All for One Health and One Health for All: Considerations for Successful Citizen Science Projects Conducting Vector Surveillance from Animal Hosts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Professional Companion Animal Access
2.1. Surveillance and Data Collection Methodology
2.2. Benefits
2.3. Challenges
2.4. Stakeholder Considerations
3. Personal Companion Animal Access
3.1. Surveillance and Data Collection Methodology
3.2. Benefits
3.3. Challenges
3.4. Stakeholder Considerations
4. Professional Wildlife Access
4.1. Surveillance and Data Collection Methodology
4.2. Benefits
4.3. Challenges
4.4. Stakeholder Considerations
5. Recreational Wildlife Access
5.1. Surveillance and Data Collection Methodology
5.2. Benefits
5.3. Challenges
5.4. Stakeholder Considerations
6. Gaps and Future Directions
7. Conclusions
- •
- Target audience;
- •
- Type of arthropod(s) to be collected;
- •
- Animal population(s) to sample;
- •
- Ease of collection and preservation methods, including time and personnel required to collect;
- •
- Cost of collection and preservation methods (for the researchers and participants);
- •
- Geographic location and population density; and
- •
- Training and outreach required to recruit and retain citizen scientists in the research.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinckley, A.F.; Mead, P.S.; Paz-Bailey, G.; Waterman, S.H.; Drexler, N.A.; Kersh, G.J.; et al. Vital Signs: Trends in reported vectorborne disease cases—United States and territories, 2004–2016. Morb. Mortal. Wkly. Rep. 2018, 67, 496–501. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stuchin, M.; Machalaba, C.C.; Karesh, W.B. Vector-borne diseases: Animals and patterns. In Global Health Impacts of Vector-Borne Diseases: Workshop Summary; National Academies Press: Washington, DC, USA, 21 September 2016. [Google Scholar]
- Robinson, L.D.; Cawthray, J.L.; West, S.E.; Bonn, A.; Ansine, J. Ten principles of citizen science. In Citizen Science; UCL Press: London, UK, 2018. [Google Scholar]
- MacPhail, V.J.; Colla, S.R. Power of the people: A review of citizen science programs for conservation. Biol. Conserv. 2020, 249, 108739. [Google Scholar] [CrossRef]
- Tulloch, A.I.; Possingham, H.P.; Joseph, L.N.; Szabo, J.; Martin, T.G. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 2013, 165, 128–138. [Google Scholar] [CrossRef][Green Version]
- Eisen, L.; Eisen, R.J. Benefits and Drawbacks of Citizen Science to Complement Traditional Data Gathering Approaches for Medically Important Hard Ticks (Acari: Ixodidae) in the United States. J. Med. Èntomol. 2020, 58, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kampen, H.; Medlock, J.M.; Vaux, A.G.C.; Koenraadt, C.J.M.; Van Vliet, A.J.H.; Bartumeus, F.; Oltra, A.; Sousa, C.A.; Chouin, S.; Werner, D. Approaches to passive mosquito surveillance in the EU. Parasites Vectors 2015, 8, 9. [Google Scholar] [CrossRef][Green Version]
- Jordan, R.C.; Sorensen, A.E.; LaDeau, S. Citizen Science as a Tool for Mosquito Control. J. Am. Mosq. Control Assoc. 2017, 33, 241–245. [Google Scholar] [CrossRef]
- American Pet Products Association. Pet Industry Market Size, Trends & Ownership Statistics. 2021. Available online: https://www.americanpetproducts.org/press_industrytrends.asp (accessed on 15 March 2022).
- Canadian Animal Health Institute. 2020 Canadian Pet Population Figures Released. 2021. Available online: https://www.cahi-icsa.ca/news/2020-canadian-pet-population-figures-released (accessed on 15 March 2022).
- U.S. Department of the Interior; U.S. Fish and Wildlife Service; U.S. Department of Commerce; Bureau USC. 2016 National Survey of Fishing, Hunting, and Wildlife-Associated Recreation; Fish and Wildlife Service: Washington, DC, USA, 2018.
- The Conference Board of Canada. The Economic Footprint of Angling, Hunting, Trapping and Sport Shooting in Canada; The Conference Board of Canada: Ottawa, ON, Canada, 2018. [Google Scholar]
- Duncan, K.T.; Sundstrom, K.D.; Saleh, M.N.; Little, S.E. Haemaphysalis longicornis, the Asian longhorned tick, from a dog in Virginia, USA. Vet. Parasitol. Reg. Stud. Rep. 2020, 20, 100395. [Google Scholar] [CrossRef]
- Little, S.E.; Barrett, A.W.; Nagamori, Y.; Herrin, B.H.; Normile, D.; Heaney, K.; Armstrong, R. Ticks from cats in the United States: Patterns of infestation and infection with pathogens. Vet. Parasitol. 2018, 257, 15–20. [Google Scholar] [CrossRef]
- Trout Fryxell, R.T.; Vann, D.N.; Butler, R.A.; Paulsen, D.J.; Chandler, J.G.; Willis, M.P.; Wyrosdick, H.M.; Schaefer, J.J.; Gerhold, R.W.; Grove, D.M.; et al. Rapid discovery and detection of Haemaphysalis longicornis through the use of passive surveillance and collaboration: Building a state tick-surveillance network. Int. J. Environ. Res. Public Health 2021, 18, 7980. [Google Scholar] [CrossRef]
- Lee, X.; Murphy, D.S.; Johnson, D.H.; Paskewitz, S.M. Passive Animal Surveillance to Identify Ticks in Wisconsin, 2011–2017. Insects 2019, 10, 289. [Google Scholar] [CrossRef][Green Version]
- Saleh, M.N.; Sundstrom, K.D.; Duncan, K.T.; Ientile, M.M.; Jordy, J.; Ghosh, P.; Little, S.E. Show us your ticks: A survey of ticks infesting dogs and cats across the USA. Parasites Vectors 2019, 12, 595. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Kirby, A.M.; Harris, K.D.; Filiaggi, C.L.; Foley-Eby, A.; Mann, M.; Lieske, D.; Lloyd, V.K. Monitoring Risk: Tick and Borrelia burgdorferi Public Participatory Surveillance in the Canadian Maritimes, 2012–2020. Pathogens 2021, 10, 1284. [Google Scholar] [CrossRef] [PubMed]
- Burroughs, J.E.; Thomasson, J.A.; Marsella, R.; Greiner, E.C.; Allan, S.A. Ticks associated with domestic dogs and cats in Florida, USA. Exp. Appl. Acarol. 2016, 69, 87–95. [Google Scholar] [CrossRef]
- Blanton, L.S.; Vohra, R.F.; Fistein, L.; Quade, B.; Walker, D.H.; Bouyer, D.H. Rickettsiae Within the Fleas of Feral Cats in Galveston, Texas. Vector-Borne Zoonotic Dis. 2019, 19, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Skvarla, M.J.; Larson, J.L.; Dowling, A.P.G. Pitfalls and preservatives: A review. J. Entomol. Soc. Ont. 2014, 145, 15–43. [Google Scholar]
- Evans, J.R.; Poh, K.C.; Skvarla, M.; Machtinger, E.T. The Keds are Alright: Community Collection of Ticks (Ixodida: Ixodidae) and Keds (Diptera: Hippoboscidae) from Hunter-Harvested Deer. Ann. Entomol. 2021, 114, 686–693. [Google Scholar] [CrossRef]
- Wegner, G.S. A Surprising New Medium for Specimen Preservation and Display. Am. Èntomol. 2004, 50, 220–221. [Google Scholar] [CrossRef][Green Version]
- Dowling, A.P.G.; Young, S.G.; Loftin, K. Collaborating with Community Scientists across Arkansas to Update Tick Distributions and Pathogen Prevalence of Spotted Fever Group Rickettsia and Ehrlichia. J. Med. Entomol. 2021, 1821, 566–575. [Google Scholar] [CrossRef]
- Hardestam, J.; Simon, M.; Hedlund, K.O.; Vaheri, A.; Klingström, J.; Lundkvist, A. Ex Vivo Stability of the Rodent-Borne Hantaan Virus in Comparison to That of Arthropod-Borne Members of the Bunyaviridae Family. Appl. Environ. Microbiol. 2007, 73, 2547–2551. [Google Scholar] [CrossRef][Green Version]
- Schulz, A.; Methling, K.; Lalk, M.; Eisenbarth, A.; Keller, M.; Groschup, M.H. Ethanol inactivation of orthonairoviruses in ixodid ticks. Exp. Appl. Acarol. 2021, 85, 75–81. [Google Scholar] [CrossRef]
- Kopsco, H.L.; Duhaime, R.J.; Mather, T.N. Crowdsourced tick image-informed updates to U.S. county records of three medically important tick species. J. Med. Entomol. 2021, 58, 2412–2424. [Google Scholar] [CrossRef] [PubMed]
- Kopsco, H.L.; Duhaime, R.J.; Mather, T.N. An analysis of companion animal tick encounters as revealed by photograph-based crowdsourced data. Vet. Med. Sci. 2021, 7, 2198–2208. [Google Scholar] [CrossRef]
- Kopsco, H.L.; Xu, G.; Luo, C.Y.; Rich, S.M.; Mather, T.N. Crowdsourced photographs as an effective method for large-scale passivetick surveillance. J. Med. Entomol. 2020, 57, 1955–1963. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.P.; Bron, G.M.; Kache, P.A.; Larson, S.R.; Maus, A.; Gustafson, D., Jr.; Tsao, J.I.; Bartholomay, L.C.; Paskewitz, S.M.; Diuk-Wasser, M.A. Usability and Feasibility of a Smartphone App to Assess Human Behavioral Factors Associated with Tick Exposure (The Tick App): Quantitative and Qualitative Study. JMIR Mhealth Uhealth 2019, 7, e14769. [Google Scholar] [CrossRef] [PubMed]
- Pataki, B.A.; Garriga, J.; Eritja, R.; Palmer, J.R.B.; Bartumeus, F.; Csabai, I. Deep learning identification for citizen science surveillance of tiger mosquitoes. Sci. Rep. 2021, 11, 4718. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.B.; Fricker, S.; Doherty, S.S.; Webb, C.E.; Baldock, K.; Williams, C.R. Citizen science and smartphone e-entomology enables low-cost upscaling of mosquito surveillance. Sci. Total Environ. 2019, 704, 135349. [Google Scholar] [CrossRef] [PubMed]
- Tulloch, J.S.; Vivancos, R.; Christley, R.M.; Radford, A.D.; Warner, J.C. Mapping tweets to a known disease epidemiology; a case study of Lyme disease in the United Kingdom and Republic of Ireland. J. Biomed. Inform. 2019, 100, 100060. [Google Scholar] [CrossRef]
- Guernier, V.; Milinovich, G.J.; Bezerra-Santos, M.A.; Haworth, M.; Coleman, G.; Magalhaes, R.J.S. Use of big data in the surveillance of veterinary diseases: Early detection of tick paralysis in companion animals. Parasites Vectors 2016, 9, 303. [Google Scholar] [CrossRef][Green Version]
- Koffi, J.K.; Savage, J.; Thivierge, K.; Lindsay, L.R.; Bouchard, C.; Pelcat, Y.; Ogden, N.H. Evaluating the submission of digital images as a method of surveillance for Ixodes scapularis ticks. Parasitology 2017, 144, 877–883. [Google Scholar] [CrossRef][Green Version]
- Ogden, N.; Koffi, J.; Pelcat, Y.; Lindsay, L. Environmental risk from Lyme disease in central and eastern Canada: A summary of recent surveillance information. Can. Commun. Dis. Rep. 2014, 40, 74–82. [Google Scholar] [CrossRef]
- Ogden, N.H.; Trudel, L.; Artsob, H.; Barker, I.K.; Beauchamp, G.; Charron, D.F.; Drebot, M.A.; Galloway, T.D.; O’handley, R.; Thompson, R.A.; et al. Ixodes scapularis ticks collected by passive surveillance in Canada: Analysis of geographic distribution and infection with lyme borreliosis agent Borrelia burgdorferi. J. Med. Entomol. 2006, 43, 600–609. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ogden, N.H.; Bouchard, C.; Kurtenbach, K.; Margos, G.; Lindsay, L.R.; Trudel, L.; Nguon, S.; Milord, F. Active and Passive Surveillance and Phylogenetic Analysis of Borrelia burgdorferi Elucidate the Process of Lyme Disease Risk Emergence in Canada. Environ. Health Perspect. 2010, 118, 909–914. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rainey, T.; Occi, J.L.; Robbins, R.G.; Egizi, A. Discovery of Haemaphysalis longicornis (Ixodida: Ixodidae) Parasitizing a Sheep in New Jersey, United States. J. Med. Èntomol. 2018, 55, 757–759. [Google Scholar] [CrossRef]
- Walker, E.D.; Stobierski, M.G.; Poplar, M.L.; Smith, T.W.; Murphy, A.J.; Smith, P.C.; Schmitt, S.M.; Cooley, T.M.; Kramer, C.M. Geographic Distribution of Ticks (Acari: Ixodidae) in Michigan, with Emphasis on Ixodes scapularis and Borrelia burgdorferi. J. Med. Èntomol. 1998, 35, 872–882. [Google Scholar] [CrossRef]
- Banerjee, S.N.; Banerjee, M.; Fernando, K.; Scott, J.D.; Mann, R.; Morshed, M.G. Presence of spirochete causing Lyme disease, Borrelia burgdorferi, in the blacklegged tick, Ixodes scapularis, in southern Ontario. CMAJ 2000, 162, 1567–1569. [Google Scholar] [PubMed]
- Stanley, H.; Rhodes, D.L.V.L. Presence of Rickettsia species in ticks collected from companion animals in northeastern Georgia, United States. Vet. Sci. 2021, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Murthy, R.; Bearman, G.; Brown, S.; Bryant, K.; Chinn, R.; Hewlett, A.; George, B.G.; Goldstein, E.J.; Holzmann-Pazgal, G.; Rupp, M.E.; et al. Animals in Healthcare Facilities: Recommendations to Minimize Potential Risks. Infect. Control Hosp. Epidemiol. 2015, 36, 495–516. [Google Scholar] [CrossRef][Green Version]
- Tiffin, H.S. Mange Girl: Science Communication and Engagement within a Hunter and Trapper Community. Am. Èntomol. 2020, 66, 26–28. [Google Scholar] [CrossRef]
- AHamer, S.; Curtis-Robles, R.; Hamer, G.L. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. Curr. Opin. Insect Sci. 2018, 28, 98–104. [Google Scholar] [CrossRef]
- Curtis-Robles, R.; Zecca, I.B.; Roman-Cruz, V.; Carbajal, E.S.; Auckland, L.D.; Flores, I.; Millard, A.V.; Hamer, S.A. Trypanosoma cruzi (Agent of Chagas Disease) in Sympatric Human and Dog Populations in “Colonias” of the Lower Rio Grande Valley of Texas. Am. J. Trop. Med. Hyg. 2017, 96, 805–814. [Google Scholar] [CrossRef][Green Version]
- Curtis-Robles, R.; Hamer, S.A.; Lane, S.; Levy, M.Z.; Hamer, G.L. Bionomics and Spatial Distribution of Triatomine Vectors of Trypanosoma cruzi in Texas and Other Southern States, USA. Am. J. Trop. Med. Hyg. 2018, 98, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Curtis-Robles, R.; Wozniak, E.J.; Auckland, L.D.; Hamer, G.L.; Hamer, S.A. Combining Public Health Education and Disease Ecology Research: Using Citizen Science to Assess Chagas Disease Entomological Risk in Texas. PLoS Negl. Trop. Dis. 2015, 9, e0004235. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jordan, R.A.; Egizi, A. The growing importance of lone star ticks in a Lyme disease endemic county: Passive tick surveillance in Monmouth County, NJ, 2006–2016. PLoS ONE 2019, 14, 2006–2016. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nieto, N.C.; Porter, W.T.; Wachara, J.C.; Lowrey, T.J.; Martin, L.; Motyka, P.J.; Salkeld, D.J. Using citizen science to describe the prevalence and distribution of tick bite and exposure to tick-borne diseases in the United States. PLoS ONE 2018, 13, e0199644. [Google Scholar] [CrossRef]
- Xu, G.; Mather, T.N.; Hollingsworth, C.S.; Rich, S.M. Passive Surveillance of Ixodes scapularis (Say), Their Biting Activity, and Associated Pathogens in Massachusetts. Vector-Borne Zoonotic Dis. 2016, 16, 520–527. [Google Scholar] [CrossRef][Green Version]
- Paw Research Center. Mobile Fact Sheet. 2021. Available online: https://www.pewresearch.org/internet/fact-sheet/mobile/ (accessed on 25 February 2022).
- Robinson, O.J.; Socolar, J.B.; Stuber, E.F.; Auer, T.; Berryman, A.J.; Davis, C.L.; Dokter, A.M.; Giacomo, A.S.D.; Farnsworth, A.; Fink, D.; et al. Extreme uncertainty and unquantifiable bias do not inform population sizes. Proc. Natl. Acad. Sci. USA 2022, 119, 3–4. [Google Scholar] [CrossRef]
- Apperson, C.S.; Levine, J.F.; Nicholson, W.L. Geographic Occurrence of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) Infesting White-tailed Deer in North Carolina. J. Wildl. Dis. 1990, 26, 550–553. [Google Scholar] [CrossRef]
- Pinger, R.R.; Timmons, L.; Karris, K. Spread of Ixodes scapularis (Acari: Ixodidae) in Indiana: Collections of Adults in 1991–1994 and Description of a Borrelia burgdorferi-Infected Population. J. Med. Èntomol. 1996, 33, 852–855. [Google Scholar] [CrossRef]
- Hertz, J.C.; Ferree Clemons, B.C.; Lord, C.C.; Allan, S.A.; Kaufman, P.E. Distribution and host associations of ixodid ticks collected from wildlife in Florida, USA. Exp. Appl. Acarol. 2017, 73, 223–236. [Google Scholar] [CrossRef]
- Scott, J.D.; Pascoe, E.L.; Sajid, M.S.; Foley, J.E. Detection of Babesia odocoilei in Ixodes scapularis ticks collected in southern Ontario, Canada. Pathogens 2020, 10, 781. [Google Scholar] [CrossRef]
- Scott, J.D.; Anderson, J.F.; Durden, L.A. Widespread Dispersal of Borrelia burgdorferi–Infected Ticks Collected from Songbirds Across Canada. J. Parasitol. 2012, 98, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Corn, J.L.; Mertins, J.W.; Hanson, B.; Snow, S. First reports of ectoparasites collected from wild-caught exotic reptiles in Florida. J. Med. Entomol. 2011, 48, 94–100. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Magnarelli, L.A.; Anderson, J.F.; Apperson, C.S.; Fish, D.; Johnson, R.C.; Chappell, W.A. Spirochetes in ticks and antibodies to Borrelia burgdorferi in white-tailed deer from connecticut, new york state, and north carolina. J. Wildl. Dis. 1986, 22, 178–188. [Google Scholar] [CrossRef][Green Version]
- Calvente, E.; Pelletier, S.; Banfield, J.; Brown, J.; Chinnici, N. Prevalence of winter ticks (Dermacentor albipictus) in hunter-harvested wild elk (Cervus canadensis) from pennsylvania, USA (2017–2018). Vet. Sci. 2020, 7, 177. [Google Scholar] [CrossRef]
- Zolnik, C.P.; Makkay, A.M.; Falco, R.C.; Daniels, T.J. American Black Bears as Hosts of Blacklegged Ticks (Acari: Ixodidae) in the Northeastern United States. J. Med. Èntomol. 2015, 52, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Pinger, R.R.; Holycross, J.; Ryder, J.; Mummert, M. Collections of Adult Ixodes dammini in Indiana, 1987–1990, and the Isolation of Borrelia burgdorferi. J. Med. Èntomol. 1991, 28, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, D.; Nielsen, L.; Molini, P. Collection of an adult Gulf Coast Tick (Amblyomma maculatum) from a hunter harvested deer in Lancaster County, Nebraska, USA. A new record for the state. Syst. Appl. Acarol. 2018, 23, 2447–2448. [Google Scholar] [CrossRef]
- Morgan, A.B.B.; Waller, E.F. Some Parasites of the Eastern Crow (Corvus brachyrhynchos brachyrhynchos Brehm). Bird-Band. 1941, 12, 16–22. [Google Scholar] [CrossRef]
- Williams, S.G.; Sacci, J.B.; Schriefer, M.E.; Andersen, E.M.; Fujioka, K.K.; Sorvillo, F.J.; Barr, A.R.; Azad, A.F. Typhus and typhuslike rickettsiae associated with opossums and their fleas in Los Angeles County, California. J. Clin. Microbiol. 1992, 30, 1758–1762. [Google Scholar] [CrossRef][Green Version]
- Knee, W.; Proctor, H. Host records for Ornithonyssus sylviarum (Mesostigmata: Macronyssidae) from birds of North America (Canada, United States, and Mexico). J. Med. Entomol. 2007, 44, 709–713. [Google Scholar] [CrossRef]
- Blanton, L.S.; Idowu, B.M.; Tatsch, T.N.; Henderson, J.M.; Bouyer, D.H.; Walker, D.H. Opossums and Cat Fleas: New Insights in the Ecology of Murine Typhus in Galveston, Texas. Am. J. Trop. Med. Hyg. 2016, 95, 457–461. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wedincamp, J.; Durden, L.A. Ectoparasites of White-Tailed Deer (Artiodactyla: Cervidae) in Southeastern Georgia, USA. J. Èntomol. Sci. 2016, 51, 113–121. [Google Scholar] [CrossRef]
- Skvarla, M.J.; Machtinger, E.T. Deer keds (Diptera: Hippoboscidae: Lipoptena and Neolipoptena) in the United States and Canada: New state and county records, pathogen records, and an illustrated key to species. J. Med. Entomol. 2019, 56, 744–760. [Google Scholar] [CrossRef]
- Skvarla, M.J.; Butler, R.A.; Fryxell, R.T.; Jones, C.D.; Burrell, M.V.A.; Poh, K.C.; Evans, J.; Machtinger, E. First Canadian record and additional new state records for North American deer keds (Diptera: Hippoboscidae: Lipoptena cervi (Linnaeus) and L. mazamae Rondani). J. Entomol. Soc. Ontario 2020, 151, 33–40. [Google Scholar]
- Poh, K.C.; Skvarla, M.; Evans, J.R.; Machtinger, E.T. Collecting deer keds (Diptera: Hippoboscidae: Lipoptena Nitzsch, 1818 and Neolipoptena Bequaert, 1942) and ticks (Acari: Ixodidae) from hunter-harvested deer and other cervids. J. Insect Sci. 2020, 20, 381–387. [Google Scholar] [CrossRef]
- Poh, K.C.; Evans, J.R.; Skvarla, M.J.; Kent, C.M.; Olafson, P.U.; Hickling, G.J.; Mullinax, J.M.; Machtinger, E.T. Patterns of deer ked (Diptera: Hippoboscidae) and tick (Ixodida: Ixodidae) infestation on white-tailed deer (Odocoileus virginianus) in the eastern United States. Parasites Vectors 2022, 15, 31. [Google Scholar] [CrossRef]
- Ogden, N.H.; Lindsay, L.R.; Hanincova, K.; Barker, I.K.; Bigras-Poulin, M.; Charron, D.F.; Heagy, A.; Francis, C.M.; O’Callaghan, C.J.; Schwartz, I.; et al. Role of Migratory Birds in Introduction and Range Expansion of Ixodes scapularis Ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl. Environ. Microbiol. 2008, 74, 1780–1790. [Google Scholar] [CrossRef][Green Version]
- Latas, P.; Auckland, L.D.; Teel, P.D.; Hamer, S.A. Argas (Persicargas) giganteus soft tick infection with Rickettsia hoogstraali and relapsing fever Borrelia on wild avian species of the desert southwest, USA. J. Wildl. Dis. 2020, 56, 113–125. [Google Scholar] [CrossRef]
- Tiffin, H.S.; Skvarla, M.J.; Machtinger, E.T. Tick abundance and life-stage segregation on the American black bear (Ursus americanus). Int. J. Parasitol. Parasites Wildl. 2021, 16, 208–216. [Google Scholar] [CrossRef]
- Thouless, C.; Sakwa, J. Shocking elephants: Fences and crop raiders in Laikipia District, Kenya. Biol. Conserv. 1995, 72, 99–107. [Google Scholar] [CrossRef]
- Soulsbury, C.D.; White, P.C.L. Human-wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildl. Res. 2015, 42, 541–553. [Google Scholar] [CrossRef][Green Version]
- Lischka, S.A.; Teel, T.L.; Johnson, H.E.; Reed, S.E.; Breck, S.; Carlos, A.D.; Crooks, K.R. A conceptual model for the integration of social and ecological information to understand human-wildlife interactions. Biol. Conserv. 2018, 225, 80–87. [Google Scholar] [CrossRef][Green Version]
- Putman, B.J.; Williams, R.; Li, E.; Pauly, G.B. The power of community science to quantify ecological interactions in cities. Sci. Rep. 2021, 11, 3069. [Google Scholar] [CrossRef] [PubMed]
- Gunter, S.M.; Cordray, C.; Gorchakov, R.; Du, I.; Dittmar, B.; Brown, E.L.; Murray, K.O.; Nolan, M.S. Identification of white-tailed deer (Odocoileus virginianus) as a novel reservoir species for trypanosoma cruzi in Texas, USA. J. Wildl. Dis. 2018, 54, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Westrom, D.R.; Anderson, J.R. The distribution and seasonal abundance of deer keds (Diptera: Hippoboscidae) on Columbian black-tailed deer (Odocoileus hemionus columbianus) in northern California. Bull. Soc. Vector Ecol. 1992, 17, 57–69. [Google Scholar]
- Yabsley, M.J.; Nims, T.N.; Savage, M.Y.; Durden, L.A. Ticks and tick-borne pathogens and putative symbionts of black bears (Ursus americanus floridanus) from Georgia and Florida. J. Parasitol. 2009, 95, 1125–1128. [Google Scholar] [CrossRef]
- Kitron, U.; Jones, C.J.; Bouseman, J.K.; Nelson, J.A.; Baumgartner, D.L. Spatial analysis of the distribution of Ixodes dammini (Acari: Ixodidae) on white-tailed deer in Ogle County, Illinois. J. Med. Entomol. 1992, 29, 259–266. [Google Scholar] [CrossRef]
- Raizman, E.A.; Holland, J.D.; Keefe, L.M.; Moro, M.H. Forest and Surface Water As Predictors of Borrelia burgdorferi and Its Vector Ixodes scapularis (Acari: Ixodidae) in Indiana. J. Med. Entomol. 2010, 47, 458–465. [Google Scholar] [CrossRef]
- Raizman, E.A.; Holland, J.D.; Shukle, J.T. White-Tailed Deer (Odocoileus virginianus) as a Potential Sentinel for Human Lyme Disease in Indiana. Zoonoses Public Health. 2013, 60, 227–233. [Google Scholar] [CrossRef]
- Schulze, T.L.; Jordan, R.A.; Hung, R.W.; Schulze, C.J. Effectiveness of the 4-poster passive topical treatment device in the control of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in New Jersey. Vector-Borne Zoonotic Dis. 2009, 9, 389–400. [Google Scholar] [CrossRef]
- French, J.B. Ixodes scapularis (Acari: Ixodidae) at the edge of its range in southern Wisconsin. J. Med. Entomol. 1995, 32, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Schulze, T.L.; Lakat, M.F.; Bowen, G.S.; Parkin, W.E.; Shisler, J.K. Ixodes dammini (Acari: Ixodidae) and other ixodid ticks collected from white-tailed deer in New Jersey, USA. J. Med. Entomol. 1984, 21, 741–749. [Google Scholar] [CrossRef]
- Durden, L.A.; Luckhart, S.; Mullen, G.R.; Smith, S. Tick Infestations of White-Tailed Deer in Alabama. Wildl. Dis. Assoc. 1991, 27, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Amerasinghe, F.P.; Breisch, N.L.; Azad, A.F.; Gimpel, W.F.; Greco, M.; Neidhardt, K.; Pagac, B.; Piesman, J.; Sandt, J.; Scott, T.W.; et al. Distribution, density, and Lyme disease spirochete infection in Ixodes dammini (Acari: Ixodidae) on white-tailed deer in Maryland. J. Med. Entomol. 1992, 29, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Amerasinghe, F.P.; Breisch, N.L.; Neidhardt, K.; Pagac, B.; Scott, T.W. Increasing density and Borrelia burgdorferi infection of deer-infesting Ixodes dammini (Acari: Ixodidae) in Maryland. J. Med. Entomol. 1993, 30, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Luckhart, S.; Mullen, G.R.; Durden, L.A.; Wright, J.C. Borrelia sp. in ticks recovered from white-tailed deer in Alabama. Wildl. Dis. Assoc. 1992, 28, 449–452. [Google Scholar] [CrossRef]
- Kollars, T.M.; Durden, L.A.; Masters, E.J.; Oliver, J.H. Some Factors Affecting Infestation of White-Tailed Deer by Blacklegged Ticks and Winter Ticks (Acari: Ixodidae) in Southeastern Missouri. J. Med. Entomol. 1997, 34, 372–375. [Google Scholar] [CrossRef]
- Riehle, M.; Paskewitz, S.M. Ixodes scapularis (Acari: Ixodidae): Status and Changes in Prevalence and Distribution in Wisconsin between 1981 and 1994 Measured by Deer Surveillance. J. Med. Entomol. 1996, 33, 933–938. [Google Scholar] [CrossRef]
- Curran, K.L.; Kidd, J.B.; Vassallo, J.; Van Meter, V.L. Borrelia burgdorferi and the causative agent of human granulocytic ehrlichiosis in deer ticks, Delaware. Emerg. Infect. Dis. 2000, 6, 408–411. [Google Scholar] [CrossRef]
- Cortinas, M.R.; Kitron, U. County-level surveillance of white-tailed deer infestation by Ixodes scapularis and Dermacentor albipictus (Acari: Ixodidae) along the Illinois River. J. Med. Entomol. 2006, 43, 810–819. [Google Scholar] [CrossRef]
- Shariat, B.M.; Freimund, J.A.; Wright, S.M.; Murphree, S.; Thomas, J.T. Borrelia infection rates in winter ticks (Dermacentor albipictus) removed from white-tailed deer (Odocoileus virginianus) in Cheatham County, Tennessee. J. Tenn. Acad. Sci. 2007, 82, 57–61. [Google Scholar]
- Baer-Lehman, M.L.; Light, T.; Fuller, N.W.; Barry-Landis, K.D.; Kindlin, C.M.; Stewart, R.L. Evidence for competition between Ixodes scapularis and Dermacentor albipictus feeding concurrently on white-tailed deer. Exp. Appl. Acarol. 2012, 58, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.; Hardy, K.; Johnson, D.H.; Paskewitz, S.M. Hunter-Killed Deer Surveillance to Assess Changes in the Prevalence and Distribution of Ixodes scapularis (Acari: Ixodidae) in Wisconsin. J. Med. Entomol. 2013, 50, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Main, A.J.; Sprance, H.E.; Kloter, K.O.; Brown, S.E. Ixodes dammini (Acari: Ixodidae) on white-tailed deer (Odocoileus virginianus) in Connecticut. J. Med. Entomol. 1981, 18, 487–492. [Google Scholar] [CrossRef]
- Glass, G.E.; Amerasinghe, F.P.; Morgan, J.M.; Scott, T.W. Predicting Ixodes scapularis abundance on white-tailed deer using geographic information systems. Am. J. Trop. Med. Hyg. 1994, 51, 538–544. [Google Scholar] [CrossRef]
- Egizi, A.; Roegner, V.; Faraji, A.; Healy, S.P.; Schulze, T.L.; Jordan, R.A. A historical snapshot of Ixodes scapularis-borne pathogens in New Jersey ticks reflects a changing disease landscape. Ticks Tick Borne Dis. 2018, 9, 418–426. [Google Scholar] [CrossRef]
- Foley, J.E.; Hasty, J.M.; Lane, R.S. Diversity of rickettsial pathogens in Columbian black-tailed deer and their associated keds (Diptera: Hippoboscidae) and ticks (Acari: Ixodidae). J. Vector Ecol. 2016, 41, 41–47. [Google Scholar] [CrossRef][Green Version]
- Yoder, J.A.; Pekins, P.J.; Dobrotka, C.J.; Fisher, K.A.; Kantar, L.; McLellan, S.; O’Neal, M.; Klompen, H. Tick development on sexually-active bull moose is more advanced compared to that of cow moose in the winter tick, Dermacentor albipictus. Int. J. Parasitol. Parasites Wildl. 2019, 9, 56–59. [Google Scholar] [CrossRef]
- Peters, H.S. Ectoparasites and Bird-Banding. Assoc. Field Ornithol. 1930, 1, 51–60. [Google Scholar] [CrossRef]
- Peters, H.S. External Parasites Collected from Banded Birds. Assoc. Field Ornithol. 1933, 4, 68–75. [Google Scholar]
- Peters, H.S. A List of External Parasites from Birds of the Eastern Part of the United States. Assoc. Field Ornithol. 1936, 7, 9–27. [Google Scholar] [CrossRef]
- Florin, D.A.; Brinkerhoff, R.J.; Gaff, H.; Jiang, J.; Robbins, R.G.; Eickmeyer, W.; Butler, J.; Nielsen, D.; Wright, C.; White, A.; et al. Additional, U.S. collections of the Gulf Coast tick, Amblyomma maculatum (Acari: Ixodidae), from the state of Delaware, the first reported field collections of adult specimens from the state of Maryland, and data regarding this tick from surveillanc. Syst. Appl. Acarol. 2014, 19, 257–262. [Google Scholar] [CrossRef]
- Scott, J.D.; Durden, L.A. First Isolation of Lyme disease spirochete, Borrelia burgdorferi, from Ticks Collected from Songbirds in Ontario, Canada. N. Am. Bird Bander. 2009, 34, 97–101. [Google Scholar]
- Scott, J.D.; Durden, L.A. New records of the Lyme disease bacterium in ticks collected from songbirds in central and eastern Canada. Int. J. Acarol. 2015, 41, 241–249. [Google Scholar] [CrossRef]
- Goater, C.P.; Dyck, J.; Proctor, H.; Floate, K.D. Hyperparasitism of an Avian Ectoparasitic Hippoboscid Fly, Ornithomya anchineuria, by the Mite, Myialges Cf. Borealis, in Alberta, Canada. J. Parasitol. 2018, 104, 111–116. [Google Scholar] [CrossRef]
- Dickinson, J.L.; Shirk, J.; Bonter, D.; Bonney, R.; Crain, R.L.; Martin, J.; Phillips, T.; Purcell, K. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 2012, 10, 291–297. [Google Scholar] [CrossRef][Green Version]
- Shirk, J.L.; Ballard, H.L.; Wilderman, C.C.; Phillips, T.; Wiggins, A.; Jordan, R.; McCallie, E.; Minarchek, M.; Lewenstein, B.; Krasny, M.E.; et al. Public participation in scientific research: A framework for deliberate design. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef][Green Version]
- Garbarino, V.R.; Campbell, J.W.; Brien, J.O.; Heather, C.; Garbarino, V.R.; Campbell, J.W. Phthiraptera and Acari Collected from 13 Species of Waterfowl from Alabama and Georgia. Southeast Nat. 2013, 12, 413–426. [Google Scholar] [CrossRef]
- Bazin, M.; Williams, C.R. Mosquito traps for urban surveillance: Collection efficacy and potential for use by citizen scientists. J. Vector. Ecol. 2018, 43, 98–103. [Google Scholar] [CrossRef][Green Version]
- Becker, M.; Park, J.S.; Gentry, G.; Husseneder, C.; Foil, L. Comparison of trapping methods for use in surveys for potential Culicoides vectors of orbiviruses. Parasites Vectors 2021, 14, 564. [Google Scholar] [CrossRef]
- Mourad, K.A.; Hosseini, S.H.; Avery, H. The role of citizen science in sustainable agriculture. Sustainability 2020, 12, 10375. [Google Scholar] [CrossRef]
- van de Gevel, J.; van Etten, J.; Deterding, S. Citizen science breathes new life into participatory agricultural research. A review. Agron. Sustain. Dev. 2020, 40, 35. [Google Scholar] [CrossRef]
- Billaud, O.; Vermeersch, R.L.; Porcher, E. Citizen science involving farmers as a means to document temporal trends in farmland biodiversity and relate them to agricultural practices. J. Appl. Ecol. 2021, 58, 261–273. [Google Scholar] [CrossRef]
- Medlock, J.M.; Leach, S.A. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect. Dis. 2015, 15, 721–730. [Google Scholar] [CrossRef]
- Dantas-Torres, F.; Otranto, D. Best Practices for Preventing Vector-Borne Diseases in Dogs and Humans. Trends Parasitol. 2016, 32, 43–55. [Google Scholar] [CrossRef]
- Gardiner, M.M.; Roy, H.E. The Role of Community Science in Entomology. Annu. Rev.Entomol. 2022, 67, 437–456. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poh, K.C.; Evans, J.R.; Skvarla, M.J.; Machtinger, E.T. All for One Health and One Health for All: Considerations for Successful Citizen Science Projects Conducting Vector Surveillance from Animal Hosts. Insects 2022, 13, 492. https://doi.org/10.3390/insects13060492
Poh KC, Evans JR, Skvarla MJ, Machtinger ET. All for One Health and One Health for All: Considerations for Successful Citizen Science Projects Conducting Vector Surveillance from Animal Hosts. Insects. 2022; 13(6):492. https://doi.org/10.3390/insects13060492
Chicago/Turabian StylePoh, Karen C., Jesse R. Evans, Michael J. Skvarla, and Erika T. Machtinger. 2022. "All for One Health and One Health for All: Considerations for Successful Citizen Science Projects Conducting Vector Surveillance from Animal Hosts" Insects 13, no. 6: 492. https://doi.org/10.3390/insects13060492