceae_noname,
and Pantoea were positively correlated microorganisms, and Lactococcus was a negatively
correlated microorganism. These five microorganisms belonged to a bacterial genus of Mec
with high abundance, but their functions associated with the CAZymes database were not
highly abundant or unique.
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Table 4. Comparison of CAZyme families in the three species.

Groups
High Abundance CAZymes Significantly Different CAZymes Unique CAZymes

CAZyme
Family Activities in Family CAZyme

Family Activities in family CAZyme
Family Activities in Family

Mec

GT47

heparan
β-glucuronyltransferase

(EC 2.4.1.225); xyloglucan
β-galactosyltransferase

(EC 2.4.1.-)

CE3 acetyl xylan esterase
(EC 3.1.1.72) CE3 acetyl xylan esterase

(EC 3.1.1.72)

GT2
cellulose synthase

(EC 2.4.1.12); chitin synthase
(EC 2.4.1.16)

CBM10 cellulose-binding function CBM10, cellulose-binding
function

GT4
sucrose synthase (EC 2.4.1.13);
sucrose-phosphate synthase

(EC 2.4.1.14)
GH5_18 b-mannosidase

(EC 3.2.1.25)

GH5_13

b-D-
galactofuranosidase
(EC 3.2.1.146);a-L-

arabinofuranosidase
(EC 3.2.1.55)

GH100 alkaline and neutral
invertase (EC 3.2.1.26)

Oce

GT47

heparan
β-glucuronyltransferase

(EC 2.4.1.225); xyloglucan
β-galactosyltransferase

(EC 2.4.1.-)

CE8 pectin methylesterase
(EC 3.1.1.11)

CE8 pectin methylesterase
(EC 3.1.1.11) GT1

UDP-
glucuronosyltransferase (EC

2.4.1.17); zeatin
O-β-xylosyltransferase

(EC 2.4.2.40)

GT1

UDP-glucuronosyltransferase
(EC 2.4.1.17); zeatin

O-β-xylosyltransferase
(EC 2.4.2.40)

GH38

α-mannosidase
(EC 3.2.1.24);

mannosyl-oligosaccharide
α-1,2-mannosidase

(EC 3.2.1.113)

GH17

glucan
endo-1,3-β-glucosidase

(EC 3.2.1.39); licheninase
(EC 3.2.1.73)

Gry

GT2
cellulose synthase

(EC 2.4.1.12); chitin synthase
(EC 2.4.1.16)

GH3
β-glucosidase (EC 3.2.1.21);

xylan 1,4-β-xylosidase
(EC 3.2.1.37)

GT47

heparan
β-glucuronyltransferase

(EC 2.4.1.225); xyloglucan
β-galactosyltransferase

(EC 2.4.1.-)

4. Discussion

Feeding characteristics were the primary factor affecting the structure of the gut
bacterial communities of Ensifera [36], and they significantly affected the gut microbial
composition of other organisms [55–58]. This study explored the microbial community
composition and function in three representatives of Ensifera mediated by feeding charac-
teristics to deeply analyze the interaction between feeding habits and the gut microbiota.

Previous studies found that the taxa with complex feeding habits had a higher gut
bacterial diversity than those with single feeding habits [25,27]. This was also the result of
our previous study on the gut bacterial diversity of Ensifera [36]. However, in this compre-
hensive study on gut bacteria, eukaryotes, viruses, and archaea by shotgun metagenomic
sequencing, it was found that, although the omnivorous Gry had the most significant
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number of reads and contigs, its microbial diversity was not the highest. On the contrary,
the herbivorous Mec had the highest gut microbial diversity. LEfSe analysis found that
bacteria were the main biomarkers of the omnivorous Gry, and archaea and eukaryotes
played an important role in Mec. Therefore, we speculate that eukaryotes, archaea, and
viruses may have high diversity in the herbivorous Mec. Although the gut microbiota of
the herbivorous Mec was highly diversified, we did not find a biomarker in the bacterial
communities with the highest abundance.

Proteobacteria was involved in degrading cellulose substances in the host gut [59].
Similarly, we also found such characteristics in Ensifera, which showed that Proteobacteria
in the herbivorous Mec accounted for about 80% of the total microbiota abundance. Among
these species, bacteria were the dominant microbiota, followed by viruses, eukaryotes,
and archaea. Notably, the abundance of viruses was higher than that of eukaryotes in
the herbivorous Mec and omnivorous Gry. Moreover, it was previously reported that
honeybee gut viruses were a microbial population second only to bacteria [60]. Conversely,
viruses in the carnivorous Oce were almost absent, and possibly implied a high abundance
of gut viruses in plant-feeding Ensifera. In the previous study, Cyanobacteria mainly
existed in herbivores compared with other feeding habits [61]; and could even be used
as a biomarker for herbivorous insects. Interestingly, with the more accurate shotgun
metagenomic sequencing [5,62], the abundance of Cyanobacteria decreased significantly
and was almost undetected in the carnivorous Oce and omnivorous Gry.

Diet was the main driving factor for the functional composition of the gut mi-
crobial community [27,45]. To explore the functional characteristics of the gut micro-
biota in Ensifera, we annotated the metagenomic genes using the KEGG and CAZymes
databases [61,63,64]. Interestingly, although the herbivorous Mec had a high abundance
of genes in the carbohydrate metabolism pathway, we also found that the carnivorous Oce
had the most substantial ability to convert maltose into glucose and that the omnivorous
Gry had the most substantial ability to convert cellulose into glucose, in the carbohydrate
metabolism pathway. This indicated that Ensifera, with different feeding habits, had unique
methods of converting polysaccharides into monosaccharides to obtain energy. However,
the herbivorous Mec had a more vital ability to metabolize carbohydrates. Moreover, the
carnivorous Oce did not show an advantage in the lipid metabolism pathway, which was
far from our thoughts. Importantly, we did not find a high abundance of genes related to
food digestion and absorption in the omnivorous Gry. It was speculated that the specificity
of genes involved in nutrient metabolism in Ensifera with a single feeding habit was higher
than that with a broad-spectrum feeding habit. Ensifera, with a single feeding habit, had
a more vital ability to obtain nutrition from food. However, we found a high abundance
of resistance genes in Gry, suggesting that the omnivorous Gry’s defense mechanism was
better than that of herbivorous and carnivorous Ensifera species.

In this study, GTs were the most abundant enzymes in all samples, which was incon-
sistent with some animal reports that GHs were the most highly expressed enzymes [49,65].
GTs played a role in the biosynthesis of disaccharides, oligosaccharides, and polysaccha-
rides, catalyzed the transfer of sugar groups to aglycones, and were very important for
synthesizing many natural products [66]. GT2, with the high abundance of chitin synthase,
was mainly found in the herbivorous Mec, as chitin mainly existed in the epidermis of
insects, which indicated that the herbivorous Mec could digest not only cellulose but also
chitin in the insect epidermis. CE8, with the high abundance of pectin methyl esterase,
was mainly found in the carnivorous Oce, as pectin primarily existed in the plant cell wall
and inner layer [67], which was consistent with the conclusion in the KEGG database that
the carnivorous Oce can convert maltose into glucose to obtain nutrition and energy by
digesting food derived from plants. Meanwhile, GH3 with the representative enzyme
β-glucosidase involved in the hydrolysis release of β-D-glucose, consisting of the star
and sucrose metabolic pathways of the KEGG database, was found in Gry, which could
efficiently convert glucose. The above results show that in the gut of Ensifera species with a
specific feeding habit, the genes of metabolic pathways and enzyme families related to the
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feeding habit have a high abundance, and those related to energy and nutrient digestion
and absorption may also have a high abundance. It was speculated that Ensifera might
have to retain or evolve functions in order to adapt to extreme environments [58].

We found that the abundance of genes related to the metabolic pathway of the om-
nivorous Gry in drug resistance was significantly higher than that of the other species.
Gry usually lives in soil; however, we still do not know the role of such a high-abundance
metabolic pathway in its life activities. Although we detected the most significant number
of contigs and many unique microbial populations at the phylum and species levels, we
did not find a good performance in Gry’s unique functions of gut microbiota. For example,
a low abundance of KEGG metabolic pathways related to food digestion and absorption
was found, and no unique CAZyme family was found. This might indicate that the more
complex the feeding behavior of Ensifera, the worse the functional specificity related to the
feeding behavior of its gut microbiota. Furthermore, microbiota with a high correlation
with the CAZymes database had a high abundance, but the enzyme families associated with
the microbiota were not highly abundant or unique. This might mean that the functional
microbiota in the gut was not necessarily high-abundance microbiota [65,68], but maybe
some low-abundance or unique microbiota.

5. Conclusions

Our results show significant differences in the gut microbial community of Ensifera
are mediated by feeding behavior and that the main functions of the gut microbiota were
consistent with feeding characteristics. Specifically, the microbial community diversity
of herbivorous Ensifera species was higher than that of the omnivorous and carnivorous
species. At the same time, it was found that the abundance and specificity of the microbial
population related to feeding habits in omnivorous Ensifera species was low, indicating
that Ensifera species with a single feeding habit had a more vital ability to obtain nutrition
from food. We also found that the gut microbiota associated with a higher abundance
of metabolic pathways and carbohydrate active enzyme families were highly correlated
with feeding characteristics. However, some microorganisms that had nothing to do with
feeding characteristics, but were related to energy acquisition and nutrient absorption, also
had a high abundance. In addition, gut microbiota with a low abundance may play an
essential role in the life activities of Ensifera.
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levels. The results show the phylum and species of the gut microbiota with the highest abundance;
Figure S2: Distribution diagram of the LEfSe analysis based on the LDA score of (A) eukaryote
and (B) viruses to screen the biomarkers; Figure S3: Pathway annotation comparisons of the genes
assigned to the KEGG database. (A) Gene abundance comparison in galactose metabolism pathway.
(B) Gene abundance comparison in arginine biosynthesis pathway. (C) Gene abundance comparison
in phenylalanine, tyrosine and tryptophan biosynthesis pathway. (D) Gene abundance comparison
in beta lactam resistance pathway. Note: the genes belonging to the three samples with significant
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