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Simple Summary: We evaluated the behavioral asymmetries of Cryptolestes ferrugineus (Stephens)
(Coleoptera: Laemophloeidae) males during courtship and mating with potential mates. The highest
proportion of males showed left-biased approaches towards females, and turned 180◦ to their left.
Right-biased males (i.e., approaching mates from the right and then turning 180◦) were fewer than
left-biased males. A low percentage of males approaching from the front and back side achieved
successful mating. Left-biased-approaching males had a significantly shorter copula duration in
comparison with other males. Left-biased males performed shorter copulation attempts and copula
in comparison to right-biased males. This research contributes to understand the role of lateralization
in the beetle family Laemophloeidae.

Abstract: The rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae),
is a serious secondary pest of stored and processed food commodities. In the present study, we
investigated the lateralization of males during courtship and mating, attempting to understand if it
can be linked with a high likelihood of successful copulation. Most males exhibited left-biased (41%)
approaches towards females, and turned 180◦ to their left, with 37% mating success. Right-biased
males (i.e., approaching from the right and then turning 180◦) were fewer than left-biased ones; 26%
out of 34% managed to copulate with females. Only 9% out of 13% and 7% out of 11% of the back
side- and front side-approaching males succeeded in mating, respectively. Directional asymmetries
in approaching a potential mate, as well as the laterality of side-biased turning 180◦, significantly
affected male copulation success, with left-biased males achieving higher mating success if compared
to right-biased males. Copula duration was significantly lower for left-biased-approaching males
(1668.0 s) over the others (i.e., 1808.1, 1767.9 and 1746.9 for right-biased, front and back side-males,
respectively). Left-biased males performed shorter copulation attempts and copula compared to
right-biased males. Overall, our study adds basic knowledge to the lateralized behavioral displays
during courtship and copula of C. ferrugineus.

Keywords: copulation; laterality; lateralization; mating success; reproductive behavior;
stored-product insect pest

1. Introduction

Lateralization of the brain (i.e., the different functions and/or structures between the
left and right sides of the brain) can increase its ability to perform cognitive tasks involving
both hemispheres at the same time [1]. Lateralization has been examined extensively in
numerous vertebrate species [2–10]. However, invertebrates, especially insects [11–14], have
been relatively little studied. Further research is needed in insects to identify the connection
between the mechanisms of neural asymmetries and behavioral traits [15]. Although
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lateralization has been examined extensively in bees [16–22], there is a growing tendency
to investigate laterality traits in other groups of insects. For instance, concerning Diptera,
Benelli et al. [23,24] and Romano et al. [25] examined the lateralized aggressive displays in
the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), in the olive
fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), and in the blue bottle fly, Calliphora
vomitoria (L.) (Diptera: Calliphoridae). Benelli and Romano [26] also investigated courtship
and mating behavior of the green bottle fly, Lucilia sericata (Meigen) (Diptera: Calliphoridae),
and the impact of lateralization on these traits during sexual interactions. Behavioral
tests on laterality have been carried out on the Asian tiger mosquito, Aedes albopictus
(Skuse) (Diptera: Culicidae), as well as on the common house mosquito, Culex pipiens L.
(Diptera: Culicidae) [27,28]. In the case of orthopterans, Romano et al. [29,30] studied the
lateralization of the escape and surveillance responses of the migratory locust, Locusta
migratoria (L.) (Orthoptera: Acrididae), in different instars during biomimetic interactions
with a robot predator, while Bell and Niven [31] investigated the forelimb lateralization
of the desert locust, Schistocerca gregaria (Forsskål) (Orthoptera: Acrididae), during gap
crossing. Behavioral asymmetries during courtship and mating have also been examined
in the earwigs Labidura riparia (Pallas) (Dermaptera: Labiduridae), Euborellia plebeja Dohrn,
Nala lividipes (Dufour) and Nala nepalensis (Burr) (Dermaptera: Anisolabididae) [32–35].

Recent research efforts have focused on the laterality behavior during courtship and
mating in species belonging to the order Coleoptera, with a special focus on pests of
stored products. For instance, the influence of the geographical origin in relation to rearing
media (i.e., a Greek strain reared on wheat, a Greek strain reared on maize and a Peruvian
strain reared on maize) on male mating success and lateralization of the rice weevil,
Sitophilus oryzae (L.) (Coleoptera: Dryophthoridae), has been investigated [36]. Similarly,
Boukouvala et al. [37] examined the mating and laterality behavior of strains of the lesser
grain borer, Sitophilus oryzae (F.) (Coleoptera: Bostrychidae), originating from Greece,
Romania, and Turkey. Behavioral observations have been conducted for the tenebrionids,
the confused flour beetle, Tribolium confusum Jacquelin du Val, the red flour beetle, Tribolium
castaneum (Herbst) and the yellow mealworm, Tenebrio molitor L. (Coleoptera) [38–40]. The
presence of the lateralized mating traits during courtship and copulation for the khapra
beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae) [41], and the saw-toothed
grain beetle, Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) [42], has been also
studied. In addition, lateralized behavioral traits of both sexes of the larger grain borer,
Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae), during bio-hybrid intrasexual
and intersexual interactions have been investigated [43].

The rusty grain beetle, Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloei-
dae), is a serious pest of stored and processed commodities, exhibiting worldwide distribu-
tion [44–47]. Larvae and adults prefer to feed mainly on wheat germ, causing grain dam-
age [48–50]. It infests numerous commodities, such as oilseeds, dried tomatoes, black pep-
per, peanuts, cocoa, coffee bean, dried fruits, chili, hemp, cotton seed, rice, and yams [51,52].
The population growth of this species is affected by the moisture content of the grain, given
that it does not develop in very dry grains (i.e., less than 12% moisture content) [50,53].
Females mate repeatedly and their average egg production is about 240 eggs [50]. A thor-
ough analysis of the literature revealed a gap in knowledge related to the lateralization in
C. ferrugineus males, and more generally in the Laemophloeidae family, during courtship
and copulation with potential mates. In a historic study, Rilett [48] described the whole
mating sequence of this species. The typical mating of C. ferrugineus consists of the male
touching the tip of the female’s abdomen while pursuing her. When she stops, the male
touches the elytra of the female with his antennae and then he turns and tries to achieve
genital contact with the female [48]. In this scenario, the objective of the current study was
to quantify the courtship and mating behavior of this beetle pest, and to investigate the
presence of population-level behavioral asymmetries characterizing different mating dis-
plays of C. ferrugineus, shedding light on their potential connection with a high likelihood
of mating success.
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2. Materials and Methods
2.1. Insect Rearing and Sex Recognition

Virgin males and females of C. ferrugineus were used in our behavioral experiments.
Tested individuals were taken from a mass-rearing facility maintained in the Laboratory
of Agricultural Zoology and Entomology of the Agricultural University of Athens since
2017. This species was reared in a medium consisting of a mixture of 500 g wheat flour,
20 g yeast and broken wheat kernels on top (thickness of around 1 cm). The preservation
of the colonies took place at 30 ◦C, 65% relative humidity (RH) and in continuous darkness.
The initial population of C. ferrugineus was obtained from the Institute of Pesticides and
Environmental Protection (Belgrade, Serbia). The founding insects were originally collected
from Serbian facilities and had been cultured at the same conditions for >18 years.

To obtain virgin male and female adults, pupae were placed separately in 60 mL plastic
cups [37]. Sex recognition was conducted at the adult stage, by examining the shape of the
mandibles under a stereoscope, according to Rilett [48]. The mandibles of males have a
lateral projection near the base, resembling a tooth, while, in females, this projection does
not exist. Next, the individuals were kept in the same cups with the addition of 1 g of the
rearing medium until the beginning of the tests.

2.2. Behavioral Observations

Adults of C. ferrugineus mate within one or two days after their emergence [48].
Thus, all tested individuals were <1 day old. According to earlier behavioral studies on
various stored-product insect species [37–42], before the beginning of the experiments, we
exposed separately males and females for 3 h to natural conditions of light, as described by
Romano et al. [36], Boukouvala et al. [37,39–41] and Benelli et al. [38,41]. The observations
were carried out under natural photoperiod conditions. The type of arena that was used in
the trials followed Boukouvala et al. [42]. Mating trials were realized between 11 am and
7 pm, at 30 ◦C and 60% RH [36–42].

A virgin male and a virgin female of C. ferrugineus were transferred into the testing
arena, to investigate the presence of lateralized population-level behavioral asymmetries
during courtship [37]. We also described and quantified the courtship and mating behavior
sequence of this species. The evaluation was carried out visually for a period of 60 min
by an individual, or till the termination of the sexual activity, if there was any [38]. We
recorded the duration of the following phases: (i) mate recognition (i.e., time spent by the
male to detect the female), (ii) precopula (i.e., time spent by the male chasing the female,
until she stopped, and time spent by the male to achieve genital contact with the female),
(iii) copula (i.e., from the male insertion of the aedeagus into the female genital chamber
until genital disengagement) and (iv) the duration of the whole courtship and mating
sequence [36–40,42].

We observed a total of 262 mating pairs of C. ferrugineus, of which 123 were not taken
into account in statistical analysis because (i) the pair remained immobile or did not have
any sexual interaction during the 60-min observation [38]; (ii) the females were close to the
walls of the arena, influencing the laterality observations and obstructing the directional
approaches of the males [36], and (iii) females did not stop during chasing and males
gave up the attempt. Thus, 139 mating pairs were considered for behavioral analysis.
Furthermore, 111 (out of 139) mating pairs exhibited successful copulations; these data
were analyzed for assessing the possible impact of the lateralized approach of females or
lateralized male turning 180◦ to achieve genital contact on the duration of the C. ferrugineus
main mating traits. As has been reported in previous studies on other stored-product beetle
pests [37,40,42], and according to preliminary observations, it was not necessary to add any
food source in the arena for the mating of C. ferrugineus, thus avoiding the possible bias of
the orientation of the tested males.
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2.3. Statistical Analysis

Data concerning the mating success of C. ferrugineus performing or not a lateralized
approach towards potential mates, or exhibiting lateralized turning 180◦ before genital
contact with a female, were analyzed with the JMP 16.2 software [54], using a weighted
generalized linear model with binomial distribution: y = Xβ + ε, where y is the vector of
the observations (i.e., successful or unsuccessful copulation), X is the incidence matrix, β is
the vector of fixed effect (i.e., the approached side of the female’s body, or the left or right
turning 180◦ of males) and ε is the vector of the random residual effect. A probability level
of 0.05 was used for the significance of differences between values.

The effect of orientation in approaching the female and the lateralized turning of
180◦ of males on the duration of the main behavioral mating traits, i.e., mate recognition,
precopula (chasing and copulation attempt) and copula, were not normally distributed;
they were analyzed by the Steel–Dwass test, with α = 0.05 [37,42].

3. Results

The main lateralized traits of C. ferrugineus males during the mating sequence are
presented in Figure 1. Most males exhibited left-biased approaches towards females. In
our tests, 41% of males approached females from their left side and turned 180◦ to their
left, where 37% of males copulated successfully and only 4% of them failed to mate. Right-
biased males (i.e., approaching and turning 180◦) followed, where 26% out of 34% managed
to copulate with females and 8% did not mate. Fewer C. ferrugineus (14%) approached
the females from their back side, where 13% of males turned 180◦ to the left side, and 9%
(out of 13%) of them succeeded in mating. However, only 1% of the back side-males chose
to turn 180◦ from the right side, leading to successful copulation. A rate 11% of males
approached the females from the front side and performed a 180◦ turn from their right,
among which 7% (out of 11%) of them managed to copulate.
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Figure 1. Flow chart showing population-level behavioral asymmetries during courtship and mating
of Cryptolestes ferrugineus. Red, green, blue and orange arrows indicate the body side of females (left,
right, back and front, respectively) approached by males. Red and green arrows also indicate the
lateral turn of males before the genital contact. The thickness of each arrow indicates the proportion
of beetles displaying each behavior (n = 139 mating pairs).

The mating success of C. ferrugineus males exhibiting or not exhibiting asymmetric
approaches is presented in Figure 2. Side biases when approaching females significantly
affected the copulation success of males (χ2 = 9.002, DF = 3, p < 0.001). Left-biased ap-
proaches of males led to higher mating success (χ2 = 38.772, DF = 1, p < 0.001), followed by
the right-biased males (χ2 = 12.021, DF = 1, p < 0.001). The successful copulation was lower
for back side- or front side-approaching males (χ2 = 2.632, DF = 1, p > 0.05 and χ2 = 1.733,
DF = 1, p > 0.05 for back side and front side, respectively). Concerning the successful
copulation of males performing lateralized turning 180◦ before the genital contact, results
are shown in Figure 3. The laterality of side-biased turning 180◦ influenced the mating
success of males (χ2 = 4.778, DF = 1, p < 0.001). Males that preferred to turn 180◦ from their
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left side displayed higher copulation success, i.e., 65 pairs mated successfully (χ2 = 40.347,
DF = 1, p < 0.001), compared to males that turned 180◦ from their right side, i.e., 46 pairs
mated successfully (χ2 = 12.266, DF = 1, p < 0.001).
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Figure 2. Male mating success of Cryptolestes ferrugineus exhibiting or not exhibiting lateralized
approaches towards females. The asterisk indicates significant differences; n.s. = not significant
(generalized linear model, binomial distribution, p < 0.01).
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Figure 3. Male mating success of Cryptolestes ferrugineus performing lateralized turning before genital
contact with female. The asterisk indicates significant differences; (generalized linear model, binomial
distribution, p < 0.01).

Mate recognition duration in left-biased males (322.3 s) was lower than the duration
characterizing right-biased males (410.7 s). However, the duration of approaches of males
that approached females from their front side (166.1 s) was significantly lower than ap-
proaches from the left and right sides (Table 1). Regarding back side-approaching males
(189.7 s), the duration did not differ significantly from the durations of left-biased and
front side-approaching males. During precopula, the front side- and back side-approaching
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males (152.9 and 116.3 s for front side- and back side-approaching males, respectively)
spent significantly more time chasing the females if compared to the left- and right-biased
males (86.5 and 81.0 s for left- and right-biased males, respectively). During copulation
attempts, no significant differences were noted among the males that performed or not
lateralized approaches. However, the duration of copula was significantly lower for the
left-biased males (1668.0 s) if compared to other males (i.e., 1808.1, 1767.9 and 1746.9 for
left-biased, front side and back side-males, respectively). Duration of mate recognition and
chasing did not differ significantly between males that turned 180◦ from their right or left
side (Table 2). Significant differences were noted in the duration of the copulation attempt
and copula among left- and right-biased males (i.e., 33.7 and 1683.8 s for copulation attempt
and copula of left-biased males vs. 40.1 and 1799.3 s for copulation attempt and copula of
right-biased males). Left-biased males performed shorter copulation attempts and copula
than the right-biased males (Table 2).

Table 1. Effect of the recognition side bias on the duration of Cryptolestes ferrugineus main mating
traits. Values are means followed by standard errors (SE). Within each column, means followed
by different letters are significantly different (Steel–Dwass test, p < 0.05). Where no letters exist,
differences are not significant among side-biased parameters.

Precopula

Laterality Mate Recognition (s) Chasing (s) Copulation Attempt (s) Copula (s)

Left-biased 322.3 ± 21.4 ab 86.5 ± 2.9 c 32.4 ± 11.4 1668.0 ± 16.8 b
Right-biased 410.7 ± 40.4 a 81.0 ± 3.2 c 39.1 ± 7.4 1808.1 ± 13.3 a

Front side 166.1 ± 7.4 c 152.9 ± 4.8 a 38.0 ± 13.9 1767.9 ± 12.4 a
Back side 189.7 ± 22.9 bc 116.3 ± 4.7 b 41.8 ± 12.1 1746.9 ± 2.6 a

χ2 30.12 54.33 10.14 53.02
DF 3 3 3 3

p-value <0.0001 <0.0001 0.3194 <0.0001
Tested beetles (n = left +

right + front +
back-biased)

57 + 48 + 15 + 19 = 139 57 + 48 + 15 + 19 = 139 57 + 48 + 15 + 19 = 139 52 + 36 + 10 + 13 = 111

Table 2. Duration of Cryptolestes ferrugineus main mating behavior displays during sexual interactions
characterized by a lateral turn of 180◦. Values are means followed by standard errors (SE). Within
each column, asterisks indicate significant differences (Steel–Dwass test, p < 0.05). Where no asterisks
exist, no significant differences were noted.

Precopula

Laterality Mate Recognition (s) Chasing (s) Copulation Attempt (s) Copula (s)

Left-biased 285.7 ± 18.1 94.2 ± 2.9 33.7 ± 9.1 1683.8 ± 14.0
Right-biased 355.5 ± 33.7 97.8 ± 4.7 40.1 ± 6.5 1799.3 ± 11.0

χ2 2.14 0.01 29.7 46.93
DF 1 1 1 1

p-value 0.1431 0.9865 <0.0001 * <0.0001 *
Tested beetles (n = left +

right-biased) 75 + 64 = 139 75 + 64 = 139 75 + 64 = 139 65 + 46 = 111

4. Discussion

Our findings add knowledge on the role of behavioral asymmetries in the courtship
and mating of C. ferrugineus, an important pest of stored and processed food commodities
worldwide. The results of the present study indicate that males of this species performed
left-biased mate approaching and turned 180◦ from their left side, achieving higher mating
success over right-biased males. The success of left-biased males could be attributed to
differences between males and females in morphology, i.e., males have longer antenna,
the heads of males are larger, the thorax is wider in males, the tarsi of males are 5-5-4
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vs. 5-5-5 in females [48]. For instance, Eberhard [55] reported that the morphology of the
abdominal sternites affected the courtship of Phyllophaga spp. (Coleoptera: Melolonthi-
dae). Further research is needed to shed light on this issue. Of note, earlier behavioral
studies on other stored-product pests belonging to the order Coleoptera revealed that left-
biased males achieved higher mating rates over right-biased males. For instance, males of
T. confusum and T. castaneum that performed a left-biased approach during courtship were
more successful than right-biased males [38,39]. Moreover, males of T. molitor achieved
higher proportions of successful copulations when they moved on the apex of the fe-
male abdomen and attempted to mount from the left side in comparison to the right side.
Benelli et al. [38] reported that male S. oryzae performed left-biased copulation attempts
towards potential mates, exhibiting a periodical right-biased head wagging behavior, re-
gardless of the fact that most of the males had previously attempted left-biased copulations.
The same trend has been reported for T. granarium males. They exhibited left-biased asym-
metries during the recognition approach of females, resulting in more successful mating if
compared to the right-biased males [41]. Taking into account the above-mentioned studies,
it seems that there is an abundance of left-biased courtship and mating traits in stored-
product beetle species. However, there are also two studies with contrasting results. Strains
of R. dominica originating from three distinct geographical sites (i.e., Greece, Romania, and
Turkey) have been found to be right-biased when attempting to mate, resulting in a higher
percentage of successful copulations over left-biased and back side-approaching males [37].
Similarly, males of O. surinamensis performed mounting attempts from the right side of
females, achieved higher mating success over left-biased males [42].

One of the most important findings of the present study is the impact of male lat-
erality behavior (e.g., left or right turning 180◦) on the duration of each phase during
courtship and copulation. Concretely, the duration of mate recognition and chasing was
lower in left-biased males in comparison to the right-biased ones, while the duration of
copulation attempts and copula was significantly shorter for the left-biased males than the
right-biased males. The high proportion of successful matings by C. ferrugineus left-biased
males, combined with the shorter duration of each phase, may positively affect the devel-
opment of large insect populations. Male laterality could be partially explained by the
higher abundance of sensilla on a certain side of the female head that create olfactory and
tactile side biases, as has been reported for Hymenoptera [19,56]. Whether this is a case for
stored-product Coleoptera remains to be confirmed. This knowledge can be a useful tool to
optimize mass-rearing techniques by choosing behavioral traits as indicators of male quality
over time [37]. Therefore, considering the knowledge obtained so far for the mating and
laterality behavior of key stored-product insect pests, the selection of the left-biased males
of S. oryzae, T. granarium, T. confusum, T. castaneum and T. molitor, as well as the right-biased
males of R. dominica and O. surinamensis, may be useful to initiate laboratory mass rearing
that can develop quickly. However, further experimentation is needed to investigate this
issue, especially the behavioral analysis of populations from different geographical sites,
given that origin affects lateralization [36,37]. On the basis of previous research and the
current study, we are able to propose the following order of species presenting left-biased
asymmetries during courtship and mating: C. ferrugineus (1683.8 s) > T. confusum (~420 s) >
S. oryzae (~140 s) > T. castaneum (~130 s) > T. molitor (84.5 s) > T. granarium (65.83 s) [38–41].
Therefore, when multiple options are available for conducting experiments (e.g., insecticide
development and evaluation, bioecology) with stored-product insect species, C. ferrug-
ineus would be a less favorable selection, because it exhibits much longer copulation in
relation to other stored-product insects. However, whether C. ferrugineus can be used
as a model species in science, such as Tribolium spp. [38,39] and T. molitor [40], merits
further investigation.

The behavioral trait of males turning 180◦ before genital contact with the female is also
evident in a closely related species, the flat grain beetle, Cryptolestes pusillus (Schönherr)
(Coleoptera: Laemophloeidae) [48]. Based on our previous work [36–40,42], this character-
istic is not common among other stored-product coleopteran species, since malemounts
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the female to execute genital contact. For instance, T. castaneum, T. confusum, T. molitor,
O. surinamensis, R. dominica and S. oryzae conduct mounting attempts and remain upon
females during copulation. An exception is represented by T. granarium, which shows 45◦,
90◦ and, rarely, 180◦ turns [41]. Even in this case, the 180◦ turning is performed by 3%,
while 45◦ and 90◦ correspond to 46 and 27% of the tested males [41]. The different ways
in which males mount females might be due to anatomical or morphological differences
among the different species. Whether the aforementioned behavior affects the life history
of C. ferrugineus needs additional research.

5. Conclusions

Our findings indicate significant differences in the success of copulation among the
left- and right-biased approaching males, and among males with left- or right-biased
turning 180◦. More experiments should be carried out to shed light on the complex
phenomenon of lateralization to clarify the mechanisms that affect the mating behavior
of beetle pests of stored products. Although our research has included some noxious
stored-product coleopterans, it has been conducted per species [38–42] or strain [36,37].
However, in the storage environment, numerous species co-exist [47], an issue that al-
ters the damaging potential of the co-existing species [57]. Whether laterality is also
affected when different species grow on the same substratum is a challenging new area for
behavioral investigations.
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