

Article First Comprehensive Analysis of Both Mitochondrial Characteristics and Mitogenome-Based Phylogenetics in the Subfamily Eumeninae (Hymenoptera: Vespidae)

Li Luo¹, James M. Carpenter², Bin Chen¹ and Tingjing Li^{1,*}

- ¹ Chongqing Key Laboratory of Vector Insects, Chongqing Key Laboratory of Animal Biology, Institute of Entomology and Molecular Biology, College of Life Science, Chongqing Normal University, Chongqing 401331, China; lioly19941112@126.com (L.L.); bin.chen@cqnu.edu.cn (B.C.)
- ² Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA; carpente@amnh.org
- * Correspondence: ltjing1979@hotmail.com; Tel.: +86-159-2297-9264

Simple Summary: The subfamily Eumeninae comprises more than 3900 described species and eumenine mitochondrial analyses are almost absent. In order to provide further evidence toward understanding the relationships within the subfamily, the characteristics of 54 eumenine mitogenomes were comparatively analyzed, among which 52 mitogenomes are newly annotated. Meanwhile, using both Maximum-likelihood (ML) and Bayesian inference (BI), comprehensive phylogenetic relationship in the subfamily were investigated based on two mitochondrial datasets.

Abstract: The subfamily Eumeninae plays a significant role in the biological control of agricultural pests. However, the characteristics of eumenine mitogenomes that are important molecular markers for phylogenetics are not clearly revealed. Here, 52 eumenine mitogenomes are newly sequenced and annotated, and the phylogenetic relationships of the subfamily are comprehensively analyzed based on 87 vespid mitogenomes. Through the comparative analysis of the 54 eumenine mitogenomes, the gene compositions of about one half of the 54 species match with ancestral insect mitogenome, and remaining others contain two *trnM* which are highly similar, with 51.86% (*Eumenes tripunctatus*) to 90.65% (*Pseumenes nigripectus*) sequence identities, which is unique among the reported mitogenomes of the family Vespidae. Moreover, the translocation *trnL1* upstream of *nad1* is a common rearrangement event in all eumenine mitogenomes. The results of phylogenetic analyses support the paraphyly of the subfamily Eumeninae and the tribe Odynerini, respectively, and the monophyly of the tribe Eumenini, and verify that the tribe Zethini is a valid subfamily Zethinae. In this study, the relationships between some genera such as *Allorhynchium* and *Pararrhynchium* or the taxonomic status of the subgenera such as *Eremodynerus* and *Dirhynchium* are found to be confusing and there should be further inquiry with more samples.

Keywords: Eumeninae; gene rearrangement; mitogenomes; phylogenetic; Vespidae

1. Introduction

The subfamily Eumeninae containing more than 3900 described species is the biggest of the family Vespidae (Hymenoptera). It is the primary lineage of the Vespidae [1], which plays a significant role in the biological control of agricultural pests because of its cosmopolitan predation of the larvae of Lepidoptera (e.g., Geometridae, Tortricidae) and Coleoptera (e.g., Chrysomelidae and Curculionidae) [2,3]. Most of them are solitary wasps, using mud to partition the cells, while some are primitively social, burrowing in the soil or wood, many species in Zethini construct their nests by exploiting masticated and salivated plant material such as *Zethus, Ischnocoelia, Elimus, Discoelius*, and *Protodiscoelius* using vegetable matter for cell partition, and *Psiliglossa* and *Raphiglossa* using pith [4,5]. Additionally, the

Citation: Luo, L.; Carpenter, J.M.; Chen, B.; Li, T. First Comprehensive Analysis of Both Mitochondrial Characteristics and Mitogenome-Based Phylogenetics in the Subfamily Eumeninae (Hymenoptera: Vespidae). *Insects* 2022, *13*, 529. https://doi.org/ 10.3390/insects13060529

Academic Editor: Giuliana Allegrucci

Received: 19 May 2022 Accepted: 6 June 2022 Published: 8 June 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). high morphological diversity and complexity of Eumeninae leads to some difficulties in its classification, and some other difficulties may be attributed to its troubled taxonomic history [6]. Hence, the early classifications of this subfamily underwent a radical transformation. Based on the morphology of the mouthparts and the general shape of the metasoma, Latreille began the generic classification of Eumeninae and divided the current species of Eumeninae into three genera: *Eumenes, Odynerus, and Synagris* [7]. Later, de Saussure divided 'Euméniens' into Anomaloptéres, Euptéres, and Mischoptéres, after that he separated Zethus, Calligaster, and Discoelius from the rest of his section 'Euptéres' of the 'Eumhiens' as the group 'Zethites' [8,9]. Thereafter, Richards proposed a classification for the "Eumenidae" with three subfamilies: Raphiglossinae, Discoeliinae (=Zethinae), and Eumeninae [10], while Carpenter did not recognize the names Zethinae and Raphiglossinae after investigating the relationships among the subfamilies of the Vespidae with a cladistic treatment [11]. Recently, Hermes et al. corroborated the monophyly of Eumeninae and proposed three tribes of this subfamily, namely Zethini, Eumenini, and Odynerini, which was the most comprehensive classification of the Eumeninae based on morphology [12]. Whether the tribe Zethini should be upgraded to the subfamily Zethinae and the subfamily Eumeninae is monophyletic are worthy of further exploration. Additionally, with the continuous enrichment of molecular data, controversies over the classifications of Eumeninae appear in the disagreement between morphological and molecular data.

In the published research on phylogenetic relationships in the subfamily Eumeninae, some molecular data have been utilized. The first molecular study showed that the solitary Eumeninae was a sister taxon to the Polistinae + Vespinae cluster leveraged on nuclear 28S rDNA and mitochondrial 16S rDNA of 12 species from the family Vespidae including 3 eumenine species [13]. Thereafter, based on the analysis of four nuclear gene fragments (18S rDNA, 28S rDNA, abdominal-A, and RNA polymerase II) from 27 Vespidae species (containing 11 eumenine species), Hines et al. supported the division of Eumeninae into two separate monophyletic clades: "Zethinae" and "Eumeninae" [5]. Neither of the two studies clarified the generic relationships of Eumeninae because only a few species of Eumeninae were contained. Later, with a total of 49 transcriptomes of vespid wasps (containing 40 eumenine species), Bank et al. suggested the subfamily Eumeninae was paraphyletic and the "Zethini" were divided into two clades: Raphiglossinae and Zethinae [14]. Then, Piekarski et al. also suggested that "Zethini" should be a valid subfamily Zethinae [15]. So far, several nuclear gene fragments, mitochondrial fragments, and transcriptomes have not completely resolved the phylogenetic relationships of Eumeninae due to insufficient and unrepresentative sampling of taxa. Thus, to understand the evolution of the various biologies exhibited by Eumeninae, robust investigations of phylogenetic relationships are still needed.

The mitogenome is a widely accepted molecular marker used in phylogenetic studies due to its maternal inheritance as well as the higher rate of nucleotide substitution compared with nuclear DNA [16,17]. To date, two mitogenomes of Eumeninae have been published, which is insufficient to explore phylogenetic relationships [18]. In China, which spans two faunal regions (Palearctic and Oriental Regions), there is a total of more than 310 known species and subspecies in 58 genera of the subfamily Eumeninae [19–30], which constitutes a quarter of the total genera of the world. To clarify the phylogenetic relationships within Eumeninae, especially the placement of Zethini, 52 new mitogenomes of 33 genera of Eumeninae from China are obtained and analyzed by combining 35 published vespid mitogenomes in this study. Given that gene rearrangements are very informative for phylogenetic analysis and are exhibited extensively in some insect orders [17], these eumenine mitogenomes are compared with the gene order of ancestral mitogenome to investigate their distinctive rearrangement models. Additionally, the characters of the eumenine mitogenomes are compared with other vespids, in order to identify any unique character to support the classification of Eumeninae.

2. Materials and Methods

2.1. Sample Collection and DNA Extraction

The 52 species of the subfamily Eumeninae, which were firstly identified at least to genus level by taxonomic specialists, were collected and stored in 95% ethanol at -20 °C in Chongqing Normal University, Chongqing, China (Table 1). Thereafter, total DNA was isolated from the muscle tissues of the thorax using the DNeasy DNA Extraction kit (Qiagen) and according to its instructions. Finally, we followed the manufacturer's protocol of the Qubit dsDNA high-sensitivity kit (Invitrogen) to determine the DNA concentration for each sample.

Table 1. GenBank accession numbers for mitogenomes of Eumeninae newly sequenced and annotated in this study.

Allodymerus mandschuricus 16,932 38 ON021412 Allodynchum chinense 16,909 38 MK051021 Allorhynchum chinense 16,909 38 MK051021 Allorhynchum argentatum 17,349 38 ON055163 Ancistrocerns treinnaculus 15,614 36 ON045342 Ancistrocerns tussaci 15,679 35 ON012815 Anterpipona oralis 17,514 36 ON012817 Anterpipona oralis 17,514 36 ON012818 Anterhynchium abdominale 16,488 36 MK051028 Anterhynchium andominale 16,488 36 ON012812 Anterhynchium funoracinum 15,196 35 MK051028 Anterhynchium mellyi 18,692 38 ON012812 Calligaster cyanoptera 16,316 38 ON012814 Delta companiforme estricms 16,126 36 ON045343 Eumenes buddha 16,048 37 ON076024 Eumenes buddha 16,048 37 ON076024	Species	bp	Gene Number	Accession No.
Allodynerus mandschuricus 17,449 38 ON012816 Allorhynchium chinense 16,909 38 MK051021 Allorhynchium radiatumus 17,349 38 ON035163 Ancistrocerus reinaculus 15,614 36 ON045342 Ancistrocerus tussaci 15,679 35 ON012815 Anteripona ovalis 17,514 36 ON012817 Anterhynchium abdominale 16,488 36 MK051029 Anterhynchium abdominale 16,488 36 MK051028 Anterhynchium nabdominale 16,488 36 ON012812 Apadynerus protuberantus 17,943 36 ON045341 Calligaster cyanoptera 16,316 38 ON012812 Apadynerus protuberantus 17,943 36 ON045341 Calligaster cyanoptera 16,316 38 ON076029 Delta companiforme pryforme 14,883 35 ON076024 Eurnenes budidha 16,048 37 ON076024 Eurnenes bomiformis 16,520 38 ON045343 Eurnenes bomiformis 16,520 36	Allodynerus delphinalis	16,932	38	ON024142
Allorhynchium argentatum 16,909 38 MK051022 Allorhynchium argentatum 17,349 38 ON055163 Ancistrocerns renimaculus 15,614 36 ON045342 Ancistrocerns trussaci 15,679 35 ON012815 Anterpipona oradis 17,5714 36 ON012815 Anterpipona oradis 17,5714 36 ON012818 Anterhynchium abdominale 16,488 36 MK051029 Anterhynchium abdominale 16,488 36 MK051028 Anterhynchium argentatum 15,196 35 MK051028 Anterhynchium rangentatum 17,943 36 ON012812 Apodynerus protuberartus 17,943 36 ON012814 Delta pyriforme pyriforme 14,883 35 ON076029 Delta compauforme escurens 16,126 36 ON035486 Discoetius zonalis 15,702 36 ON045343 Eumenes budiba 16,048 37 ON076024 Eumenes budifornis 15,520 38	Allodynerus mandschuricus	17,449	38	ON012816
Allorhynchium argentatum 17,972 38 MK051022 Allorhynchium radiatumus 17,549 38 ON055163 Ancistrocerus reninaculus 15,614 36 ON012815 Anteripona coalis 17,514 36 ON012817 Anterpipona coalis 17,514 36 ON012817 Anterhynchium abdominale 16,488 36 MK051029 Anterhynchium abdominale 16,488 36 MK051026 Anterhynchium nellyi 15,692 38 ON012812 Apodynerus protuberantus 17,943 36 ON012812 Apodynerus protuberantus 17,943 36 ON012814 Delta compariforme escriteris 16,126 36 ON076029 Delta compariforme escriteris 16,126 36 ON076029 Delta compariforme subdata 16,048 37 ON076024 Eumenes tripunctatus 15,702 36 ON045343 Eumenes budita 16,454 37 ON076021 Eumenes budita 16,454 37	Allorhynchium chinense	16,909	38	MK051021
Allorhynchium radiatumus 17,249 38 ON055163 Ancistrocerus renimaculus 15,679 35 ON012817 Anteriptona sp. 19,040 38 ON012817 Anterhynchium coalis 17,514 36 ON012817 Anterhynchium coarcinum 16512 36 MK051029 Anterhynchium coarcinum 16512 36 MK051026 Anterhynchium reactinum 15,196 35 MK051026 Anterhynchium mellyi 18,692 38 ON012812 Apodynerus protuberantus 17,943 36 ON045341 Calligaster cyanoptera 16,316 38 ON076029 Delta campaniforme esuriens 16,126 36 ON076025 Eumenes brighterins 16,520 38 ON076025 Eumenes puniforme is undia 16,443 37 ON076024 Eumenes puniformis 16,520 38 ON076021 Eutopisgloss sublaecis 16,203 36 ON076021 Eutopisgloss sublaecis 16,203 37 ON076	Allorhynchium argentatum	17,972	38	MK051022
Ancistrocerus rensinaculus 15,679 35 ON045342 Ancistrocerus tussaci 15,679 35 ON012815 Anteripona sp. 19,040 38 ON012815 Anterhynchium adominale 16,488 36 MK051029 Anterhynchium adominale 16,488 36 MK051028 Anterhynchium adominale 16,488 36 MK051026 Anterhynchium adominale 16,488 36 ON012812 Apodynerus protuberantus 17,943 36 ON012814 Calligaster cyanoptera 16,316 38 ON012814 Delta purjforme purjforme 14,883 35 ON076029 Delta purjforme esuriens 16,126 36 ON076024 Eumenes budha 16,048 37 ON076024 Eumenes pomiformis 16,520 38 ON076021 Eudoynerus aduntici 17,493 37 ON076022 Eudoynerus aduntici 17,493 37 ON076021 Jucancistrocerus atrofasciatus 18,848 38 ON076027<	Allorhynchium radiatumus	17,349	38	ON055163
Ancistrocerus tussaci 15,679 35 ON012815 Anterpipona sp. 19,040 38 ON012817 Anterpipona oralis 17,514 36 ON012818 Anterhynchium concirum 16512 36 MK051029 Anterhynchium racirum 15,196 35 MK051026 Anterhynchium racirum 15,196 35 MK051026 Anterhynchium racirum 16,316 38 ON012812 Apodynerus protuberantus 17,943 36 ON012814 Delta pyriforme pyriforme 14,883 35 ON076029 Delta campaniforme suriens 16,126 36 ON05486 Discoelius zonalis 15,435 38 ON076024 Eumenes tripunctatus 15,702 36 ON045343 Eumenes pomiformis 16,203 36 ON045343 Eutopioglosas sublaevis 16,203 36 ON045344 Ectopioglosas sublaevis 16,203 36 ON045343 Eudoynerus dantici 17,493 37 ON076022	Ancistrocerus renimaculus	15,614	36	ON045342
Anteripona sp. 19,040 38 ON012817 Anterhynchium adominale 16,488 36 ON012818 Anterhynchium adominale 16,488 36 MK051029 Anterhynchium adommarginatum 15,196 35 MK051026 Anterhynchium and promarginatum 15,196 35 MK051028 Anterhynchium mellyi 18,692 38 ON012812 Apodynerus protuberantus 17,943 36 ON045341 Caligaster cyanoptera 16,316 38 ON076029 Delta campaniforme esuriens 16,126 36 ON076024 Eumenes buildia 16,048 37 ON076024 Eumenes buildia 16,520 38 ON076021 Ectopioglossa subbaris 16,520 38 ON076021 Ectopioglossa subbaris 16,520 38 ON076021 Eundynerus antrici 17,493 37 ON076022 Eudynerus inparicus 2,088 38 ON076021 Jucancistrocerus atrofasciatus 18,848 38 ON076	Ancistrocerus tussaci	15,679	35	ON012815
Anteripina oralis 17,514 36 ON012818 Anterhynchium oracinum 16,488 36 MK051029 Anterhynchium oracinum 15112 36 MK051028 Anterhynchium flavomarginatum 15,196 35 MK051028 Anterhynchium mellyi 18,892 38 ON012812 Apodynerus protuberantus 17,943 36 ON045341 Calligaster cyanoptera 16,316 38 ON076029 Delta campaniforme esuriens 16,126 36 ON076025 Eumenes buildha 16,048 37 ON076024 Eumenes poniformis 16,520 38 ON076031 Ectopioglossa sublaevis 16,203 36 ON045344 Euodynerus inpanicus 22,088 38 ON076021 Euodynerus inpanicus 22,088 38 ON076021 Labus pusillus 17,409 36 ON076022 Loudynerus indrascus 18,848 38 ON076024 Labus pusillus 17,409 36 ON076026 <t< td=""><td>Antepipona sp.</td><td>19,040</td><td>38</td><td>ON012817</td></t<>	Antepipona sp.	19,040	38	ON012817
Anterhynchium abdominale 16,488 36 MK051029 Anterhynchium floumarginatum 15,196 35 MK051026 Anterhynchium nellyi 18,692 38 ON012812 Apodynerus protuberantus 17,943 36 ON045341 Calligaster cyanoptera 16,316 38 ON012814 Delta pyriforme pyriforme 14,883 35 ON076029 Delta campaniforme esturiens 16,126 36 ON055486 Discoelius zonalis 15,435 38 ON076025 Eumenes buildha 16,048 37 ON076024 Eumenes pomiformis 16,520 36 ON045343 Ectopioglossa sublaevis 16,203 36 ON045340 Ectopioglossa sublavis 16,244 37 ON076021 Euodynerus andantici 17,493 37 ON076021 Laucacistrocerus angustifrons 19,867 38 ON076021 Labus angularis 15,227 35 ON076020 Labus angularis 15,227 36 ON076020 </td <td>Antepipona ovalis</td> <td>17,514</td> <td>36</td> <td>ON012818</td>	Antepipona ovalis	17,514	36	ON012818
Anterhynchium (naromarginatum 16512 36 MK051028 Anterhynchium flaromarginatum 15,196 35 MK051026 Anterhynchium mellyi 18,692 38 ON012812 Apodynerus protuberantus 17,943 36 ON045341 Calligaster cyanoptera 16,316 38 ON012814 Delta campaniforme pyriforme 14,883 35 ON076029 Delta campaniforme esuriens 16,126 36 ON076025 Eumenes buddha 16,048 37 ON076024 Eumenes poniformis 16,520 38 ON076021 Eumenes poniformis 16,520 38 ON045343 Eutopicolosas sublaevis 16,203 36 ON045344 Euodynerus nipanicus 22,088 38 ON076022 Euodynerus nipanicus 22,088 38 ON045348 Jucancistrocerus angustifrons 19,867 38 ON045348 Jucancistrocerus angustifrons 19,867 38 ON0453348 Jucancistrocerus angustifrons 19,867 <	Anterhynchium abdominale	16,488	36	MK051029
Anterhynchium flavomarginatum 15,196 35 MK051026 Anterhynchium mellyi 18,692 38 ON012812 Apadymerus protuberantus 17,943 36 ON045341 Calligaster cyanoptera 16,316 38 ON076029 Delta campaniforme esuriens 16,126 36 ON076029 Delta campaniforme esuriens 16,126 36 ON076029 Eumens buddha 16,048 37 ON076024 Eumenes tripunctatus 15,702 36 ON045343 Eumenes subdetois 16,203 36 ON045340 Ectopioglosa subhaenis 16,454 37 ON076021 Euodymerus priparius 22,088 38 ON076021 Jucancistrocerus antrofasciatus 18,848 38 ON045348 Jucancistrocerus antopasciatus 18,847 37 ON076021 Labus pusillus 17,409 36 ON045339 Orancistrocerus dreuseni dreuseni 17,636 37 ON076027 Labus pusillus 17,409 36	Anterhynchium coracinum	16512	36	MK051028
Anterhynchium mellyi 18,692 38 ON012812 Apodynerus protuberantus 17,943 36 ON045341 Calligaster cyanoptera 16,316 38 ON012814 Delta campatiforme pyriforme 14,883 35 ON076029 Delta campaniforme esuriens 16,126 36 ON076025 Eumenes buddha 16,048 37 ON076024 Eumenes pomiformis 16,520 38 ON076031 Etemenes pomifornis 16,520 38 ON076031 Ectopioglosas sublaevis 16,203 36 ON045340 Ectopioglosas anban 16,454 37 ON076021 Euodynerus anticit 17,493 37 ON076022 Euodynerus anticits 12,493 37 ON076021 Jucancistrocerus arofusciatus 18,848 38 ON012813 Jucancistrocerus argustifrons 19,867 38 ON012819 Katamenes sicheli sichelii 14,807 37 ON076027 Labus angularis 15,227 35 ON0760	Anterhynchium flavomarginatum	15,196	35	MK051026
Apodynerus protuberantus 17,943 36 ON045341 Caligaster cyanoptera 16,316 38 ON076029 Delta campaniforme suriens 16,126 36 ON076029 Delta campaniforme suriens 16,126 36 ON076025 Eumenes buddha 16,048 37 ON076024 Eumenes tripunctatus 15,702 36 ON045343 Eumenes poniformis 16,520 38 ON076021 Ectopioglosa sublaevis 16,203 36 ON045340 Ectopioglosa sublaevis 16,203 37 ON076021 Euodynerus nipanicus 22,088 38 ON076021 Jucancistrocerus attrofasciatus 18,848 38 ON076021 Jucancistrocerus angustifrons 19,867 38 ON1076026 Labus pusillus 17,409 36 ON076026 Labus pusillus 17,636 37 ON076026 Labus angularis 15,227 35 ON076026 Labus angularis 15,227 35 ON076026	Anterhynchium mellyi	18,692	38	ON012812
Calligaster cyanoptera 16,316 38 ON012814 Delta pyriforme pyriforme 14,883 35 ON076029 Delta campaniforme esuriens 16,126 36 ON055486 Discoelius zonalis 15,435 38 ON076025 Eumenes buddha 16,048 37 ON076024 Eumenes tripunctatus 15,702 36 ON045343 Eumenes pomiformis 16,520 38 ON076021 Ectopioglosa sublaevis 16,203 36 ON045340 Ectopioglosa sarban 16,454 37 ON076021 Euodynerus dantici 17,493 37 ON076021 Jucancistrocerus antofasciatus 18,848 38 ON045348 Jucancistrocerus antofasciatus 18,847 37 ON076027 Labus pusillus 17,409 36 ON076027 Labus angularis 15,227 35 ON076026 Labus angularis 15,563 37 ON076028 Paralepromenes sp. 16,805 37 ON045337 <tr< td=""><td>Apodynerus protuberantus</td><td>17,943</td><td>36</td><td>ON045341</td></tr<>	Apodynerus protuberantus	17,943	36	ON045341
Delta pyriforme pyriforme 14,883 35 ON076029 Delta campaniforme estriens 16,126 36 ON055486 Discoelius zonalis 15,435 38 ON076025 Eumenes buddha 16,048 37 ON076024 Eumenes tripunctatus 15,702 36 ON045343 Eumenes pomiformis 16,520 38 ON076021 Ectopioglossa sublaevis 16,203 36 ON045340 Ectopioglossa sublaevis 16,454 37 ON076022 Euodynerus atnicis 22,088 38 ON076021 Jucancistrocerus atrofasciatus 18,848 38 ON076021 Jucancistrocerus atrofasciatus 18,848 38 ON076026 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076028 Paralepromenes sp. 14,241 36 ON045339 Orancistrocerus drevseni drevseni 17,636 38 ON045337 Pararthynchium septemfasciatus 15,650 37	Calligaster cyanoptera	16,316	38	ON012814
Delta campaniforme esuriens 16,126 36 ON076025 Discoelius zonalis 15,435 38 ON076024 Eumenes buddha 16,048 37 ON076024 Eumenes tripunctatus 15,702 36 ON076024 Eumenes poniformis 16,520 38 ON076021 Ectopioglossa sublaevis 16,250 36 ON045340 Ectopioglossa sublaevis 16,454 37 ON076022 Eudymerus dantici 17,493 37 ON076021 Jucancistrocerus atrofasciatus 18,848 38 ON076021 Jucancistrocerus angustifrons 19,867 36 ON012813 Katamenes sichelii sichelii 14,807 37 ON076026 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076028 Paralepromenes sp. 14,241 36 ON045338 Oreancistrocerus drewseni 17,636 38 ON045337 Paraterpromenes sp. 16,805 37 ON076028	Delta pyriforme pyriforme	14,883	35	ON076029
Discoelius zonalis 15,435 38 ON076025 Eumenes buddha 16,048 37 ON076024 Eumenes prinunctatus 15,702 36 ON045343 Eumenes pomiformis 16,520 38 ON076031 Ectopioglossa sublaevis 16,203 36 ON045340 Ectopioglossa sublaevis 16,424 37 ON076022 Euodynerus nipanicus 22,088 38 ON076021 Jucancistrocerus artofasciatus 18,848 38 ON076027 Labus pusillus 17,409 36 ON076026 Labus guillus 17,409 36 ON076026 Labus guillus 17,409 36 ON076026 Labus guillus 17,636 38 ON045337 Oraucistrocerus decorates 15,563 37 ON076028 Parancistrocerus amerensis 17,773 38 ON076023 Parancistrocerus amerensis 17,773 38 ON076024 Pararcistrocerus samarensis 15,650 35 ON076029	Delta campaniforme esuriens	16,126	36	ON055486
Eumenes buddha 16,048 37 ON076024 Eumenes tripunctatus 15,702 36 ON045343 Eumenes pomiformis 16,520 38 ON076031 Ectopioglossa sublaevis 16,520 36 ON045340 Ectopioglossa sublaevis 16,454 37 ON012813 Euodynerus dantici 17,493 37 ON076022 Euodynerus nipanicus 22,088 38 ON076021 Jucancistrocerus angustifrons 19,867 38 ON076027 Labus pusillus 17,409 36 ON076026 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076030 Leptochilus sp. 14,241 36 ON045339 Orancistrocerus dreveseni drevseni 17,636 38 ON045337 Paradepromenes sp. 16,805 37 ON076023 Pararthynchium striatum 20,403 38 ON045337 Paraeumenes quadrispinosus acutus 17,426 38 ON0076020	Discoelius zonalis	15,435	38	ON076025
Eumenes tripunctatus 15,702 36 ON045343 Eumenes pontifornis 16,520 38 ON076031 Ectopioglossa sublaevis 16,203 36 ON045340 Ectopioglossa sanban 16,454 37 ON076021 Euodynerus dantici 17,493 37 ON076021 Euodynerus dantici 22,088 38 ON076021 Jucancistrocerus atrofasciatus 18,848 38 ON076027 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076026 Labus angularis 15,227 35 ON076026 Labus angularis 15,63 37 ON076028 Orancistrocerus drewseni drewseni 17,636 38 ON045337 Parancistrocerus samarensis 17,773 38 ON045347 Pararthynchium striatum 20,403 36 ON07602 Pascudepipona kozhewikovi 15,650 37 ON076028 Pararthynchium striatum 20,403 38 ON045337 <	Eumenes buddha	16,048	37	ON076024
Eumenes pomiformis 16,520 38 ON076031 Ectopioglossa sublacvis 16,203 36 ON045340 Ectopioglossa subnan 16,454 37 ON012813 Euodynerus dantici 17,493 37 ON076022 Euodynerus nipanicus 22,088 38 ON076021 Jucancistrocerus argustifrons 19,867 38 ON076027 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076030 Leptochilus sp. 14,241 36 ON045339 Orancistrocerus drewseni drewseni 17,636 38 ON045337 Parancistrocerus samarensis 17,773 38 ON076023 Pararitynchium septenfasciatus 18,003 36 ON076023 Pararrhynchium septenfasciatus 17,426 38 ON076020 Pseudepipona kozheronikovi 15,650 35 ON076020 Pseudepipona kozheronikovi 15,650 35 ON076020 Pseudozumin indosinensis 16,376 35	Eumenes tripunctatus	15,702	36	ON045343
Ectopioglossa sublaevis 16,203 36 ON045340 Ectopioglossa sanban 16,454 37 ON012813 Euodynerus dantici 17,493 37 ON076022 Euodynerus ripanicus 22,088 38 ON076021 Jucancistrocerus atrofasciatus 18,848 38 ON045348 Jucancistrocerus angustifrons 19,867 38 ON076027 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076030 Leptochilus sp. 14,241 36 ON045338 Orrancistrocerus drewseni 17,636 38 ON045338 Orreumenes decorates 15,563 37 ON045337 Parancistrocerus samarensis 17,773 38 ON076023 Pararrhynchium striatum 20,403 36 ON076020 Pseudepipona kozheornikooi 15,650 35 ON076020 Pseudezunia indosinensis 17,773 38 ON076020 Pseudezunia indosinensis 16,677 35 ON	Eumenes pomiformis	16,520	38	ON076031
Ectopioglossa sanban16,45437ON012813 $Euodynerus dantici$ 17,49337ON076022 $Euodynerus inpanicus$ 22,08838ON076021 $Jucancistrocerus atrofasciatus$ 18,84838ON045348 $Jucancistrocerus angustifrons$ 19,86738ON012819 $Katamenes sicheli sichelii14,80737ON076027Labus pusillus17,40936ON076026Labus angularis15,22735ON076030Leptochilus sp.14,24136ON045338Orancistrocerus dreuseni dreuseni17,63637ON076028Paralepromenes sp.16,80537ON076023Paralepromenes sp.16,80537ON045337Parancistrocerus samarensis17,77338ON045347Parareinhynchium septemfasciatus18,00336ON056187Pareumenes quadrispinosus acutus17,42638ON076020Pseudepipona hzezkouskyi20,28137ON024141Pseudozini indosinensis16,67738ON045336Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045334Rhynchium punquecinctum murotai16,31736MK051031Rhynchium brunneum23,22138MK051031Rhynchium brunneum23,22138ON045334Stenodynerus fanenfeldi17,25236ON045334Stenodynerus chinensis17,19438ON045334St$	Ectopioglossa sublaevis	16,203	36	ON045340
Eudymerus dantici 17,493 37 ON076022 Euodymerus nipanicus 22,088 38 ON076021 Jucancistrocerus atrofasciatus 18,848 38 ON045348 Jucancistrocerus angustifrons 19,867 38 ON012819 Katamenes sichelii sichelii 14,807 37 ON076027 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076030 Leptochilus sp. 14,241 36 ON045339 Orancistrocerus dreuseni 17,636 38 ON045337 Orancistrocerus dreuseni 17,636 38 ON045337 Parancistrocerus samarensis 17,773 38 ON076023 Pararrhynchium striatum 20,403 38 ON045347 Pararrhynchium septemfasciatus 18,003 36 ON055487 Pareumenes quadrispinosus acutus 17,426 38 ON045335 Pseudepipona kozheonikovi 15,650 35 ON045336 Pseudepipona przevalskyi 20,281	Ectopioglossa sanban	16,454	37	ON012813
Euodynerus nipanicus 22,088 38 ON076021 Jucancistrocerus atrofasciatus 18,848 38 ON045348 Jucancistrocerus angustifrons 19,867 38 ON076027 Labus pusillus 17,409 36 ON076026 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076030 Leptochilus sp. 14,241 36 ON045338 Orancistrocerus drewseni 17,636 38 ON045337 Paralepromenes sp. 16,805 37 ON076028 Paralepromenes sp. 16,805 37 ON076023 Pararrhynchium striatum 20,403 38 ON076020 Pseudepipona kozheovikovi 15,650 35 ON076019 Pseudepipona kozheovikovi 15,650 35 ON076020 Pseudepipona kozheovikovi 15,650 35 ON076019 Pseudepipona przewalskyi 20,281 37 ON045335 Pseumenes depressus 16,677 38 ON0453346	Euodynerus dantici	17,493	37	ON076022
Jucancistrocerus atrofasciatus 18,848 38 ON045348 Jucancistrocerus angustifrons 19,867 38 ON012819 Katamenes sichelii sichelii 14,807 37 ON076027 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076030 Leptochilus sp. 14,241 36 ON045338 Orancistrocerus dreuseni dreuseni 17,636 38 ON045337 Paralepromenes sp. 16,805 37 ON076023 Paralepromenes sp. 16,805 37 ON076023 Pararthynchium striatum 20,403 38 ON045347 Pararthynchium striatum 20,403 36 ON055487 Pareumenes quadrispinosus acutus 17,426 38 ON076020 Pseudepipona kozhevnikovi 15,650 35 ON076020 Pseudepipona przewalskyi 20,281 37 ON045335 Pseumenes nigripectus 17,773 38 ON045346 Rhynchium punneum brunneum 23,251 38<	Euodynerus nipanicus	22,088	38	ON076021
Jucancistrocerus angustifrons 19,867 38 ON012819 Katamenes sichelii sichelii 14,807 37 ON076027 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076030 Leptochilus sp. 14,241 36 ON045339 Orancistrocerus drewseni 17,636 38 ON045338 Oreumenes decorates 15,563 37 ON076028 Paralepromenes sp. 16,805 37 ON045337 Parancistrocerus samarensis 17,773 38 ON076023 Pararhynchium striatum 20,403 38 ON045347 Pararhynchium striatum 20,403 36 ON076020 Pseudepipona przevalskyi 20,281 37 ON045335 Pseudepipona przevalskyi 20,281 35 ON045336 Pseudepipona przevalskyi 20,281 35 ON045336 Pseumenes nigripectus 17,773 38 ON045336 Pseumenes depressus 16,677 38 ON045336 <td>Jucancistrocerus atrofasciatus</td> <td>18,848</td> <td>38</td> <td>ON045348</td>	Jucancistrocerus atrofasciatus	18,848	38	ON045348
Katamenes sichelii 14,807 37 ON076027 Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076030 Leptochilus sp. 14,241 36 ON045339 Orancistrocerus drewseni 17,636 38 ON045337 Oreumenes decorates 15,563 37 ON076028 Paralepromenes sp. 16,805 37 ON045337 Parancistrocerus samarensis 17,773 38 ON045347 Pararrhynchium striatum 20,403 36 ON045347 Pararrhynchium striatum 20,403 36 ON056023 Pararrhynchium striatus 18,003 36 ON076020 Pseudepipona kozhevnikovi 15,650 35 ON076019 Pseudepipona przevalskyi 20,281 37 ON045335 Pseudepipona przevalskyi 20,281 37 ON045335 Pseudepipona przevalskyi 20,281 37 ON045336 Pseumenes nigripectus 17,773 38 ON045336 <	Jucancistrocerus angustifrons	19,867	38	ON012819
Labus pusillus 17,409 36 ON076026 Labus angularis 15,227 35 ON076030 Leptochilus sp. 14,241 36 ON045339 Orancistrocerus drewseni drewseni 17,636 38 ON045338 Oreumenes decorates 15,563 37 ON076028 Paralepromenes sp. 16,805 37 ON045337 Parancistrocerus samarensis 17,773 38 ON045347 Pararnhynchium striatum 20,403 38 ON045347 Pararrhynchium septemfasciatus 18,003 36 ON076020 Pseudepipona kozheonikovi 15,650 35 ON076019 Pseudepipona kozheonikovi 15,650 35 ON076019 Pseudepipona kozheonikovi 15,650 35 ON076019 Pseudepipona kozheonikovi 16,677 38 ON045336 Pseumenes nigripectus 17,773 38 ON045346 Rhynchium duinquecinctum murotai 16,677 38 ON045346 Rhynchium brunneum brunneum 23,251 38	Katamenes sichelii sichelii	14,807	37	ON076027
Labus angularis 15,227 35 ON076030 Leptochilus sp. 14,241 36 ON045339 Orancistrocerus drewseni drewseni 17,636 38 ON045338 Oreumenes decorates 15,563 37 ON076028 Paralepromenes sp. 16,805 37 ON045337 Parancistrocerus samarensis 17,773 38 ON076023 Pararrhynchium striatum 20,403 38 ON045347 Pararrhynchium striatum 20,403 38 ON076020 Pararrhynchium septenfasciatus 18,003 36 ON076020 Pseudepipona kozhevnikovi 15,650 35 ON076019 Pseudepipona przewalskyi 20,281 37 ON045335 Pseumenes digripectus 17,773 38 ON045336 Pseumenes depressus 16,677 38 ON045336 Pseumenes depressus 16,6317 36 MK051030 Rhynchium brunneum brunneum 23,251 38 MK051032 Stenodynerus frauenfeldi 17,252 36	Labus pusillus	17,409	36	ON076026
Leptochilus sp. 14,241 36 ON045339 Orancistrocerus drewseni drewseni 17,636 38 ON045338 Oreumenes decorates 15,563 37 ON076028 Paralepromenes sp. 16,805 37 ON045337 Parancistrocerus samarensis 17,773 38 ON076023 Pararrhynchium striatum 20,403 38 ON045347 Pararrhynchium septemfasciatus 18,003 36 ON045347 Pareumenes quadrispinosus acutus 17,426 38 ON076020 Pseudepipona kozhevnikovi 15,650 35 ON076019 Pseudepipona przewalskyi 20,281 37 ON045335 Pseumenes nigripectus 17,773 38 ON045335 Pseumenes nigripectus 17,773 38 ON045335 Pseumenes nigripectus 17,773 38 ON045336 Pseumenes nigripectus 17,773 38 ON045346 Rhynchium quinquecinctum murotai 16,377 38 ON045346 Rhynchium brunneum 23,251	Labus angularis	15,227	35	ON076030
Orancistrocerus drewseni drewseni 17,636 38 ON045338 Oreumenes decorates 15,563 37 ON076028 Paralepromenes sp. 16,805 37 ON045337 Parancistrocerus samarensis 17,773 38 ON076023 Pararrhynchium striatum 20,403 38 ON076023 Pararrhynchium striatum 20,403 38 ON076023 Pararrhynchium striatum 20,403 38 ON045347 Pararrhynchium septemfasciatus 18,003 36 ON055487 Pareumenes quadrispinosus acutus 17,426 38 ON076020 Pseudepipona kozhevnikovi 15,650 35 ON076019 Pseudepipona przewalskyi 20,281 37 ON024141 Pseudozumia indosinensis 16,376 35 ON045336 Pseumenes nigripectus 17,773 38 ON045336 Pseumenes depressus 16,677 38 ON0453346 Rhynchium punneum brunneum 23,251 38 MK051031 Rhynchium brunneum brunneum 23,12	Leptochilus sp.	14,241	36	ON045339
Oreumenes decorates15,56337ON076028Paralepromenes sp.16,80537ON045337Parancistrocerus samarensis17,77338ON076023Pararrhynchium striatum20,40338ON045347Pararrhynchium septemfasciatus18,00336ON055487Pareumenes quadrispinosus acutus17,42638ON076020Pseudepipona kozhevnikovi15,65035ON076019Pseudepipona przewalskyi20,28137ON045335Pseudozumia indosinensis16,37635ON045336Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus chinensis17,19438ON045334Stenodynerus chinensis17,28038ON076017Zethus dolosus17,28038ON076017Zethus dolosus17,86538ON076017	Orancistrocerus drewseni drewseni	17,636	38	ON045338
Paralepromenes sp.16,80537ON045337Parancistrocerus samarensis17,77338ON076023Pararrhynchium striatum20,40338ON045347Pararrhynchium septemfasciatus18,00336ON055487Pareumenes quadrispinosus acutus17,42638ON076020Pseudepipona kozhevnikovi15,65035ON076019Pseudepipona przewalskyi20,28137ON024141Pseudozumia indosinensis16,37635ON045335Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus chinensis17,19438ON045334Subancistrocerus camicrus18,03538ON045344Symmorphus ambotretus17,28038ON076017Zethus dolosus16,30638ON076017	Oreumenes decorates	15,563	37	ON076028
Parancistrocerus sanarensis17,77338ON076023Pararrhynchium striatum20,40338ON045347Pararrhynchium septemfasciatus18,00336ON055487Pareumenes quadrispinosus acutus17,42638ON076020Pseudepipona kozhevnikovi15,65035ON076019Pseudepipona przewalskyi20,28137ON024141Pseudozumia indosinensis16,37635ON045335Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12236ON045334Stenodynerus frauenfeldi17,25236ON045345Subancistrocerus camicrus18,03538ON045344Symmorphus ambotretus17,28038ON076017Zethus dolosus16,30638ON076017	Paralepromenes sp.	16,805	37	ON045337
Pararrhynchium striatum20,40338ON045347Pararrhynchium septemfasciatus18,00336ON055487Pareumenes quadrispinosus acutus17,42638ON076020Pseudepipona kozhevnikovi15,65035ON076019Pseudepipona przewalskyi20,28137ON024141Pseudozumia indosinensis16,37635ON045335Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus canicrus18,03538ON045345Subancistrocerus camicrus18,03538ON076018Symmorphus ambotretus17,28038ON076017Zethus dolosus16,30638ON076017	Parancistrocerus samarensis	17,773	38	ON076023
Pararrhynchium septemfasciatus18,00336ON055487Pareumenes quadrispinosus acutus17,42638ON076020Pseudepipona kozhevnikovi15,65035ON076019Pseudepipona przewalskyi20,28137ON024141Pseudozumia indosinensis16,37635ON045335Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus canicrus18,03538ON045345Subancistrocerus camicrus18,03538ON076018Symmorphus ambotretus17,28038ON076017Zethus dolosus16,30638ON076017	Pararrhynchium striatum	20,403	38	ON045347
Pareumenes quadrispinosus acutus17,42638ON076020Pseudepipona kozhevnikovi15,65035ON076019Pseudepipona przewalskyi20,28137ON024141Pseudozumia indosinensis16,37635ON045335Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus chinensis17,19438ON045345Subancistrocerus camicrus18,03538ON076018Symmorphus ambotretus17,28038ON076017Zethus dolosus16,30638ON076017	Pararrhynchium septemfasciatus	18,003	36	ON055487
Pseudepipona kozhevnikovi15,65035ON076019Pseudepipona przewalskyi20,28137ON024141Pseudozumia indosinensis16,37635ON045335Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus chinensis17,19438ON045345Subancistrocerus camicrus18,03538ON076018Symmorphus ambotretus17,26538ON076017Zethus dolosus16,30638ON076017	Pareumenes quadrispinosus acutus	17,426	38	ON076020
Pseuderipona przewalskyi20,28137ON024141Pseudozumia indosinensis16,37635ON045335Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus chinensis17,19438ON045345Subancistrocerus camicrus18,03538ON045344Symmorphus ambotretus17,28038ON076018Symmorphus lucens17,86538ON076017Zethus dolosus16,30638ON076016	Pseudepipona kozhevnikovi	15,650	35	ON076019
Pseudozumia indosinensis16,37635ON045335Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus chinensis17,19438ON045345Subancistrocerus camicrus18,03538ON045344Symmorphus ambotretus17,28038ON076018Symmorphus lucens17,86538ON076017Zethus dolosus16,30638ON076016	Pseudepipona przewalskyi	20,281	37	ON024141
Pseumenes nigripectus17,77338ON045336Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus chinensis17,19438ON045345Subancistrocerus camicrus18,03538ON045344Symmorphus ambotretus17,28038ON076018Symmorphus lucens17,86538ON076017Zethus dolosus16,30638ON076017	Pseudozumia indosinensis	16,376	35	ON045335
Pseumenes depressus16,67738ON045346Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus chinensis17,19438ON045345Subancistrocerus camicrus18,03538ON045344Symmorphus ambotretus17,28038ON076018Symmorphus lucens17,86538ON076017Zethus dolosus16,30638ON076016	Pseumenes nigripectus	17,773	38	ON045336
Rhynchium quinquecinctum murotai16,31736MK051030Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus chinensis17,19438ON045345Subancistrocerus camicrus18,03538ON045344Symmorphus ambotretus17,28038ON076018Symmorphus lucens17,86538ON076017Zethus dolosus16,30638ON076016	Pseumenes depressus	16,677	38	ON045346
Rhynchium brunneum brunneum23,25138MK051031Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus chinensis17,19438ON045345Subancistrocerus camicrus18,03538ON045344Symmorphus ambotretus17,28038ON076018Symmorphus lucens17,86538ON076017Zethus dolosus16,30638ON076016	Rhynchium quinquecinctum murotai	16,317	36	MK051030
Rhynchium brunneum ceylonicum23,12238MK051032Stenodynerus frauenfeldi17,25236ON045334Stenodynerus chinensis17,19438ON045345Subancistrocerus camicrus18,03538ON045344Symmorphus ambotretus17,28038ON076018Symmorphus lucens17,86538ON076017Zethus dolosus16,30638ON076016	Rhynchium brunneum brunneum	23,251	38	MK051031
Stenodynerus frauenfeldi 17,252 36 ON045334 Stenodynerus chinensis 17,194 38 ON045345 Subancistrocerus camicrus 18,035 38 ON045344 Symmorphus ambotretus 17,280 38 ON076018 Symmorphus lucens 17,865 38 ON076017 Zethus dolosus 16 306 38 ON076016	Rhynchium brunneum ceylonicum	23,122	38	MK051032
Stenodynerus chinensis17,19438ON045345Subancistrocerus camicrus18,03538ON045344Symmorphus ambotretus17,28038ON076018Symmorphus lucens17,86538ON076017Zethus dolosus16,30638ON076016	Stenodynerus frauenfeldi	17,252	36	ON045334
Subancistrocerus camicrus 18,035 38 ON045344 Symmorphus ambotretus 17,280 38 ON076018 Symmorphus lucens 17,865 38 ON076017 Zethus dolosus 16 306 38 ON076016	Stenodynerus chinensis	17,194	38	ON045345
Symmorphus ambotretus 17,280 38 ON076018 Symmorphus lucens 17,865 38 ON076017 Zethus dolosus 16 306 38 ON076016	Subancistrocerus camicrus	18,035	38	ON045344
Symmorphus lucens 17,865 38 ON076017 Zethus dolosus 16 306 38 ON076016	Symmorphus ambotretus	17,280	38	ON076018
Zethus dolosus 16 306 38 ON076016	Symmorphus lucens	17,865	38	ON076017
201103 000000 10,000 00 01107 0010	Zethus dolosus	16,306	38	ON076016

2.2. Whole-Genome Sequencing and Assembling

The Illumina TruSeq library, containing an average size of 350 bp, was sequenced using the Illumina Hiseq 2500 platform at BerryGenomics (Beijing, China). Then, high-quality reads (after deletion of low-quality reads) were used in de novo assembly with IDBA-UD by using the NGS QC Toolkit [31,32]. *COX1* and *srRNA* were amplified by standard PCR reactions and were used to identify mitogenome assemblies with at least 98% similarity sequences in BLAST [33,34]. Finally, the accuracy of the assembly was investigated by mapping clean reads onto the obtained mitochondrial scaffold in each library using Geneious 10.1.3 (http://www.geneious.com/. Accessed date: 12 January 2022), which allowed for up to 2% mismatches, a maximum gap size of 3 bp, and a minimum overlap of 100 bp.

2.3. Mitogenome Annotation and Sequence Analysis

Annotation of the assembled mitochondrial sequences was identified using Clustal X 1.8 with homologous sequences against the publicly available Eumeninae mitogenomes [35]. Unrecognized tRNA genes were found by use of tRNA scan-SE version 2.0.2 and secondary structure modeling was completed using ARWEN version 1.2 [36,37]. The nucleotide composition, AT content, GC-skew, and the Relative Synonymous Codon Usage (RSCU) were calculated in MEGA X [38]. Effective Number of Codons (ENC) and GC of silent 3rd codon posit (GC3s) were computed in Codon W 1.4 and non-synonymous (*Ka*) and synonymous (*Ks*) substitution ratio (*Ka/Ks*) of PCGs were calculated in DnaSP 5.0 [39,40]. Then, the gene arrangement events were detected in CREx [41].

2.4. Phylogenetic Analyses

A total of 87 Vespidae mitogenomes containing 52 newly sequenced eumenine mitogenomes and 35 species of the subfamilies Eumeninae, Stenogastrinae (three species), Polistinae (19 species), and Vespinae (11 species) downloaded from GenBank were selected as ingroups, and four species from Apoidea (*Hylaeus dilatatus, Andrena cineraria, Megachile sculpturalis,* and *Apis cerana*) were selected as outgroups (Table S1). In total, 13 PCGs and 2 rRNAs were extracted by PhyloSuite v 1.2.2 [42]. The individual alignments of PCGs were performed using the L-INS-i strategy of the MAFFT algorithm executed in the TranslatorX online platform, and rRNA genes were aligned individually using the G-INS-i strategy implemented in MAFFT version 7.205 [43,44]. GBlocks v.0.91b was used to remove all ambiguously aligned sites from 13 PCGs and two rRNAs [45]. After that, MEGA X was used to check and correct all the alignments [38].

Phylogenetic trees were inferred from two sets of data: (1) PCGR: 13 PCGs and 2 rRNAs; (2) PCG: 13 PCGs. Before the construction of trees, PartitionFinder version 2.1.1 [46] was used to simultaneously choose the best partition schemes and substitution models for each matrix with the Akaike Information Criterion (AIC) and greedy search algorithm (Table S2). A Bayesian inference (BI) tree was constructed in MrBayes v.3.2.7, approximately 10,000,000 generations were conducted for the matrix, with the average deviation of split frequencies below 0.01 which suggests that runs reach convergence and were sampled every 1000 generations with a burn-in of 25% [47]. Maximum likelihood (ML) was constructed on the PhyML online web server (http://www.atgc-montpellier.fr/phyml/. Accessed date: 12 January 2022) and the node support values were evaluated via a bootstrap test with 100 replicates [48]. In addition, for (maximum parsimony) MP, the matrix was analyzed through the use of Winclada slaving TNT [49,50]. New technology search algorithms were used with the default settings, except ratchet 200 iterations, with up:down perturbation 8:4; hits to minimum length 25. Bootstrapping was via traditional search, with 100 replicates.

3. Results and Discussion

3.1. Mitochondrial Genome Organization

We obtained 52 complete or partial mitogenomes, which were deposited in GenBank (Table 1). Most of them include 13 protein-coding genes (PCGs), 2 rRNA genes (rRNAs), a control region, and 22 or 23 tRNA genes (tRNAs), with a size from 14,241 (*Leptochilus* sp.) to 23,251 bp (*Rhynchium brunneum brunneum*) and some of the entire A+T rich regions as well as three tRNA genes (*trnI*, *trnQ* and *trnM*) were unable to be amplified in 23 mitogenomes (Figure S1). The composition of 29 complete mitogenomes are significantly biased toward adenine and thymine, with high A+T content from 78.6% (*Subancistrocerus camicrus*) to 84.7% (*Eumenes pomiformis*) which is similar to other hymenopteran mitogenomes [51] and the AT skews are from -0.09 (*Pararrhynchium striatum*) to 0.19 (*Antepipona* sp.) (Table S3).

Typically, the mitogenomes of metazoan animals are double-strand circular DNA composed of 37 genes including 13 PCGs, 22 tRNAs, 2 rRNAs, and a control region, and most genes are located on the J-strand (major strand), the remaining being on the N-strand [52]. In this study, some mitogenomes of Eumeninae generally match that of the inferred mitogenomes except for some *trnM* duplications (Figure 1).

Figure 1. The mitochondrial genomes of Eumeninae. Circles of different colors indicate different tribes of Eumeninae. The red gene means its position is inconsistent with the ancestor insect.

Compared with other Vespidae, there are 26 in total in the 52 newly assembled mitogenomes of Eumeninae containing two *trnM* genes which are highly similar, with 51.86% (*Eumenes tripunctatus*) to 90.65% (*Pseumenes nigripectus*) sequence identities (Figure S2). The substitutions between *trnM0* and *trnM1* are identified in the Amino Acid acceptor (AA) arm, T ψ C (T) arm, Variable (V) loop, Anticodon (AC) arm, and the dihydorouridine (DHU) arm (Figure 2). The positions of *trnM0* and *trnM1* are different: some are connected and

others are separated by *trnQ* and *trnW*. The duplication event is unique in the subfamily Eumeninae among the reported mitogenomes of Vespidae; meanwhile, it was reported in the mitogenomes of both *Ibalia leucospoides* (Hymenoptera: Cynipoidea) containing three *trnM* with 92–97% sequence identities and the genus *Pachycephus* (Hymenoptera: Cephidae) [18,53,54]. Moreover, there is another duplication of *trnL2* within the Eumeninae such as three regions of noncoding DNA containing four copies of *trnL2* in *Abispa ephippium* [55]. According to the existing reports, the duplication of tRNA is common in Hymenoptera; for instance, the copies of *trnD*, *trnA*, and *trnE* in the family Cephidae (Hymenoptera) and Trigonalyoidea (Hymenoptera), respectively [18,53]. Therefore, within the family Vespidae, the duplication of *trnM* may be one of the features to indicate whether a species belongs to the subfamily Eumeninae.

Figure 2. Inferred secondary structures of duplicated *trnM*. The substitutions in *trnM*0 and *trnM*1 compared with each other are indicated by red color.

3.2. Protein-Coding Genes and Codon Usage Patterns

All the PCGs start with the typical ATA, ATG, or ATT codons and stop with the complete TAA or TAG or truncate TA- or T – termination codons. The composition of PCGs is significantly biased toward adenine and thymine, with high A+T content from 75.9% to 84.4%, and the AT skews are always negative from -0.16 to -0.095 (Figure 3A). The A+T content of PCGs in other subfamilies of Vespidae was computed, showing that the value of A+T content in Stenogastrinae is higher than in three other subfamilies and in Vespinae it is the minimum (Figure 3B).

Figure 3. A+T content, AT-Skew, and GC-Skew of PCG in vespid mitogenomes. (**A**) The A+T content, AT-Skew, and GC-Skew of PCG in Eumeninae; (**B**) the A+T content of PCG in four subfamilies of Vespidae.

The Relative Synonymous Codon Usage (RSCU) values of codons such as UUA, GUU which ended with A or U, are all greater than 1.3 and those ending with G or C are all less than 1 (Figure 4). The RSCU value can directly reflect the frequency of codon usage: the RSCU value equivalent to 1 indicates that the codon has no preference, or the RSCU value greater than 1 illustrates that the frequency of the codon is relatively higher [56,57]. As a result, the optimal codons among PCGs of eumenine mitogenomes are codons ending with A or U, and accordingly, the third position of the codon in PCGs is significantly biased toward adenine and thymine with 90.5% A+T content. Additionally, the optimal codons of eumenine mitogenomes are consistent with those of Vespidae which frequently used UUU, UUA, AUU, and AUA, and among them, UUA (Leu2) is the one with the highest RSCU value. In addition, both UAA and AGA are the stop codons of the eumenine mitogenomes, of which UAA with the higher RSCU is the eumenine preferred codon.

Figure 4. Relative synonymous codon usage (RSCU) of the mitogenomes of Eumeninae.

The synonymous codon usage bias is influenced by mutation pressure and natural selection, and an effective number of codons (ENC) standard curve can indicate that the determinant of codon preference is mutation pressure or natural selection [58]. Our result shows that all the points lie under the standard curve, which indicates that the codon usage bias is influenced by selection pressure (Figure S3). *Ka/Ks* is the ratio of the number of nonsynonymous substitutions per nonsynonymous site (*Ka*) to the number of synonymous substitutions per synonymous site (*Ks*), which could indicate something about the selective forces acting on the protein [59]. Thus, we computed the *Ka/Ks* value of PCGs from eumenine mitogenomes, and the result shows that all the *Ka/Ks* of PCGs except *ND4L* are less than 1, which indicates that only *ND4L* is under a positive selection and evolves rapidly, and other PCGs are under a purifying selection. Moreover, the lowest *Ka/Ks* value of *COX1* (0.11) indicates that it is conservative under environmental selection pressure and suitable for molecular barcoding (Figure 5).

Figure 5. The *Ka/Ks* values of the subfamily Eumeninae are based on each PCG.

3.3. Gene Arrangement

Mitogenomes are usually stable in composition and gene arrangement is relatively conservative; therefore, recombination rarely occurs in the evolutionary history of insects [52,60]. As more and more mitogenomes of insects are reported, the rates of mitogenome rearrangement in Hymenoptera are accelerated [53,61]. The subfamily Eumeninae is the primary lineage of the Vespidae, and its gene rearrangement events are still poorly studied. Some eumenine mitogenomes contain a duplication of *trnM* and the positions of the two *trnM* are different, which means that the different mechanisms occurred in the gene rearrangement of Eumeninae. We investigated more rearrangement events of 54 eumenine mitogenomes and found that all eumenine mitogenomes contain a translocation *trnL1* upstream of *nad1* (Figure 6). Because gene duplications are not allowed in CREx, the rearrangement events in cluster *trnQ-trnM-ND2-trnW* are inferred as three patterns compared with the ancestral mitochondrial gene order (Figure S4): the tandem duplication of *trnM* occurs in all three clusters of Eumeninae, and then the distinct recombination occurs in the three clusters, respectively. In the tribe Zethini, the recombination occurs in *trnQ-trnM0* and *trnM1-ND2* after *trnM* duplicated to *trnM0-trnM1*, and subsequently, it occurs between *trnM0-trnQ* and *ND2-trnM1-trnW*, and there is another rearrangement type: from the ancestral order trnQ-trnM-ND2-trnW to ND2-trnW-trnM0-trnM1 in Calligaster *cyanoptera*. In the tribe Odynerini, the recombination between *trnM1* and *trnQ-trnM0* occurs in most species, and the recombination trnQ-trnM0 after trnM duplicated to trnM0trnM1 occurs in Allodynerus delphinalis and Allodynerus mandschuricus. In the same way, the recombination occurs in *trnQ-trnM1* after *trnM* duplicated to *trnM0-trnM1*, and then the recombination occurs between *trnM1 trnQ* and *trnM0-ND2-trnW* in most species of the tribe Eumenini. As mentioned above, the three tribes of the subfamily Eumeninae possess their distinctive rearrangement pattern. Our results provided additional evidence that the majority of mitogenome rearrangements occur in tRNAs in hymenopteran insects and also showed that the gene block trnI-trnQ-trnM-ND2 may be the hot spot of rearrangement in Hymenoptera because the rearrangement events of this block are found in many hymenopteran lineages, such as the rearrangement events of the gene block *CR*trnI-trnQ-trnM-ND2-trnW-trnC-trnY in all the Icheumonoid lineages and rearrangement of *CR-trnI-trnQ-trnM* in the mitochondrial genome of *Allantus luctifer* [62,63].

Figure 6. The rearrangement event in three tribes of the subfamily Eumeninae. The red genes represent its' position changes compared with ancestral mitogenomes.

3.4. Phylogenetic Relationship of Vespidae

The results of substitution saturation show that Iss > Iss.c and p = 0.0000 within both PCG and PCGR (Table S4), which indicates that the sequences are not saturated and can be used for phylogenetic analysis. In this study, phylogenetic analyses of two concatenated nucleotides (PCG and PCGR) were conducted, both representing four subfamilies (Stenogastrinae, Eumeninae, Polistinae, and Vespinae) of Vespidae and the outgroup (Hylaeus dilatatus, Andrena cineraria, Megachile sculpturalis, and Apis cerana). The two concatenated nucleotides were subjected to Bayesian inference (BI) and maximum likelihood (ML) analyses, resulting in four trees where the positions of the four subfamilies are congruent (Figure 7). In these trees, the phylogenetic relationships of the Vespidae are as follows: Stenogastrinae + ("Eumeninae" + (Zethini + (Polistinae + Vespinae))). According to our results, the subfamilies Stenogastrinae, Polistinae, and Vespinae are undoubtedly monophyletic, but nevertheless, the subfamily Eumeninae excluding Zethini is monophyletic. Additionally, Stenogastrinae is a sister lineage to other subfamilies of Vespidae with high bootstrap support values (BS) and Bayesian posterior probabilities values (PP) (BS = 100, PP = 1), which is consistent with some recent phylogenomic studies [64,65]. The study reveals that the tribe Zethini of the subfamily Eumeninae is an independent branch and more closely related to Polistinae and Vespinae, which is similar to previous studies [5,13,15]. As the tree shows in Figure 7, the position of the Zethini ("Zethinae") is between solitary Eumeninae and eusocial Vespinae + Polistinae. The genus Calligaster and the subgenus Zethoides of genus Zethus in Zethini ("Zethinae") have been cited as exemplifying the critical evolutionary stages of subsocial and communal behavior which connects solitary and eusocial wasps because it is reported that some species of both Zethus and Calligaster construct their nests with plant material rather than the typical eumenine nest construction with mud [66,67].

Figure 7. Phylogenetic trees of the Vespidae inferred from PCG and PCGR by ML and BI. Each node shows the Bayesian posterior probabilities (PP)/maximum likelihood bootstrap support (BS) values.

3.5. Phylogenetic Relationship within Eumeninae

The ingroup relationships of the family Vespidae are congruent in the obtained trees with the same methods, respectively, and the notable difference between the obtained tree topologies with ML and BI methods is that *Pseudozumia indosinensis* belongs to clade VIII in ML trees with low bootstrap support value (BS = 39, 38), while in BI trees it belongs to

clade IX with high Bayesian posterior probability (PP = 1,1) (Figure S5). That the BS of a branch is lower than 50 means that the relationship has not been supported. In order to verify the accuracy of the obtained trees, a MP analysis was also performed, and the results were (of course) similar to the BI trees (Figure S6). Therefore, with the high Bayesian posterior probabilities, it is more likely that *Pseudozumia indosinensis* belongs to clade IX in BI trees. Of course, it may be because the differing placement in the ML trees is an artifact of bootstrap values below 50. The placement of the genus *Pseudozumia* in BI trees is also consistent with the result of Piekarski et al. In their research, a maximum-likelihood tree of Vespidae inferred from 235 selected loci obtained also shows the genus *Pseudozumia* as a sister group to *Orancistrocerus* which belongs to clade IX in this study [15]. Furthermore, the illustration in Figure 8 is identical to the results from analyzing the data of PCG and PCGR with the BI method. Both ML and BI reveal that the tribe Eumenini is monophyletic and the tribe Odynerini is paraphyletic containing 10 clades. The results also consistently indicate that the clade II to clade X is the sister group to the tribe Eumenini.

Within the tribe Eumenini, the sister relationship of (*Oreumenes* + *Delta*) + (*Katamenes* + *Eumenes*) is strongly supported by all datasets in this study (BS = 100; PP = 1). Hermes et al. found that the genera *Oreumenes*, *Delta*, *Katamenes*, and *Eumenes* all belong to their clade 3 of Eumenini, and the genus *Eumenes* was recovered as a sister to the remaining taxa of Eumenini [6]. The differences in phylogenetic relationships of the four genera between our study and Hermes et al. might be attributed to our limited generic sample, which is not enough to clarify the comprehensive relationships of all genera of the tribe Eumenini. Therefore, to clearly understand the phylogenetic relationships within the tribe Eumenini, more data are needed.

The tribe Odynerini is the biggest one within the subfamily Eumeninae [6]. Here, we investigated 24 genera of Odynerini to illustrate their phylogenetic relationships. The results show that Odynerini comprising 10 major clades (I-X) is paraphyletic, and clade I (the genus *Abispa*) is a sister group to all remaining Eumeninae. Bank et al. reported that the genus *Alastor* (clade A) is inferred as a sister lineage to all remaining Eumeninae based on transcriptomes of 49 vespid wasps [14]. Our study does not contain any species in the genus Alastor, and Bank et al.'s study did not contain any species in the genus Abispa, whereas that of Piekarskis et al. containing both Abispa and Alastor, is consistent with the standpoint of Bank et al. [14,15]. In clade II, the genus *Leptochilus* is inferred as a sister lineage to the genus *Labus*. In succession, the genus *Symmorphus* is an independent clade III and sister group to clades IV-X. In clades IV-X, there is a sister-group relationship between clades IV-V and VI-X. Within clades IV-V, clade IV is a sister group to clade V, while Jucancistrocerus (Jucancistrocerus) angustifrons and Jucancistrocerus (Eremodynerus) atrofasciatus are located at clades IV and V, respectively, which may support subgenera *Eremodynerus* being a valid genus [68]. Of course, more morphological evidence of more species should be investigated to confirm our results in further research. Within clades VI-X, clade VI is a sister group to clades VII-X and is composed of Antepipona + (Paralepromenes + Apodynerus). Then, clade VII is a sister group to clades VIII-X, composed of Pararrhynchium and Allorhynchium, while Pararrhynchium striatum is located within the genus Allorhynchium. The misidentification of Pararrhynchium striatum is eliminated by the examination of specimens, so *Pararrhynchium striatum* should be transferred to the genus Allorhynchium, or these two genera are synonymized. Likewise, there is a sister relationship between clade VIII and clades IX-X, and the phylogenetic relationships of clade VIII are as follows: (*Pareumenes* + (*Ectopioglossa* + *Pseumenes*)). Finally, within these two clades IX and X, they are sisters to each other, and the phylogenetic relationships of clade IX are as follows: (Pseudozumia + (Euodynerus + Orancistrocerus)), and of clade X they are (Anterhynchium (Anterhynchium) + (Anterhynchium (Dirhynchium) + Rhynchium)). As the results show, with high Bayesian posterior probabilities (PP = 1), the subgenus Dirhynchium of Anterhynchium is more closely related to the genus *Rhynchium* than the nominate subgenus *Anterhynchium*, which means the subgenus Dirhynchium should be upgraded to a valid genus. Again, further investigation is needed.

Figure 8. Phylogenetic tree of Vespidae inferred from PCG and PCGR by BI. Each node shows the Bayesian posterior probability (PP) values.

4. Conclusions

To sum up, the mitogenomes of Eumeninae are commonly found to contain two *trnM*, which differs remarkably from the gene orders of other Vespidae. This study based on mitogenomes further supports previously proposed relationships among Vespidae [5,14,68], especially the placement of the tribe Zethini and some genera of the subfamily Eumeninae, indicating that the tribe Zethini should be raised to Zethinae and that the tribe Eumenini is monophyletic and Odynerini is paraphyletic. Meanwhile, some issues have not been clearly resolved in this study. First, stable generic morphological characters are needed to support these two subgenera Eremodynerus and Dirhynchium as valid genera. Additionally, although *Pararrhynchium striatum* is proposed to be moved to *Allorhynchium*, it is possible that the relationship between these two genera is confused, which requires more species sampling and morphological characteristics to elucidate. Second, considering that only one limited mitogenome in some genera of Eumeninae, such as Abispa, Apodynerus, Leptochilus, Parancistrocerus, Paralepromenes, Pareumenes, Pseudozumia, and Subancistrocerus, is presented in our analyses, the taxonomic status of these genera may be unstable and uncertain. In the end, the relationships of these taxa in this study still need to be verified by morphological and biological information. Therefore, to further advance the research on the systematic relationships of the subfamily Eumeninae, more taxon sampling and information about the morphological characteristics, molecular data, and biological behaviors are needed.

Supplementary Materials: The following supporting information can be downloaded at: https:// www.mdpi.com/article/10.3390/insects13060529/s1, Supplementary Figure S1. The gene order of eumenine mitogenomes used in this study; Supplementary Figure S2. Inferred secondary structures of duplicated *trnM*. The substitutions in *trnM0* and *trnM1* compared with each other are indicated by red color; Supplementary Figure S3. ENC-GC₃₅ plot of total PCGs in 54 eumenine mitogenomes, the black curve shows the relationship between ENC values and GC_{3S} under random codon usage assumption; Supplementary Figure S4. The hypothesized pathway of the translocated inversion derived by recombination and duplication in three tribes of the subfamily Eumeninae. The red genes represent their positions; Supplementary Figure S5. Phylogenetic trees of Vespidae were inferred from PCG and PCGR by ML. Each node shows the bootstrap support values; Supplementary Figure S6. Phylogenetic trees of Vespidae. (A): Phylogenetic tree of Vespidae inferred from PCG by MP. (B): Phylogenetic tree of Vespidae inferred from PCGR by MP. Each nod shows the bootstrap support values; Supplementary Table S1. Mitochondrial genomes used for phylogenetic analysis in this study; Supplementary Table S2. The best partitioning scheme selected by PartitionFinder for different data matrices; Supplementary Table S3. Base composition, total length (bp), and AT-skew of complete Eumeninae mitogenomes; Supplementary Table S4. Substitution saturation test results.

Author Contributions: L.L. completed all the analyses and wrote the manuscript. J.M.C. provided data analysis, reviewed the manuscript, and approved the final version to be published. B.C. contributed design of the work, gave important comments on this study, and reviewed the manuscript. T.L. is responsible for the implementation of the entire project and revising the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Nos: 31772490, 31372247, 31000976).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Mitochondrial genome sequences are accessible on GenBank and accession numbers are contained within Table 1.

Acknowledgments: We are extremely grateful to Song Fan of China Agricultural University for his important comments on this study and to Shu-Lin He of Chongqing Normal University for his help with the analysis method of this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Cowan, D.P. The Social Biology of Wasps; Cornell University Press: Ithaca, NY, USA, 1991; pp. 33–73.
- 2. Jennings, D.T.; Houseweart, M.W. Predation by Eumenid Wasps (Hymenoptera: Eumenidae) on Spruce Budworm (Lepidoptera: Tortricidae) and Other Lepidopterous Larvae in Spruce-Fir Forests of Maine. *Ann. Entomol. Soc. Am.* **1984**, *49*, 39–45. [CrossRef]
- Pannure, A.; Belavadi, V.V.; Carpenter, J.M. Taxonomic studies on potter wasps (Hymenoptera: Vespidae: Eumeninae) of south India. Zootaxa 2016, 4171, 1–50. [CrossRef] [PubMed]
- 4. Bohart, R.M.; Stange, L.A. A Revision of the Genus Zethus in the Western Hemisphere (Hymenoptera, Eumenidae); University of California Press: Oakland, CA, USA, 1965; Volume 40, pp. 1–208.
- Hines, H.M.; Hunt, J.H.; O'Connor, T.K.; Gillespie, J.J.; Cameron, S.A. Multigene phylogeny reveals eusociality evolved twice in vespid wasps. Proc. Natl. Acad. Sci. USA 2007, 104, 3295–3299. [CrossRef] [PubMed]
- 6. Carpenter, J.M.; Cumming, J.M. A character analysis of the North American potter wasps (Hymenoptera: Vespidae; Eumeninae). J. Nat. Hist. 1985, 19, 877–916. [CrossRef]
- 7. Latreille, P.A. Histoire Naturelle, Générale et Particulière des Crustacés et des Insects: Ouvrage Faisant Suite aux Oeuvres de Leclerc de Buffon, et Partie du Cours Complet D'historie Naturelle Rédigé par C.S.; Sonnini, F., Ed.; Dufart: Paris, France, 1802. [CrossRef]
- 8. de Saussure, H.F. *Etudes sur la Famille des Vespides 1. Monographie des Guepes Solitaires ou de la Tribe des Eumeniens;* Masson, V., Cherbuliez, J., Eds.; Victor Masson: Paris, France, 1852–1853; pp. 1–286.
- de Saussure, H.F. Etudes sur la Famille des Vespides 3. La Monographie des Masariens et un Supplement a la Monographie des Eumeniens; Masson, V., Cherbuliez, J., Eds.; Victor Masson: Paris, France, 1854–1856; pp. 1–352.
- 10. Richards, O.W. A Revisional Study of the Masarid Wasps (Hymenoptera, Vespoidea); British Museum (Natural History): London, UK, 1962; pp. 1–294.
- 11. Carpenter, J.M. The phylogenetic relationships and natural classification of the Vespoidea (Hymenptera). *Syst. Entomol.* **1982**, *7*, 11–38. [CrossRef]
- 12. Hermes, M.G.; Melo, G.; Carpenter, J.M. The higher-level phylogenetic relationships of the Eumeninae (Insecta, Hymenoptera, Vespidae), with emphasis onEumenessensu lato. *Cladistics* **2013**, *30*, 453–484. [CrossRef]
- 13. Schmitz, J.; Moritz, R. Molecular Phylogeny of Vespidae (Hymenoptera) and the Evolution of Sociality in Wasps. *Mol. Phylogenetics Evol.* **1998**, *9*, 183–191. [CrossRef]
- Bank, S.; Sann, M.; Mayer, C.; Meusemann, K.; Donath, A.; Podsiadlowski, L.; Kozlov, A.; Petersen, M.; Krogmann, L.; Meier, R.; et al. Transcriptome and target DNA enrichment sequence data provide new insights into the phylogeny of vespid wasps (Hymenoptera: Aculeata: Vespidae). *Mol. Phylogenetics Evol.* 2017, *116*, 213–226. [CrossRef]
- 15. Piekarski, P.K.; Carpenter, J.M.; Lemmon, A.R.; Lemmon, E.M.; Sharanowski, B.J. Phylogenomic Evidence Overturns Current Conceptions of Social Evolution in Wasps (Vespidae). *Mol. Biol. Evol.* **2018**, *35*, 2097–2109. [CrossRef]
- 16. Heraty, J.; Ronquist, F.; Carpenter, J.M.; Hawks, D.; Schulmeister, S.; Dowling, A.P.; Murray, D.; Munro, J.; Wheeler, W.C.; Schiff, N.; et al. Evolution of the hymenopteran megaradiation. *Mol. Phylogenetics Evol.* **2011**, *60*, 73–88. [CrossRef]
- 17. Wang, Y.; Cao, J.-J.; Li, W.-H. Complete Mitochondrial Genome of Suwallia teleckojensis (Plecoptera: Chloroperlidae) and Implications for the Higher Phylogeny of Stoneflies. *Int. J. Mol. Sci.* **2018**, *19*, 680. [CrossRef]
- Mao, M.; Gibson, T.; Dowton, M. Higher-level phylogeny of the Hymenoptera inferred from mitochondrial genomes. *Mol. Phylogenetics Evol.* 2014, 84, 34–43. [CrossRef] [PubMed]
- 19. Li, T.-J.; Chen, B. Descriptions of four new species of *Pararrhynchium* de Saussure (Hymenoptera: Vespidae: Eumeninae) from China, with one newly recorded species and a key to Chinese species. *Orient. Insects* **2018**, *52*, 175–189. [CrossRef]
- 20. Li, T.-J.; Barthélémy, C.; Carpenter, J.M. The Eumeninae (Hymenoptera, Vespidae) of Hong Kong (China), with description of two new species, two new synonymies and a key to the known taxa. *J. Hymenopt. Res.* **2019**, *72*, 127–176. [CrossRef]
- Tan, J.-L.; Carpenter, J.M.; Van Achterberg, C. An illustrated key to the genera of Eumeninae from China, with a checklist of species (Hymenoptera, Vespidae). ZooKeys 2018, 740, 109–149. [CrossRef] [PubMed]
- 22. Tan, J.-L.; Carpenter, J.M.; Van Achterberg, C. Most northern Oriental distribution of Zethus Fabricius (Hymenoptera, Vespidae, Eumeninae), with a new species from China. *J. Hymenopt. Res.* **2018**, *62*, 1–13. [CrossRef]
- 23. Wang, H.-C.; Chen, B.; Li, T.-J. A new species and a new record of the genus Discoelius Latreille, 1809 (Hymenoptera: Vespidae: Eumeninae) from China. *Zootaxa* 2019, 4686, 297–300. [CrossRef]
- 24. Wang, H.-C.; Chen, B.; Li, T.-J. Three new species of the genus Zethus Fabricius, 1804 (Hymenoptera, Vespidae, Eumeninae) from China, with an updated key to the Oriental species. *J. Hymenopt. Res.* **2019**, *71*, 209–224. [CrossRef]
- 25. Wang, H.-C.; Chen, B.; Li, T.-J. Taxonomy of the genus Ectopioglossa Perkins from China, with two new species and an updated key to the Oriental species (Hymenoptera: Vespidae: Eumeninae). *J. Asia-Pacific Entomol.* **2020**, *23*, 253–259. [CrossRef]
- Zhang, X.; Chen, B.; Li, T.-J. Taxonomy of the genus Epsilon from China, with a new species and an updated key to the Oriental species (Hymenoptera, Vespidae, Eumeninae). ZooKeys 2020, 910, 131–142. [CrossRef]
- Zhang, X.; Chen, B.; Li, T.-J. A taxonomic revision of Allodynerus Blüthgen (Hymenoptera: Vespidae: Eumeninae) from China. Zootaxa 2020, 4750, 545–559. [CrossRef] [PubMed]
- 28. Bai, Y.; Chen, B.; Li, T.-J. A new species and two new records of the genus Pseudepipona de Saussure, 1856 (Hymenoptera, Vespidae, Eumeninae) from China, with a key to the Chinese species. J. Hymenopt. Res. **2021**, 82, 285–304. [CrossRef]
- Bai, Y.; Chen, B.; Li, T.-J. Two newly recorded genera Malayepipona Giordani Soika and Megaodynerus Gusenleitner, with eight new species from China (Hymenoptera, Vespidae, Eumeninae). Zootaxa 2021, 5060, 371–391. [CrossRef]

- 30. Li, T.-J.; Bai, Y.; Chen, B. A revision of the genus Jucancistrocerus Blüthgen, 1938 from China, with review of three related genera (Hymenoptera: Vespidae: Eumeninae). *Zootaxa* 2022, *5105*, 401–420. [CrossRef] [PubMed]
- 31. Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IBDA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. *Bioinformatics* **2012**, *28*, 1420–1428. [CrossRef] [PubMed]
- Patel, R.K.; Mukesh, J.; Liu, Z. NGS QC Toolkit: A Toolkit for Quality Control of Next Generation Sequencing Data. *PLoS ONE* 2012, 7, e30619. [CrossRef] [PubMed]
- Simon, C.; Buckley, T.R.; Frati, F.; Stewart, J.B.; Beckenbach, A.T. Incorporating Molecular Evolution into Phylogenetic Analysis, and a New Compilation of Conserved Polymerase Chain Reaction Primers for Animal Mitochondrial DNA. *Annu. Rev. Ecol. Evol. Syst.* 2006, *37*, 545–579. [CrossRef]
- 34. Altschup, S.; Gish, W.; Miller, W.; Myers, E.; Lipman, D. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [CrossRef]
- 35. Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Res.* **1997**, *25*, 4876–4882. [CrossRef]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Search and contextual analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, W54–W57. [CrossRef]
- Laslett, D.; Canbäck, B. ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. *Bioinformatics* 2008, 24, 172–175. [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. *Mol. Biol. Evol.* 2018, 35, 1547–1549. [CrossRef] [PubMed]
- Cai, M.-S.; Cheng, A.-C.; Wang, M.-S.; Zhao, L.-C. Characterization of Synonymous Codon Usage Bias in the Duck Plague Virus UL35 Gene. *Karger* 2009, 52, 266–278. [CrossRef]
- 40. Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* **2009**, *25*, 1451–1452. [CrossRef] [PubMed]
- 41. Bernt, M.; Merkle, D.; Ramsch, D.; Fritzsch, G.; Perseke, M.; Bernhard, D.; Schlegel, M.; Stadler, P.F.; Middendorf, M. CREx: Inferring genomic rearrangements based on common intervals. *Bioinformatics* **2007**, *23*, 2957–2958. [CrossRef]
- Zhang, D.; Gao, F.; Jakovlićc, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Mol. Ecol. Resour.* 2020, 20, 348–355. [CrossRef]
- 43. Abascal, F.; Zardoya, R.; Telford, M.J. TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. *Nucleic Acids Res.* **2010**, *38*, W7–W13. [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [CrossRef]
- 45. Talavera, G.; Castresana, J. Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. *Syst. Biol.* **2007**, *56*, 564–577. [CrossRef]
- 46. Lanfear, R.; Calcott, B.; Ho, S.Y.; Guindon, S. PartitionFinder: Combined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. *Mol. Biol. Evol.* **2012**, *29*, 1695–1701. [CrossRef]
- Ronquist, F.; Teslenko, M.; Mark, P.; Ayres, D.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.; Huelsenbeck, J. MrBayes 3.2: Efcient Bayesian phyloge netic inference and model choice across a large model space. *Syst. Biol.* 2015, *61*, 539–542. [CrossRef] [PubMed]
- 48. Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. *Syst. Biol.* **2010**, *59*, 307–321. [CrossRef]
- Goloboff, P.A.; Catalano, S.A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. *Cladistics* 2016, 32, 221–238. [CrossRef] [PubMed]
- 50. Nixon, K.C. Winclada, version 1.98; Published by the author: Ithaca, NY, USA, 2015.
- 51. Tang, P.; Zhu, J.-C.; Zheng, B.-Y.; Wei, S.-J.; Sharkey, M.; Chen, X.-X. Mitochondrial phylogenomics of the Hymenoptera. *Mol. Phylogenetics Evol.* **2018**, *131*, 8–18. [CrossRef]
- 52. Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [CrossRef] [PubMed]
- 53. Mao, M.; Valerio, A.; Austin, A.D.; Dowton, M.; Johnson, N.F. The first mitochondrial genome for the wasp superfamily Platygastroidea: The egg parasitoid *Trissolcus basalis*. *Genome* **2012**, *55*, 194–204. [CrossRef]
- 54. Korkmaz, E.M.; Dogan, O.; Durel, B.S.; Budak, M.; Basibuyuk, H.H. Mitogenome organization and evolutionary history of the subfamily Cephinae (Hymenoptera: Cephidae). *Syst. Entomol.* **2018**, *43*, 606–618. [CrossRef]
- Cameron, S.L.; Dowton, M.; Castro, L.R. Mitochondrial genome organization and phylogeny of two vespid wasps. *Genome* 2008, 51, 800–808. [CrossRef] [PubMed]
- 56. Sharp, P.M.; Li, W.-H. An evolutionary perspective on synonymous codon usage in unicellular organisms. *J. Mol. Evol.* **1986**, 24, 28–38. [CrossRef]
- 57. Yu, T.; Li, J.; Yang, Y.; Qi, L. Codon usage patterns and adaptive evolution of marine unicellular cyanobacteria Synechococcus and Prochlorococcus. *Mol. Phylogenetics Evol.* **2012**, *61*, 206–213. [CrossRef]
- 58. Wei, L.; He, J.; Jia, X.; Qi, Q.; Liang, Z.; Zheng, H. Analysis of codon usage bias of mitochondrial genome in Bombyx moriand its relation to evolution. *BMC Evol. Biol.* **2014**, *14*, 262. [CrossRef] [PubMed]

- 59. Hurst, L.D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. *Trends Genet.* 2002, *18*, 486. [CrossRef]
- 60. Barr, C.M.; Neiman, M.; Taylor, D.R. Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. *New Phytol.* **2005**, *168*, 39–50. [CrossRef] [PubMed]
- 61. Dowton, M.; Austin, A.D. Evolutionary dynamics of a mitochondrial rearrangement "hot spot" in the Hymenoptera. *Mol. Biol. Evol.* **1999**, *16*, 298–309. [CrossRef] [PubMed]
- Feng, Z.B.; Wu, Y.F.; Yang, C.; Gu, X.H.; Wilson, J.J.; Li, H.; Cai, W.Z.; Yang, H.L.; Song, F. Evolution of tRNA gene rearrangement in the mitochondrial genome of ichneumonoid wasps (Hymenoptera: Ichneumonoidea). *Int. J. Biol. Macromol.* 2020, 164, 540–547. [CrossRef]
- 63. Wei, S.-J.; Niu, F.-F.; Du, B.-Z. Rearrangement oftrnQ-trnMin the mitochondrial genome of Allantus luctifer(Smith) (Hymenoptera: Tenthredinidae). *Mitochondrial DNA* 2014, 27, 856–858. [CrossRef]
- 64. Peters, R.S.; Krogmann, L.; Mayer, C.; Donath, A.; Niehuis, O. Evolutionary History of the Hymenoptera. *Curr. Biol.* 2017, 27, 1013–1018. [CrossRef]
- 65. Huang, P.; Carpenter, J.M.; Chen, B.; Li, T.-J. The first divergence time estimation of the subfamily Stenogastrinae (Hymenoptera: Vespidae) based on mitochondrial phylogenomics. *Int. J. Biol. Macromol.* **2019**, *137*, 767–773. [CrossRef]
- 66. Ducke, A. Uber Phylogenie und Klassifikation der socialen Vespiden. Zool. Jahr. Abt. Syst. Geogr. Biol. Tiere 1914, 36, 303–330.
- 67. Rau, P. The Jungle Bees and Wasps of Barro Colorado Island. Ann. Entomol. Soc. Am. 1933, 2, 376. [CrossRef]
- 68. Blüthgen, P. Beiträge zur Kenntnis der paläarktischen und einiger athiopischer Faltenwespen (*Hym. Vespidae*). Veröffentlichungen Aus Dem Dtsch. Kolon. Und Übersee Mus. Bremen **1939**, 2, 233–267.