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Simple Summary: The brown marmorated stink bug is an invasive true bug that originates in eastern
Asia and is considered now one of the most harmful invasive insect pests in North America and Eu-
rope. Similar to the many species that produce more than one generation per year, this bug responds
to day length: under short-day conditions (which predict the approaching of autumn), adults form a
special overwintering (diapause) physiological state, whereas, under long-day conditions (typical
for summer), they reproduce. Critical day length is the condition that induces diapause in 50% of
adults. This critical day length is usually strongly correlated with the latitude of the population origin.
In this study, we compared the critical day lengths of one native (Andong, South Korea) and three
invasive (Torino, Italy; Basel, Switzerland; and Sochi, Russia) populations. The critical day lengths of
both sexes fell between 14.5 and 15.0 h in the Korean population, and between 15.0 and 15.5 h in the
three European populations. The results demonstrate that microevolution was possibly ‘too slow to
keep up’ with the rapid spread of the invader across Eurasia. It is expected that in the near future,
the critical day length of invasive H. halys populations will gradually change to adapt better to the
local conditions.

Abstract: Facultative winter adult diapause in Halyomorpha halys is regulated by a long-day photope-
riodic response. Day length also influences nymphal development, which slows down at the critical
(near-threshold) day lengths. We compared the photoperiodic responses of one native (Andong,
South Korea) and three invasive (Torino, Italy; Basel, Switzerland; and Sochi, Russia) populations in
a laboratory common-garden experiment. Nymphs developed and emerging adults were reared at
24 ◦C in a range of photoperiods with day lengths of 14.0, 14.5, 15.0, 15.5, and 16.0 h. The critical day
lengths of the photoperiodic responses of both sexes fell between 14.5 and 15.0 h in the native Korean
population and between 15.0 and 15.5 h in three invasive European populations. The differences
between the three invasive populations were not significant, despite their distant origins. Moreover,
the difference between the Korean and European populations was much smaller than was expected.
The microevolution was possibly ‘too slow to keep up’ with the rapid spread of the invader across
Eurasia. It is expected that soon the critical day length of the invasive H. halys populations will
gradually change to adapt better to local conditions. At present, the critical day length for diapause
induction of 15 h 15 min can be used to model the phenology, further spread, and response to climate
change for all European populations of the pest.
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1. Introduction

Biological invasions cause substantial economic losses and represent serious threats
to the natural biodiversity [1–6]. On the other hand, these unintentional ‘natural exper-
iments’ [7] offer unique opportunities to study processes of microevolution in real time.
Any insect species that disperses out of its native range will face new environmental
conditions, and a quick adaptation is a necessary requirement for becoming a successful in-
vader [8–10]. Therefore, studies of insect invasions are currently among the most important
and demanded directions of research in both fundamental and applied entomology.

Seasonal variation in environmental conditions is an essential component of most
natural habitats. One of the most common seasonal adaptations in insects is a facultative
diapause induced by environmental cues before the beginning of the adverse season. In
particular, photoperiodic control of winter diapause induction and termination is based on
the natural correlation between seasonal changes in day length and other environmental
factors (e.g., temperature, precipitation, food availability, etc.). However, the pattern
of this correlation depends on geographic location. Accordingly, geographically distant
populations of widely distributed insect species often differ in their photoperiodic responses
and demonstrate clinal variation. Their critical photoperiod (i.e., day length, which induces
diapause in 50% of the population) linearly depends on geographic latitude [8,11–16]. For
many invasive species, it has been demonstrated that their dispersion outside their native
range is often accompanied by changes in their photoperiodic response [17–19].

Among the most invasive insects is the brown marmorated stink bug, Halyomorpha
halys (Stål, 1855) (Hemiptera: Heteroptera: Pentatomidae), which originates in eastern Asia
(China, Korea, Japan, Myanmar, Vietnam, and Taiwan). It is now considered one of the
most harmful invasive insect pests in North America and Europe [20–24] and was also
recently recorded in Russia [24–26]. Native and invasive ranges remain disconnected in
Eurasia with a lower diversity of haplotypes in Europe than in Asia [22]. Halyomorpha halys
overwinters as an adult and its reproductive diapause is induced by short photoperiods.
Before the invasion of H. halys into other parts of the world, the diapause induction was
only studied in Japan: in the populations from Toyama Prefecture (likely Kurobe City;
36◦52′ N, 137◦27′ E) and Nagano Prefecture (likely Obuse-machi town; 36◦42′ N, 138◦19′ E),
the critical photoperiod for ovarian development was between 13.5 and 14.0 h and 14.75
and 15.0 h, respectively [27,28]. Niva and Takeda [29] showed that short photoperiods
not only slowed down maturation and induced diapause, but also accelerated nymphal
development. More recently, thermal and photoperiodic impacts on the development
and maturation of H. halys from the invaded area of Sochi (Krasnodar Region of Russia)
were investigated [26]. In highly polyphagous species, such as H. halys [23], the rate of
development and diapause induction often depends not only on the photoperiod and
temperature but also on the food type and quality [8,14] which are much more difficult
to control and standardize in an experimental set-up. Consequently, the comparison of
the correlation between critical day length and latitude obtained from different studies is
unreliable, and ideally, populations from several different geographical locations should be
studied in one location under the exact same conditions.

Numerous studies have been devoted to modeling seasonal development, voltinism
and the reproduction of H. halys, however, in most cases, the photoperiodic response
was not accounted for or its parameters were considered as constant, i.e., not influenced
by temperature or geographic origin of the population [30–36]. Moreover, geographic
variability of the photoperiodic response was not included in the distribution models
developed to predict the potential geographic range of H. halys and its response to climate
change [37–42]. However, the available data on H. halys, as well as numerous studies
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of other insect species, suggest that the parameters of the photoperiodic response of the
brown marmorated stink bug may vary both in space (the difference between geographic
populations) and time (the gradual adaptation of recently established invasive populations
to the local environment) [17,18,43].

In the present study, we compared the patterns of photoperiodic effects on the duration
of nymphal development and adult diapause induction in four geographically distant
populations of H. halys from its native and invasive ranges. The fundamental aim of
this work was to experimentally test if the difference between photoperiodic responses
of individuals from invasive H. halys populations would follow the same correlation of
geographic latitude as relatively stable native populations of many other widely distributed
non-invasive insect species. In addition, the present study aims to obtain more precise
data on the critical day length that induces diapause in H. halys adults, which could be
used to enhance the power of future bioclimatic envelope models to predict the potential
distribution and seasonal dynamics of this invasive pest.

2. Materials and Methods
2.1. Insects

The present study was conducted with laboratory populations originating from
H. halys nymphs and adults collected in the following four locations:

(1) Andong, South Korea (ca. 36◦41′ N, 128◦44′ E; 140 m a.s.l.)—30 individuals were
collected in July 2019;

(2) Sochi, Krasnodar Krai, Russia (ca. 43◦36′ N, 39◦35′ E; 50 m a.s.l.)—more than
100 individuals were collected in July through to August 2019;

(3) Basel, Switzerland (ca. 47◦33′ N, 07◦36′ E; 260 m a.s.l.)—more than 60 individuals
were collected in July through to August 2019;

(4) Torino, Italy (ca. 45◦02′ N, 07◦35′ E; 240 m a.s.l.)—50 individuals were collected in
August 2019.

It should be noted, however, that South Korea is a part of the native geographic range
of H. halys, whereas the other populations represent the invasive range [20–23,25].

Before the experiment was started, bug populations from all four locations were reared
for 2 to 3 generations in ventilated transparent plastic containers (28 cm × 19 cm × 14 cm;
Figure 1a,b) under laboratory conditions (temperature 25–28 ◦C, photoperiod L:D 16:8 h).
Bugs were fed with peanuts, sunflower seeds, carrots and broad bean seedlings; water
was provided in plastic cylinders plugged with cotton balls. During the experiments, the
nymphs and adults were reared in ventilated transparent plastic cylinders (12 cm diameter
and height) and fed with the same diet as described above (Figure 1).

Insects 2022, 13, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Experimental set-up: (a) ventilated transparent plastic containers for rearing Halyomorpha 
halys nymphs and adults during the experiment; (b) plastic containers used to support the labora-
tory culture; (c) rearing incubator with pre-set temperature and photoperiod. Photos: K. Samartsev. 

2.2. Nymphal Development 
Egg masses no older than 24 h were collected and kept at 24 °C and L:D 16:8 h. The 

moulting of nymphs from the 1st to the 2nd instar was recorded daily, 4–6 h after switch-
ing on the light. Groups of 25 nymphs that had moulted to the 2nd instar within 24 h were 
randomly chosen and distributed over five experimental treatments with the following 
photoperiods (L:D): 14:10, 14.5:9.5, 15:9, 15.5:8.5, and 16:8 h. The temperature was kept 
constant at 24 °C for all treatments. The light regimes were selected based on the results 
of earlier studies [26–28,44]. Fresh food and water were provided, and emerged adults 
were recorded 3 times a week (i.e., every 2 or 3 days). In total, the duration of development 

Figure 1. Cont.



Insects 2022, 13, 522 4 of 15

Insects 2022, 13, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Experimental set-up: (a) ventilated transparent plastic containers for rearing Halyomorpha 
halys nymphs and adults during the experiment; (b) plastic containers used to support the labora-
tory culture; (c) rearing incubator with pre-set temperature and photoperiod. Photos: K. Samartsev. 

2.2. Nymphal Development 
Egg masses no older than 24 h were collected and kept at 24 °C and L:D 16:8 h. The 

moulting of nymphs from the 1st to the 2nd instar was recorded daily, 4–6 h after switch-
ing on the light. Groups of 25 nymphs that had moulted to the 2nd instar within 24 h were 
randomly chosen and distributed over five experimental treatments with the following 
photoperiods (L:D): 14:10, 14.5:9.5, 15:9, 15.5:8.5, and 16:8 h. The temperature was kept 
constant at 24 °C for all treatments. The light regimes were selected based on the results 
of earlier studies [26–28,44]. Fresh food and water were provided, and emerged adults 
were recorded 3 times a week (i.e., every 2 or 3 days). In total, the duration of development 

Figure 1. Experimental set-up: (a) ventilated transparent plastic containers for rearing Halyomorpha
halys nymphs and adults during the experiment; (b) plastic containers used to support the laboratory
culture; (c) rearing incubator with pre-set temperature and photoperiod. Photos: K. Samartsev.

2.2. Nymphal Development

Egg masses no older than 24 h were collected and kept at 24 ◦C and L:D 16:8 h.
The moulting of nymphs from the 1st to the 2nd instar was recorded daily, 4–6 h after
switching on the light. Groups of 25 nymphs that had moulted to the 2nd instar within
24 h were randomly chosen and distributed over five experimental treatments with the
following photoperiods (L:D): 14:10, 14.5:9.5, 15:9, 15.5:8.5, and 16:8 h. The temperature
was kept constant at 24 ◦C for all treatments. The light regimes were selected based on
the results of earlier studies [26–28,44]. Fresh food and water were provided, and emerged
adults were recorded 3 times a week (i.e., every 2 or 3 days). In total, the duration of
development from the 2nd nymphal instar to the moulting to the adult stage was recorded
for 1617 adults (55–96 adults from each population per photoperiod). The data for males
and females were pooled, as there is no difference in the length of the pre-adult development
between sexes [26].

2.3. Development of Reproductive Organs and Fat Body

Groups of 3–5 adults of both sexes that had emerged within 2–3 days were placed
separately in cylinders and reared further under the same photo-thermal conditions and
on the same diet as in the previous experiment. Twenty-five days after emergence, all
adults were dissected. This age was chosen based on an earlier study [26] and constitutes
approximately 1.5 times the mean period from female emergence to deposition of the 1st
egg mass under long-day conditions [45]. At dissection, the reproductive state and fat body
development of males and females were evaluated based on the binary scale commonly
used for H. halys and other pentatomids [26,33,45–53]. Adults were considered to be in
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a reproductive diapause if their gonads were in the nonreproductive state (Figure 2a–d).
Otherwise, females with mature eggs or vitellogenic oocytes in their ovarioles (Figure 2e,g)
and males with secretory fluids in their ectodermal sacs of the accessory glands (Figure 2f,h)
were considered to be in a reproductive (i.e., nondiapause) state. The condition of fat
body was recorded as either developed (massive or dense; Figure 2a,b,e,f) or loose (poorly
developed or depleted; Figure 2c,d,g,h). In total, 696 males and 630 females were dissected
(21–45 individuals of each sex from each population per photoperiod).
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Figure 2. State of development of gonads and fat bodies in females and males of Halyomorpha halys.
(a–h) different combinations of states of gonads and fat body in females and males, see text for details.
Letters of references: es, ectodermal sacs; fb, fat body; o, ovaries; ov, ovarioles; st, spermatheca;
t, testes. Scale bar = 2 mm. Photos: K. Samartsev.
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2.4. Statistical Analysis

The duration of the nymphal development was analyzed by multi-way ANOVA
followed by Tukey’s HSD test; means and SEM were used as descriptive statistics. Non-
parametric data (proportions) were analyzed by multi-way binary probit analysis, the
Chi-square test, and the Spearman correlation analysis. Percentage and 95% confidence
intervals were used as descriptive statistics. The interrelations between latitude, altitude
and photoperiodic threshold were analyzed by GLM.

To estimate the critical day length for the photoperiodic induction of diapause (day length
inducing diapause in 50% of individuals), an equation of linear regression was calculated based
on the data for 2 photoperiods causing the responses neighboring to 50% (the first—higher than
50%, the second—lower than 50%). Then, based on this equation, the day length corresponding
to 50% incidence of diapause was calculated. This method exactly corresponds to the graphical
estimation of the critical day length by the point of intersection between the photoperiodic
response curve and the level of 50% but provides more accurate results. The correlation between
latitude and the critical day length was approximated by linear regression.

All data were analysed with SYSTAT software Version 10.2 (Systat Software Inc.,
Richmond, CA, USA) [54].

3. Results
3.1. Nymphal Development

The duration of the H. halys’ development from the 2nd nymphal instar to the adult
stage significantly depended on the photoperiod (two-way ANOVA, F = 60.2, df = 4,
p < 0.001) and origin of the H. halys population (F = 160.1, df = 3, p < 0.001). The interaction
between the two factors was also highly significant (F = 14.7, df = 12, p < 0.001), indicating
that photoperiodic effects on the rate of nymphal development substantially differed among
the studied populations. Individuals from all populations showed relatively fast nymphal
development under the shortest (L:D 14:10) and the longest (L:D 16:8) photoperiods and a
slower development at the intermediate photoperiods.

For nymphs of the native (Korean) population, the longest duration of the nymphal period
was recorded at L:D 14.5:9.5, whereas for nymphs from the three invasive populations, it was
recorded at L:D 15:9 (Figure 3). On average, the development of nymphs from the native
population was faster than that of the three invasive populations, and at the photoperiods of L:D
15.5:8.5 and 16:8, the development of the two European invasive populations (Basel and Torino)
was faster than that of the Caucasian invasive population (Sochi) (Figure 3).
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treatment; data for males and females are combined). Different Latin letters along the same line
indicate statistically significant differences between the values for the same population at different
photoperiods; different Greek letters within the same day length conditions indicate statistically
significant differences between the values for different populations at the same photoperiod (p < 0.05;
Tukey’s HSD test). Some symbols are slightly shifted horizontally to avoid overlap.

3.2. Development of Reproductive Organs and Fat Body

Degrees of development of reproductive organs and fat bodies strongly negatively
correlated both in H. halys males (χ2 = 224.1, df = 1, n = 696, p < 0.001, Spearman corre-
lation coefficient ρ = –0.567 ± 0.032) and females (χ2 = 260.1, df = 1, n = 630, p < 0.001,
ρ = –0.643 ± 0.031) (Table 1). Most individuals had either well developed fat bodies and
poorly developed reproductive organs or, vice versa, poorly developed fat bodies and well
developed reproductive organs, whereas the two other combinations were rarely observed.

Table 1. The correlation between the development of a fat body and reproductive organs in Haly-
omorpha halys males and females (percentages calculated for the pooled data of all photoperiods and
populations: 696 males and 630 females; see text for details of statistical analysis).

Fat Body
Reproductive Organs

Poorly Developed Well Developed
Males Females Males Females

Poorly
developed 9.0 6.3 26.6 31.1

Well developed 53.3 51.6 11.1 11.0

The proportion of individuals with a well developed fat body was strongly dependent
on the photoperiod, whereas the influence of the population origin was not statistically sig-
nificant (Table 2). Indeed, although the Chi-square test revealed significant interpopulation
differences in fat body development, particularly at the near-threshold photoperiods, no
consistent pattern was observed.

Table 2. Photoperiodic effects on the development of reproductive organs and fat bodies in Halyomor-
pha halys males and females from four different populations (Binary probit analysis (0—no, 1—yes):
regression coefficient C ± SE and significance (p) of influence).

Factor
or Combination

of Factors
and Coding

Influence on
the Proportion
of Individuals

with
Well Developed

Reproductive
Organs 1

Influence on
the Proportion
of Individuals

with
Well Developed

Fat Body 1

Influence on
the Proportion
of Individuals

with Both
Well Developed

Reproductive
Organs

and Fat Body 2

Influence on
the Proportion
of Individuals

with Both
Poorly Developed

Reproductive Organs
and Fat Body 3

Photoperiod (day
length) 1.0 ± 0.2, p < 0.001 –1.3 ± 0.2, p < 0.001 –0.9 ± 0.3, p = 0.010 0.9 ± 0.3, p < 0.001

Population
(1—Andong, 2—Torino,

3—Basel, 4—Sochi)
–9.3 ± 1.7, p < 0.001 –0.5 ± 0.8, p = 0.588 –3.7 ± 2.4, p = 0.128 0.6 ± 1.3, p = 0.630

Sex
(0—males, 1—females) –4.2 ± 3.2, p = 0.192 0.8 ± 1.8, p = 0.676 –4.3 ± 4.7, p = 0.369 –0.3 ± 3.1, p = 0.928

Population ×
photoperiod 0.6 ± 0.1, p < 0.001 0.0 ± 0.1, p = 0.425 0.2 ± 0.2, p = 0.118 –0.1 ± 0.1, p = 0.561

Population × sex 0.0 ± 0.1, p = 0.958 0.0 ± 0.1, p = 0.955 0.1 ± 0.1, p = 0.658 0.1 ± 0.1, p = 0.254
Sex × photoperiod 0.3 ± 0.2, p = 0.171 –0.1 ± 0.1, p = 0.649 0.3 ± 0.3, p = 0.404 0.0 ± 0.2, p = 0.971

1 Among all individuals (n = 1326). 2 Among individuals with well developed reproductive organs (n = 527).
3 Among individuals with poorly developed reproductive organs (n = 799).
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Regarding the photoperiodic responses, the influence of day length on the proportion
of individuals with well developed fat bodies was not as clear as that on the proportion
of individuals with well developed reproductive organs (Table 2). However, the approxi-
mated critical day length of these two photoperiodic responses (i.e., the development of
reproductive organs and the development of a fat body) were rather similar among males
and females within the same populations: between 14.5 and 15 h in the native (Andong)
population and between 15 and 15.5 h in the three invasive populations (Figures 4 and 5).
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The proportion of individuals with well developed reproductive organs was strongly
dependent on both the photoperiod and population origin with a significant interaction
between the two factors (Table 2). Short-day conditions strongly induced diapause in both
sexes (Figure 4). The incidence of diapause induction between males and females was not
significantly different (Figure 4), as well as the interaction of sex with the photoperiod or
population origin (Table 2).

The interpopulation differences in photoperiodic responses of adult diapause induc-
tion were significant (Figure 4). Two-way GLM showed that the critical day length for the
induction of diapause (i.e., for the poor development of reproductive organs) in females
and males from the four tested populations (n = 8) strongly depended on the latitude
of the population origin (t = 5.830, p = 0.002); the influence of altitude was less strong,
although also statistically significant (t = −3.797, p = 0.013). However, the dependence
on the latitude was determined mostly by the difference between the combined data for
invasive (European) and native (Andong) populations, whereas the difference among
invasive populations alone did not significantly correlate with latitude (r = 0.375, n = 6,
p = 0.464; Figure 6).
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Even though adults with well developed reproductive organs and poorly developed
fat bodies (Figure 2g,h) and those with poorly developed reproductive organs and a well
developed fat body (Figure 2a,b) predominated (Table 1), a few individuals had both
fat bodies and gonads well developed (Figure 2e,f) or both systems poorly developed
(Figure 2c,d; Table 1). The two latter categories were significantly dependent on the
photoperiod, whereas the differences between sexes and populations were not significant
(Table 2). Considering the relatively small sample sizes, the data for males and females from
all populations were pooled (Figure 7). The proportion of individuals with both poorly
developed reproductive organs and fat bodies increased with the photoperiod, whereas the
proportion of individuals with both well developed reproductive organs and fat bodies
tended to decrease with increasing day length (Figure 7).
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and those with well developed reproductive organs and fat bodies (among the individuals with
well developed reproductive organs). Percentages and 95% confidence intervals for the pooled data
for males and females from all populations are shown (n = 12–297 per treatment). Asterisks at the
right end of the graphs indicate significant difference between the data for different photoperiods,
i.e., significant photoperiodic response (** – p < 0.01, *** – p < 0.001 by the Chi-square test). Some
symbols are slightly shifted along the x-axis to avoid overlap.

4. Discussion

The photoperiodic response of the diapause induction of individuals from the native
Korean population (the critical day length between 14.5 and 15.0 h) was similar to that of
the populations from Japan (the critical day length between 13.5 and 15.0 h [27,28]). The
photoperiodic response of the Sochi population (the critical day length between 15.0 and
15.5 h) corresponded well to the results of the previous study of the same population at the
same temperature (between 15.0 and 16.0 h) [26] considering that in the present work we
used a two-times finer scale.

A pronounced correlation between the critical photoperiod of the winter diapause
induction and geographic latitude of origin is a fundamental characteristic of multivol-
tine insect species with wide ranges [8,11–13,15]. It has been demonstrated in several
heteropterans [47,48,55–58], although in most of these studies only two or three popu-
lations were compared, whereas our experiments were conducted on representatives of
four populations.

A meta-analysis of studies on numerous insects from different orders suggested that
with a 5◦ change in latitude, the critical photoperiod for diapause induction changes by
an average of 1.5 h [12,13,59]. The difference between geographic latitudes of invasive
H. halys populations from Sochi and Basel that were used in our study was close to 5◦,
however, the expected corresponding difference between critical photoperiods was not
observed. Moreover, the difference between critical photoperiods of native Korean and
invasive European populations was much smaller than the expected 3 h difference based on
the 10◦ difference in latitude. The discrepancy between our data and the above-mentioned
generalization of the earlier studies is likely influenced by a very rapid spread of the brown
marmorated stink bug on the European continent. Consequently, natural selection may
not have happened yet to ensure ‘instant adaptation’ of the invader to new environments.
Somewhat similar results were reported for the invasive ladybird, Harmonia axyridis (Pallas)
(Coleoptera: Coccinellidae). Instead of a rapid adaptation of the photoperiodic response to
the critical day length of the newly invaded region, the invasive populations of the beetle
decreased their dependence on day length and shifted to a diet-induced diapause [18]. On
the other hand, a period of 20 years was sufficient for the rapid adaptive evolution of the
photoperiodic response of the invasive Asian tiger mosquito Aedes albopictus Scuse (Diptera:
Culicidae) [17]. Evidently, the rate of microevolution of the ecophysiological control of
seasonal cycles depends on various factors, such as initial intrapopulation variability,
degree of environmental novelty, and selection pressure.

On average, the duration of H. halys nymphal development observed in our exper-
iment was similar to the results of earlier studies [28,29,31,32,35,60]. The photoperiodic
impact on the growth rate and development of true bug species has been demonstrated in
many cases [29,53,61–69]. In insects with a long-day type photoperiodic response, short-day
conditions often accelerate the development of pre-diapause stages and thus increase the
chances of individuals to timely enter diapause. However, in H. halys, another pattern
of the response was observed: the rates of nymphal development were relatively high at
both short and long photoperiods and significantly decreased at the intermediate (near-
critical) day lengths. Similar results were obtained for the linden bug, Pyrrhocoris apterus
(L.) (Hemiptera: Heteroptera: Pyrrhocoridae) [61,62] and the ground cricket, Dianemobius
nigrofasciatus Walker (Orthoptera: Gryllidae) [70], and the authors suggested that deceler-
ation of development at the near-critical photoperiods gives individuals more time for a
‘fine-tuning’ of the diapause-inducing response.
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Remarkably, in H. halys, the interpopulation differences in the patterns of photope-
riodic effects on the rates of nymphal development correlated with the corresponding
differences in diapause-inducing photoperiodic responses. In all populations tested, de-
celeration of development was observed at the corresponding near-critical photoperiods,
suggesting that this correlation was not an occasional coincidence but an important (likely
adaptive) species-specific feature, which was not lost during the invasion of the European
continent. Photoperiodic effects on the rate of larval development and on the induction
of diapause also correlated in the pitcher-plant mosquito, Wyeomyia smithii (Coquillett)
(Diptera: Culicidae) [71]. Similar results were obtained in experiments with some other in-
sects [72–74]. However, a comparative study of four populations of another rapidly spread-
ing invader, H. axyridis, showed that microevolutionary changes in the two photoperiodic
responses influencing larval development and female maturation did not correlate [19].

5. Conclusions

In summary, our hypothesis that differences between photoperiodic responses of
distant H. halys populations would correlate to a geographic latitude was only partially
confirmed. The interpopulation differences in critical photoperiods for diapause induction
and the duration of nymphal development of H. halys significantly correlated with latitude,
however, these correlations were rather weak and mostly determined by the difference
between native Korean and invasive European populations. Differences between the three
European populations were not significant, although they originated from far apart regions.
The latter likely indicates a very rapid continent-wide invasion of the brown marmorated
stink bug: the microevolution was likely ‘too slow to keep up’ with the rapid spread of
the invader across wide regions with different climates. Moreover, the difference between
Korean and European populations was much smaller than expected based on the analysis
of the data available for other widely distributed insects. Hence, it can be expected that in
the near future, the critical photoperiods of invasive H. halys populations will gradually
change in accordance with the peculiarities of local climates. At present, however, the
same critical day length for diapause induction (about 15 h 15 min) can be used for all
European H. halys populations to model phenology, further spread, and their response to
climate change.
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