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Simple Summary: The subfamily Eumeninae comprises more than 3900 described species and
eumenine mitochondrial analyses are almost absent. In order to provide further evidence toward
understanding the relationships within the subfamily, the characteristics of 54 eumenine mitogenomes
were comparatively analyzed, among which 52 mitogenomes are newly annotated. Meanwhile, using
both Maximum-likelihood (ML) and Bayesian inference (BI), comprehensive phylogenetic relationship
in the subfamily were investigated based on two mitochondrial datasets.

Abstract: The subfamily Eumeninae plays a significant role in the biological control of agricultural
pests. However, the characteristics of eumenine mitogenomes that are important molecular markers
for phylogenetics are not clearly revealed. Here, 52 eumenine mitogenomes are newly sequenced and
annotated, and the phylogenetic relationships of the subfamily are comprehensively analyzed based
on 87 vespid mitogenomes. Through the comparative analysis of the 54 eumenine mitogenomes,
the gene compositions of about one half of the 54 species match with ancestral insect mitogenome,
and remaining others contain two trnM which are highly similar, with 51.86% (Eumenes tripunc-
tatus) to 90.65% (Pseumenes nigripectus) sequence identities, which is unique among the reported
mitogenomes of the family Vespidae. Moreover, the translocation trnL1 upstream of nad1 is a common
rearrangement event in all eumenine mitogenomes. The results of phylogenetic analyses support the
paraphyly of the subfamily Eumeninae and the tribe Odynerini, respectively, and the monophyly
of the tribe Eumenini, and verify that the tribe Zethini is a valid subfamily Zethinae. In this study,
the relationships between some genera such as Allorhynchium and Pararrhynchium or the taxonomic
status of the subgenera such as Eremodynerus and Dirhynchium are found to be confusing and there
should be further inquiry with more samples.

Keywords: Eumeninae; gene rearrangement; mitogenomes; phylogenetic; Vespidae

1. Introduction

The subfamily Eumeninae containing more than 3900 described species is the biggest
of the family Vespidae (Hymenoptera). It is the primary lineage of the Vespidae [1], which
plays a significant role in the biological control of agricultural pests because of its cosmopoli-
tan predation of the larvae of Lepidoptera (e.g., Geometridae, Tortricidae) and Coleoptera
(e.g., Chrysomelidae and Curculionidae) [2,3]. Most of them are solitary wasps, using mud
to partition the cells, while some are primitively social, burrowing in the soil or wood,
many species in Zethini construct their nests by exploiting masticated and salivated plant
material such as Zethus, Ischnocoelia, Elimus, Discoelius, and Protodiscoelius using vegetable
matter for cell partition, and Psiliglossa and Raphiglossa using pith [4,5]. Additionally, the
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high morphological diversity and complexity of Eumeninae leads to some difficulties in
its classification, and some other difficulties may be attributed to its troubled taxonomic
history [6]. Hence, the early classifications of this subfamily underwent a radical trans-
formation. Based on the morphology of the mouthparts and the general shape of the
metasoma, Latreille began the generic classification of Eumeninae and divided the current
species of Eumeninae into three genera: Eumenes, Odynerus, and Synagris [7]. Later, de
Saussure divided ‘Euméniens’ into Anomaloptéres, Euptéres, and Mischoptéres, after that
he separated Zethus, Calligaster, and Discoelius from the rest of his section ‘Euptéres’ of the
‘Eumhiens’ as the group ‘Zethites’ [8,9]. Thereafter, Richards proposed a classification for
the “Eumenidae” with three subfamilies: Raphiglossinae, Discoeliinae (=Zethinae), and
Eumeninae [10], while Carpenter did not recognize the names Zethinae and Raphiglossinae
after investigating the relationships among the subfamilies of the Vespidae with a cladistic
treatment [11]. Recently, Hermes et al. corroborated the monophyly of Eumeninae and
proposed three tribes of this subfamily, namely Zethini, Eumenini, and Odynerini, which
was the most comprehensive classification of the Eumeninae based on morphology [12].
Whether the tribe Zethini should be upgraded to the subfamily Zethinae and the subfamily
Eumeninae is monophyletic are worthy of further exploration. Additionally, with the con-
tinuous enrichment of molecular data, controversies over the classifications of Eumeninae
appear in the disagreement between morphological and molecular data.

In the published research on phylogenetic relationships in the subfamily Eumeninae,
some molecular data have been utilized. The first molecular study showed that the solitary
Eumeninae was a sister taxon to the Polistinae + Vespinae cluster leveraged on nuclear
28S rDNA and mitochondrial 16S rDNA of 12 species from the family Vespidae including
3 eumenine species [13]. Thereafter, based on the analysis of four nuclear gene fragments
(18S rDNA, 28S rDNA, abdominal-A, and RNA polymerase II) from 27 Vespidae species
(containing 11 eumenine species), Hines et al. supported the division of Eumeninae into two
separate monophyletic clades: “Zethinae” and “Eumeninae” [5]. Neither of the two studies
clarified the generic relationships of Eumeninae because only a few species of Eumeninae
were contained. Later, with a total of 49 transcriptomes of vespid wasps (containing
40 eumenine species), Bank et al. suggested the subfamily Eumeninae was paraphyletic
and the “Zethini” were divided into two clades: Raphiglossinae and Zethinae [14]. Then,
Piekarski et al. also suggested that “Zethini” should be a valid subfamily Zethinae [15]. So
far, several nuclear gene fragments, mitochondrial fragments, and transcriptomes have
not completely resolved the phylogenetic relationships of Eumeninae due to insufficient
and unrepresentative sampling of taxa. Thus, to understand the evolution of the various
biologies exhibited by Eumeninae, robust investigations of phylogenetic relationships are
still needed.

The mitogenome is a widely accepted molecular marker used in phylogenetic stud-
ies due to its maternal inheritance as well as the higher rate of nucleotide substitution
compared with nuclear DNA [16,17]. To date, two mitogenomes of Eumeninae have been
published, which is insufficient to explore phylogenetic relationships [18]. In China, which
spans two faunal regions (Palearctic and Oriental Regions), there is a total of more than
310 known species and subspecies in 58 genera of the subfamily Eumeninae [19–30], which
constitutes a quarter of the total genera of the world. To clarify the phylogenetic rela-
tionships within Eumeninae, especially the placement of Zethini, 52 new mitogenomes of
33 genera of Eumeninae from China are obtained and analyzed by combining 35 published
vespid mitogenomes in this study. Given that gene rearrangements are very informative
for phylogenetic analysis and are exhibited extensively in some insect orders [17], these
eumenine mitogenomes are compared with the gene order of ancestral mitogenome to
investigate their distinctive rearrangement models. Additionally, the characters of the
eumenine mitogenomes are compared with other vespids, in order to identify any unique
character to support the classification of Eumeninae.
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2. Materials and Methods
2.1. Sample Collection and DNA Extraction

The 52 species of the subfamily Eumeninae, which were firstly identified at least to
genus level by taxonomic specialists, were collected and stored in 95% ethanol at −20 ◦C
in Chongqing Normal University, Chongqing, China (Table 1). Thereafter, total DNA
was isolated from the muscle tissues of the thorax using the DNeasy DNA Extraction kit
(Qiagen) and according to its instructions. Finally, we followed the manufacturer’s protocol
of the Qubit dsDNA high-sensitivity kit (Invitrogen) to determine the DNA concentration
for each sample.

Table 1. GenBank accession numbers for mitogenomes of Eumeninae newly sequenced and annotated
in this study.

Species bp Gene Number Accession No.

Allodynerus delphinalis 16,932 38 ON024142
Allodynerus mandschuricus 17,449 38 ON012816

Allorhynchium chinense 16,909 38 MK051021
Allorhynchium argentatum 17,972 38 MK051022
Allorhynchium radiatumus 17,349 38 ON055163
Ancistrocerus renimaculus 15,614 36 ON045342

Ancistrocerus tussaci 15,679 35 ON012815
Antepipona sp. 19,040 38 ON012817

Antepipona ovalis 17,514 36 ON012818
Anterhynchium abdominale 16,488 36 MK051029
Anterhynchium coracinum 16512 36 MK051028

Anterhynchium flavomarginatum 15,196 35 MK051026
Anterhynchium mellyi 18,692 38 ON012812

Apodynerus protuberantus 17,943 36 ON045341
Calligaster cyanoptera 16,316 38 ON012814

Delta pyriforme pyriforme 14,883 35 ON076029
Delta campaniforme esuriens 16,126 36 ON055486

Discoelius zonalis 15,435 38 ON076025
Eumenes buddha 16,048 37 ON076024

Eumenes tripunctatus 15,702 36 ON045343
Eumenes pomiformis 16,520 38 ON076031

Ectopioglossa sublaevis 16,203 36 ON045340
Ectopioglossa sanban 16,454 37 ON012813
Euodynerus dantici 17,493 37 ON076022

Euodynerus nipanicus 22,088 38 ON076021
Jucancistrocerus atrofasciatus 18,848 38 ON045348
Jucancistrocerus angustifrons 19,867 38 ON012819

Katamenes sichelii sichelii 14,807 37 ON076027
Labus pusillus 17,409 36 ON076026

Labus angularis 15,227 35 ON076030
Leptochilus sp. 14,241 36 ON045339

Orancistrocerus drewseni drewseni 17,636 38 ON045338
Oreumenes decorates 15,563 37 ON076028
Paralepromenes sp. 16,805 37 ON045337

Parancistrocerus samarensis 17,773 38 ON076023
Pararrhynchium striatum 20,403 38 ON045347

Pararrhynchium septemfasciatus 18,003 36 ON055487
Pareumenes quadrispinosus acutus 17,426 38 ON076020

Pseudepipona kozhevnikovi 15,650 35 ON076019
Pseudepipona przewalskyi 20,281 37 ON024141
Pseudozumia indosinensis 16,376 35 ON045335

Pseumenes nigripectus 17,773 38 ON045336
Pseumenes depressus 16,677 38 ON045346

Rhynchium quinquecinctum murotai 16,317 36 MK051030
Rhynchium brunneum brunneum 23,251 38 MK051031
Rhynchium brunneum ceylonicum 23,122 38 MK051032

Stenodynerus frauenfeldi 17,252 36 ON045334
Stenodynerus chinensis 17,194 38 ON045345

Subancistrocerus camicrus 18,035 38 ON045344
Symmorphus ambotretus 17,280 38 ON076018

Symmorphus lucens 17,865 38 ON076017
Zethus dolosus 16,306 38 ON076016
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2.2. Whole-Genome Sequencing and Assembling

The Illumina TruSeq library, containing an average size of 350 bp, was sequenced
using the Illumina Hiseq 2500 platform at BerryGenomics (Beijing, China). Then, high-
quality reads (after deletion of low-quality reads) were used in de novo assembly with
IDBA-UD by using the NGS QC Toolkit [31,32]. COX1 and srRNA were amplified by
standard PCR reactions and were used to identify mitogenome assemblies with at least
98% similarity sequences in BLAST [33,34]. Finally, the accuracy of the assembly was
investigated by mapping clean reads onto the obtained mitochondrial scaffold in each
library using Geneious 10.1.3 (http://www.geneious.com/. Accessed date: 12 January
2022), which allowed for up to 2% mismatches, a maximum gap size of 3 bp, and a minimum
overlap of 100 bp.

2.3. Mitogenome Annotation and Sequence Analysis

Annotation of the assembled mitochondrial sequences was identified using Clustal X
1.8 with homologous sequences against the publicly available Eumeninae mitogenomes [35].
Unrecognized tRNA genes were found by use of tRNA scan-SE version 2.0.2 and secondary
structure modeling was completed using ARWEN version 1.2 [36,37]. The nucleotide
composition, AT content, GC-skew, and the Relative Synonymous Codon Usage (RSCU)
were calculated in MEGA X [38]. Effective Number of Codons (ENC) and GC of silent
3rd codon posit (GC3s) were computed in Codon W 1.4 and non-synonymous (Ka) and
synonymous (Ks) substitution ratio (Ka/Ks) of PCGs were calculated in DnaSP 5.0 [39,40].
Then, the gene arrangement events were detected in CREx [41].

2.4. Phylogenetic Analyses

A total of 87 Vespidae mitogenomes containing 52 newly sequenced eumenine mi-
togenomes and 35 species of the subfamilies Eumeninae, Stenogastrinae (three species),
Polistinae (19 species), and Vespinae (11 species) downloaded from GenBank were selected
as ingroups, and four species from Apoidea (Hylaeus dilatatus, Andrena cineraria, Megachile
sculpturalis, and Apis cerana) were selected as outgroups (Table S1). In total, 13 PCGs and
2 rRNAs were extracted by PhyloSuite v 1.2.2 [42]. The individual alignments of PCGs were
performed using the L-INS-i strategy of the MAFFT algorithm executed in the TranslatorX
online platform, and rRNA genes were aligned individually using the G-INS-i strategy
implemented in MAFFT version 7.205 [43,44]. GBlocks v.0.91b was used to remove all
ambiguously aligned sites from 13 PCGs and two rRNAs [45]. After that, MEGA X was
used to check and correct all the alignments [38].

Phylogenetic trees were inferred from two sets of data: (1) PCGR: 13 PCGs and
2 rRNAs; (2) PCG: 13 PCGs. Before the construction of trees, PartitionFinder version
2.1.1 [46] was used to simultaneously choose the best partition schemes and substitution
models for each matrix with the Akaike Information Criterion (AIC) and greedy search
algorithm (Table S2). A Bayesian inference (BI) tree was constructed in MrBayes v.3.2.7,
approximately 10,000,000 generations were conducted for the matrix, with the average
deviation of split frequencies below 0.01 which suggests that runs reach convergence and
were sampled every 1000 generations with a burn-in of 25% [47]. Maximum likelihood
(ML) was constructed on the PhyML online web server (http://www.atgc-montpellier.fr/
phyml/. Accessed date: 12 January 2022) and the node support values were evaluated via
a bootstrap test with 100 replicates [48]. In addition, for (maximum parsimony) MP, the
matrix was analyzed through the use of Winclada slaving TNT [49,50]. New technology
search algorithms were used with the default settings, except ratchet 200 iterations, with
up:down perturbation 8:4; hits to minimum length 25. Bootstrapping was via traditional
search, with 100 replicates.

http://www.geneious.com/
http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
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3. Results and Discussion
3.1. Mitochondrial Genome Organization

We obtained 52 complete or partial mitogenomes, which were deposited in GenBank
(Table 1). Most of them include 13 protein-coding genes (PCGs), 2 rRNA genes (rRNAs), a
control region, and 22 or 23 tRNA genes (tRNAs), with a size from 14,241 (Leptochilus sp.) to
23,251 bp (Rhynchium brunneum brunneum) and some of the entire A+T rich regions as well
as three tRNA genes (trnI, trnQ and trnM) were unable to be amplified in 23 mitogenomes
(Figure S1). The composition of 29 complete mitogenomes are significantly biased toward
adenine and thymine, with high A+T content from 78.6% (Subancistrocerus camicrus) to
84.7% (Eumenes pomiformis) which is similar to other hymenopteran mitogenomes [51] and
the AT skews are from −0.09 (Pararrhynchium striatum) to 0.19 (Antepipona sp.) (Table S3).

Typically, the mitogenomes of metazoan animals are double-strand circular DNA
composed of 37 genes including 13 PCGs, 22 tRNAs, 2 rRNAs, and a control region,
and most genes are located on the J-strand (major strand), the remaining being on the
N-strand [52]. In this study, some mitogenomes of Eumeninae generally match that of the
inferred mitogenomes except for some trnM duplications (Figure 1).

Figure 1. The mitochondrial genomes of Eumeninae. Circles of different colors indicate different
tribes of Eumeninae. The red gene means its position is inconsistent with the ancestor insect.

Compared with other Vespidae, there are 26 in total in the 52 newly assembled mi-
togenomes of Eumeninae containing two trnM genes which are highly similar, with 51.86%
(Eumenes tripunctatus) to 90.65% (Pseumenes nigripectus) sequence identities (Figure S2). The
substitutions between trnM0 and trnM1 are identified in the Amino Acid acceptor (AA)
arm, TψC (T) arm, Variable (V) loop, Anticodon (AC) arm, and the dihydorouridine (DHU)
arm (Figure 2). The positions of trnM0 and trnM1 are different: some are connected and
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others are separated by trnQ and trnW. The duplication event is unique in the subfamily
Eumeninae among the reported mitogenomes of Vespidae; meanwhile, it was reported in
the mitogenomes of both Ibalia leucospoides (Hymenoptera: Cynipoidea) containing three
trnM with 92–97% sequence identities and the genus Pachycephus (Hymenoptera: Cephi-
dae) [18,53,54]. Moreover, there is another duplication of trnL2 within the Eumeninae such
as three regions of noncoding DNA containing four copies of trnL2 in Abispa ephippium [55].
According to the existing reports, the duplication of tRNA is common in Hymenoptera;
for instance, the copies of trnD, trnA, and trnE in the family Cephidae (Hymenoptera) and
Trigonalyoidea (Hymenoptera), respectively [18,53]. Therefore, within the family Vespidae,
the duplication of trnM may be one of the features to indicate whether a species belongs to
the subfamily Eumeninae.

Figure 2. Inferred secondary structures of duplicated trnM. The substitutions in trnM0 and trnM1
compared with each other are indicated by red color.

3.2. Protein-Coding Genes and Codon Usage Patterns

All the PCGs start with the typical ATA, ATG, or ATT codons and stop with the
complete TAA or TAG or truncate TA- or T – termination codons. The composition of PCGs
is significantly biased toward adenine and thymine, with high A+T content from 75.9% to
84.4%, and the AT skews are always negative from −0.16 to −0.095 (Figure 3A). The A+T
content of PCGs in other subfamilies of Vespidae was computed, showing that the value of
A+T content in Stenogastrinae is higher than in three other subfamilies and in Vespinae it
is the minimum (Figure 3B).
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Figure 3. A+T content, AT-Skew, and GC-Skew of PCG in vespid mitogenomes. (A) The A+T content,
AT-Skew, and GC-Skew of PCG in Eumeninae; (B) the A+T content of PCG in four subfamilies
of Vespidae.

The Relative Synonymous Codon Usage (RSCU) values of codons such as UUA, GUU
which ended with A or U, are all greater than 1.3 and those ending with G or C are all less
than 1 (Figure 4). The RSCU value can directly reflect the frequency of codon usage: the
RSCU value equivalent to 1 indicates that the codon has no preference, or the RSCU value
greater than 1 illustrates that the frequency of the codon is relatively higher [56,57]. As
a result, the optimal codons among PCGs of eumenine mitogenomes are codons ending
with A or U, and accordingly, the third position of the codon in PCGs is significantly biased
toward adenine and thymine with 90.5% A+T content. Additionally, the optimal codons of
eumenine mitogenomes are consistent with those of Vespidae which frequently used UUU,
UUA, AUU, and AUA, and among them, UUA (Leu2) is the one with the highest RSCU
value. In addition, both UAA and AGA are the stop codons of the eumenine mitogenomes,
of which UAA with the higher RSCU is the eumenine preferred codon.
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Figure 4. Relative synonymous codon usage (RSCU) of the mitogenomes of Eumeninae.

The synonymous codon usage bias is influenced by mutation pressure and natural
selection, and an effective number of codons (ENC) standard curve can indicate that
the determinant of codon preference is mutation pressure or natural selection [58]. Our
result shows that all the points lie under the standard curve, which indicates that the
codon usage bias is influenced by selection pressure (Figure S3). Ka/Ks is the ratio of the
number of nonsynonymous substitutions per nonsynonymous site (Ka) to the number
of synonymous substitutions per synonymous site (Ks), which could indicate something
about the selective forces acting on the protein [59]. Thus, we computed the Ka/Ks value
of PCGs from eumenine mitogenomes, and the result shows that all the Ka/Ks of PCGs
except ND4L are less than 1, which indicates that only ND4L is under a positive selection
and evolves rapidly, and other PCGs are under a purifying selection. Moreover, the lowest
Ka/Ks value of COX1 (0.11) indicates that it is conservative under environmental selection
pressure and suitable for molecular barcoding (Figure 5).

Figure 5. The Ka/Ks values of the subfamily Eumeninae are based on each PCG.
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3.3. Gene Arrangement

Mitogenomes are usually stable in composition and gene arrangement is relatively
conservative; therefore, recombination rarely occurs in the evolutionary history of in-
sects [52,60]. As more and more mitogenomes of insects are reported, the rates of mi-
togenome rearrangement in Hymenoptera are accelerated [53,61]. The subfamily Eumeni-
nae is the primary lineage of the Vespidae, and its gene rearrangement events are still poorly
studied. Some eumenine mitogenomes contain a duplication of trnM and the positions
of the two trnM are different, which means that the different mechanisms occurred in
the gene rearrangement of Eumeninae. We investigated more rearrangement events of 54
eumenine mitogenomes and found that all eumenine mitogenomes contain a translocation
trnL1 upstream of nad1 (Figure 6). Because gene duplications are not allowed in CREx,
the rearrangement events in cluster trnQ-trnM-ND2-trnW are inferred as three patterns
compared with the ancestral mitochondrial gene order (Figure S4): the tandem duplication
of trnM occurs in all three clusters of Eumeninae, and then the distinct recombination
occurs in the three clusters, respectively. In the tribe Zethini, the recombination occurs in
trnQ-trnM0 and trnM1-ND2 after trnM duplicated to trnM0-trnM1, and subsequently, it
occurs between trnM0-trnQ and ND2-trnM1-trnW, and there is another rearrangement type:
from the ancestral order trnQ-trnM-ND2-trnW to ND2-trnW-trnM0-trnM1 in Calligaster
cyanoptera. In the tribe Odynerini, the recombination between trnM1 and trnQ-trnM0
occurs in most species, and the recombination trnQ-trnM0 after trnM duplicated to trnM0-
trnM1 occurs in Allodynerus delphinalis and Allodynerus mandschuricus. In the same way,
the recombination occurs in trnQ-trnM1 after trnM duplicated to trnM0-trnM1, and then
the recombination occurs between trnM1 trnQ and trnM0-ND2-trnW in most species of
the tribe Eumenini. As mentioned above, the three tribes of the subfamily Eumeninae
possess their distinctive rearrangement pattern. Our results provided additional evidence
that the majority of mitogenome rearrangements occur in tRNAs in hymenopteran insects
and also showed that the gene block trnI-trnQ-trnM-ND2 may be the hot spot of rear-
rangement in Hymenoptera because the rearrangement events of this block are found in
many hymenopteran lineages, such as the rearrangement events of the gene block CR-
trnI-trnQ-trnM-ND2-trnW-trnC-trnY in all the Icheumonoid lineages and rearrangement of
CR-trnI-trnQ-trnM in the mitochondrial genome of Allantus luctifer [62,63].

Figure 6. The rearrangement event in three tribes of the subfamily Eumeninae. The red genes
represent its’ position changes compared with ancestral mitogenomes.
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3.4. Phylogenetic Relationship of Vespidae

The results of substitution saturation show that Iss > Iss.c and p = 0.0000 within
both PCG and PCGR (Table S4), which indicates that the sequences are not saturated
and can be used for phylogenetic analysis. In this study, phylogenetic analyses of two
concatenated nucleotides (PCG and PCGR) were conducted, both representing four subfam-
ilies (Stenogastrinae, Eumeninae, Polistinae, and Vespinae) of Vespidae and the outgroup
(Hylaeus dilatatus, Andrena cineraria, Megachile sculpturalis, and Apis cerana). The two concate-
nated nucleotides were subjected to Bayesian inference (BI) and maximum likelihood (ML)
analyses, resulting in four trees where the positions of the four subfamilies are congruent
(Figure 7). In these trees, the phylogenetic relationships of the Vespidae are as follows:
Stenogastrinae + (“Eumeninae” + (Zethini + (Polistinae + Vespinae))). According to our
results, the subfamilies Stenogastrinae, Polistinae, and Vespinae are undoubtedly mono-
phyletic, but nevertheless, the subfamily Eumeninae excluding Zethini is monophyletic.
Additionally, Stenogastrinae is a sister lineage to other subfamilies of Vespidae with high
bootstrap support values (BS) and Bayesian posterior probabilities values (PP) (BS = 100,
PP = 1), which is consistent with some recent phylogenomic studies [64,65]. The study re-
veals that the tribe Zethini of the subfamily Eumeninae is an independent branch and more
closely related to Polistinae and Vespinae, which is similar to previous studies [5,13,15].
As the tree shows in Figure 7, the position of the Zethini (“Zethinae”) is between solitary
Eumeninae and eusocial Vespinae + Polistinae. The genus Calligaster and the subgenus
Zethoides of genus Zethus in Zethini (“Zethinae”) have been cited as exemplifying the
critical evolutionary stages of subsocial and communal behavior which connects solitary
and eusocial wasps because it is reported that some species of both Zethus and Calligaster
construct their nests with plant material rather than the typical eumenine nest construction
with mud [66,67].

Figure 7. Phylogenetic trees of the Vespidae inferred from PCG and PCGR by ML and BI. Each node
shows the Bayesian posterior probabilities (PP)/maximum likelihood bootstrap support (BS) values.

3.5. Phylogenetic Relationship within Eumeninae

The ingroup relationships of the family Vespidae are congruent in the obtained trees
with the same methods, respectively, and the notable difference between the obtained tree
topologies with ML and BI methods is that Pseudozumia indosinensis belongs to clade VIII
in ML trees with low bootstrap support value (BS = 39, 38), while in BI trees it belongs to
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clade IX with high Bayesian posterior probability (PP = 1,1) (Figure S5). That the BS of
a branch is lower than 50 means that the relationship has not been supported. In order
to verify the accuracy of the obtained trees, a MP analysis was also performed, and the
results were (of course) similar to the BI trees (Figure S6). Therefore, with the high Bayesian
posterior probabilities, it is more likely that Pseudozumia indosinensis belongs to clade IX in
BI trees. Of course, it may be because the differing placement in the ML trees is an artifact
of bootstrap values below 50. The placement of the genus Pseudozumia in BI trees is also
consistent with the result of Piekarski et al. In their research, a maximum-likelihood tree of
Vespidae inferred from 235 selected loci obtained also shows the genus Pseudozumia as a
sister group to Orancistrocerus which belongs to clade IX in this study [15]. Furthermore,
the illustration in Figure 8 is identical to the results from analyzing the data of PCG and
PCGR with the BI method. Both ML and BI reveal that the tribe Eumenini is monophyletic
and the tribe Odynerini is paraphyletic containing 10 clades. The results also consistently
indicate that the clade II to clade X is the sister group to the tribe Eumenini.

Within the tribe Eumenini, the sister relationship of (Oreumenes + Delta) + (Katamenes
+ Eumenes) is strongly supported by all datasets in this study (BS = 100; PP = 1). Hermes
et al. found that the genera Oreumenes, Delta, Katamenes, and Eumenes all belong to their
clade 3 of Eumenini, and the genus Eumenes was recovered as a sister to the remaining taxa
of Eumenini [6]. The differences in phylogenetic relationships of the four genera between
our study and Hermes et al. might be attributed to our limited generic sample, which is
not enough to clarify the comprehensive relationships of all genera of the tribe Eumenini.
Therefore, to clearly understand the phylogenetic relationships within the tribe Eumenini,
more data are needed.

The tribe Odynerini is the biggest one within the subfamily Eumeninae [6]. Here,
we investigated 24 genera of Odynerini to illustrate their phylogenetic relationships. The
results show that Odynerini comprising 10 major clades (I-X) is paraphyletic, and clade
I (the genus Abispa) is a sister group to all remaining Eumeninae. Bank et al. reported
that the genus Alastor (clade A) is inferred as a sister lineage to all remaining Eumeninae
based on transcriptomes of 49 vespid wasps [14]. Our study does not contain any species
in the genus Alastor, and Bank et al.’s study did not contain any species in the genus
Abispa, whereas that of Piekarskis et al. containing both Abispa and Alastor, is consistent
with the standpoint of Bank et al. [14,15]. In clade II, the genus Leptochilus is inferred
as a sister lineage to the genus Labus. In succession, the genus Symmorphus is an inde-
pendent clade III and sister group to clades IV-X. In clades IV-X, there is a sister-group
relationship between clades IV-V and VI-X. Within clades IV-V, clade IV is a sister group
to clade V, while Jucancistrocerus (Jucancistrocerus) angustifrons and Jucancistrocerus (Ere-
modynerus) atrofasciatus are located at clades IV and V, respectively, which may support
subgenera Eremodynerus being a valid genus [68]. Of course, more morphological evidence
of more species should be investigated to confirm our results in further research. Within
clades VI-X, clade VI is a sister group to clades VII-X and is composed of Antepipona +
(Paralepromenes + Apodynerus). Then, clade VII is a sister group to clades VIII-X, composed
of Pararrhynchium and Allorhynchium, while Pararrhynchium striatum is located within the
genus Allorhynchium. The misidentification of Pararrhynchium striatum is eliminated by the
examination of specimens, so Pararrhynchium striatum should be transferred to the genus
Allorhynchium, or these two genera are synonymized. Likewise, there is a sister relationship
between clade VIII and clades IX-X, and the phylogenetic relationships of clade VIII are as
follows: (Pareumenes + (Ectopioglossa + Pseumenes)). Finally, within these two clades IX and
X, they are sisters to each other, and the phylogenetic relationships of clade IX are as follows:
(Pseudozumia + (Euodynerus + Orancistrocerus)), and of clade X they are (Anterhynchium
(Anterhynchium) + (Anterhynchium (Dirhynchium) + Rhynchium)). As the results show, with
high Bayesian posterior probabilities (PP = 1), the subgenus Dirhynchium of Anterhynchium
is more closely related to the genus Rhynchium than the nominate subgenus Anterhynchium,
which means the subgenus Dirhynchium should be upgraded to a valid genus. Again,
further investigation is needed.
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Figure 8. Phylogenetic tree of Vespidae inferred from PCG and PCGR by BI. Each node shows the
Bayesian posterior probability (PP) values.
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4. Conclusions

To sum up, the mitogenomes of Eumeninae are commonly found to contain two trnM,
which differs remarkably from the gene orders of other Vespidae. This study based on
mitogenomes further supports previously proposed relationships among Vespidae [5,14,68],
especially the placement of the tribe Zethini and some genera of the subfamily Eumeninae,
indicating that the tribe Zethini should be raised to Zethinae and that the tribe Eumenini
is monophyletic and Odynerini is paraphyletic. Meanwhile, some issues have not been
clearly resolved in this study. First, stable generic morphological characters are needed to
support these two subgenera Eremodynerus and Dirhynchium as valid genera. Additionally,
although Pararrhynchium striatum is proposed to be moved to Allorhynchium, it is possible
that the relationship between these two genera is confused, which requires more species
sampling and morphological characteristics to elucidate. Second, considering that only one
limited mitogenome in some genera of Eumeninae, such as Abispa, Apodynerus, Leptochilus,
Parancistrocerus, Paralepromenes, Pareumenes, Pseudozumia, and Subancistrocerus, is presented
in our analyses, the taxonomic status of these genera may be unstable and uncertain. In the
end, the relationships of these taxa in this study still need to be verified by morphological
and biological information. Therefore, to further advance the research on the systematic
relationships of the subfamily Eumeninae, more taxon sampling and information about the
morphological characteristics, molecular data, and biological behaviors are needed.
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support values; Supplementary Table S1. Mitochondrial genomes used for phylogenetic analysis in
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different data matrices; Supplementary Table S3. Base composition, total length (bp), and AT-skew of
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