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Simple Summary: To elucidate the cotton plant’s defense mechanism against Apolygus lucorum, the
transcriptomic and metabolomic differences in cotton plants after infestation with A. lucorum were
investigated. The results showed that A. lucorum feeding elicits a rapid and strong defense response
involved in many primary and secondary metabolic processes during the whole infestation process.
The jasmonic acid pathway was shown to mediate the defense mechanisms in cotton plants, and the
salicylic acid pathway was attenuated after damage from A. lucorum. The accumulation of condensed
tannins was also promoted in cotton plants as a defense mechanism against A. lucorum. These results
provided comprehensive insights into the defense system and will help us to discover unknown
defensive genes and improve the integrated pest management of A. lucorum.

Abstract: With the wide-scale adoption of transgenic Bacillus thuringiensis (Bt) cotton, Apolygus lucorum
(Meyer-Dür) has become the most serious pest and has caused extensive yield loss in cotton pro-
duction. However, little is known about the defense responses of cotton at the seedling stage to
A. lucorum feeding. In this study, to elucidate the cotton defense mechanism, cotton leaves were
damaged by A. lucorum for 0, 4, 12 and 24 h. The transcriptomic results showed that A. lucorum
feeding elicits a rapid and strong defense response in gene expression during the whole infestation
process in cotton plants. Further analysis revealed that at each assessment time, more differentially
expressed genes were up-regulated than down-regulated. The integrated analysis of transcriptomic
and metabolic data showed that most of the genes involved in jasmonic acid (JA) biosynthesis were
initially up-regulated, and this trend continued during an infestation. Meanwhile, the content levels
of JA and its intermediate products were also significantly increased throughout the whole infestation
process. The similar trend was displayed in condensed tannins biosynthesis. This research proved
that, after plants are damaged by A. lucorum, the JA pathway mediates the defense mechanisms
in cotton plants by promoting the accumulation of condensed tannins as a defense mechanism
against A. lucorum. These results will help us to discover unknown defensive genes and improve the
integrated pest management of A. lucorum.

Keywords: cotton; induced resistance; Apolygus lucorum; jasmonic acid; condensed tannins

1. Introduction

Plants can perceive several mechanical and chemical cues from pests, including feeding
damage, oviposition and the presence of pests on their surfaces [1–3]. In addition, plants can
activate defensive mechanisms to improve their fitness, divert resources away from plant
growth and reduce major cell processes concerning photosynthesis or growth [4–6]. The
defense system of a plant is divided into “direct defense” and “indirect defense”, depending
on the mechanisms enacted. The former involves the biosynthesis of toxic compounds,
which can suppress herbivore performance, while the latter is involved in the emission of
herbivore-induced plant volatiles (HIPVs), which can attract natural enemies [7,8].
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Previous studies have proved that these types of defenses are mediated by a series of
phytohormones such as jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA) [9–12].
In particular, JA and SA, along with their derivatives, play a primary role in modulating
plant defense against complex biotic and abiotic environments, respectively [4].

Cotton (Gossypium hirsutum L.) is grown globally and used in textiles fabrics, fodder
and other industries. During its lifetime, a cotton plant will unavoidably be subject to
attacks from herbivores. Cotton plants also produce a range of compounds, including
condensed tannins, gossypol, flavonoids and others, to reduce the effects of herbivore
attacks. For example, after plants were damaged by Spodoptera littoralis (Boisd.), the
content level of condensed tannins in cotton (var. Delta Pineland 90) leaves was shown to
significantly increase [13], and the gossypol concentration was shown to increase by more
than a fold in the days following cotton (var. Deltapine acala 90) plants being damaged
by Helicoverpa armigera (Hübner) [14]. All of these defensive mechanisms work together in
order for cotton plants to resist pest attacks.

Since transgenic Bacillus thuringiensis (Bt) cotton was adopted in the 1990s, Apolygus lucorum
(Meyer-Dür), which historically has been a pest with secondary importance, has recently
emerged as the most serious pest to cotton and has caused extensive yield loss in cotton
production in China [15]. Although A. lucorum has become the dominant pest in cotton,
how Bt cotton responds to A. lucorum at the seedling stage is still unclear.

In this study, to evaluate the dynamic defense responses of cotton to A. lucorum feeding,
we investigated the responses of cotton plants to A. lucorum damage by integrating the
results from cotton transcriptional dynamics with phytohormones and metabolite profiling
experiments. These results will allow us to expound the molecular and biochemical defense
mechanisms of cotton plants against A. lucorum.

2. Materials and Methods
2.1. Plant Growth

Bt cotton seeds (var. SGK 321) were provided by the Chinese Academy of Agricultural
Sciences (CAAS). This cultivar has median-level resistance to A. lucorum and is widely
grown near the Yangtze River. The cotton plants were grown in a greenhouse at Yangzhou
University. Each plant was sown in an individual plastic pot (height, 15 cm; diameter, 20 cm).
The temperature was maintained at 26~30 ◦C, and the plants were watered every week. All
plants were placed in nylon cages to prevent them being damaged by herbivores. The plants
were spaced 2 m apart to avoid communication between each other. After 8 leaves emerged
on each plant, healthy cotton plants were chosen for use in the experiments.

2.2. Insect Rearing

Before the start of the experiment, we established colonies of A. lucorum at Yangzhou Uni-
versity, starting with eggs provided by CAAS. A. lucorum was reared on maize (Zea mays L.)
and French bean (Phaselus vulgaris L.) at 25 ◦C, with 65% RH and a 14 h light:10 h dark
photoperiod [16].

2.3. Plant Treatments

After being starved for 8 h, 4 third-stage nymphs were placed on top of each cotton
plant and allowed to feed ad libitum in a nylon cage. Leaves were harvested for analysis at
0, 4, 12 and 24 h after the initial A. lucorum infestation. All plant material was collected in the
early morning at the same time on the same day. All harvested samples were immediately
frozen using liquid nitrogen for more than one hour and then stored in a −80 ◦C freezer.
Three samples were prepared for RNA-seq data analysis, eight samples for metabolomics
and six samples for phytohormones and condensed tannins analysis.

2.4. Total RNA Extraction, Transcriptome Sequencing, RNA-seq Data Analysis and qRT-PCR Analysis

Total RNA from each sample was isolated following the CTAB (Cetyltrimethylam-
monium Bromide) method, while the concentration and quality were assessed using an
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Agilent 2100 Bioanalyzer (Agilent, Palo Alto, CA, USA) [17]. Clean reads were mapped
to Gossypium hirsutum v2.1 genome(accessed on 5 May 2020) downloaded from the NCBI
database (https://www.ncbi.nlm.nih.gov) using HISAT2 (v2.1.0), and only unique map-
ping reads were used to calculate gene expression [18]. The transcriptional assembly was
performed using Bowtie software (v2.25), and fragments per kilobase of exon per mil-
lion fragments (FPKM) was used to calculate gene expression levels with RSEM software
(v1.2.8). Differentially expressed genes (DEGs) were identified with an R package with
|log2 Fold Change| ≥ 1 and adjusted p-value ≤ 0.001 [19]. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses of the DEGs were performed using the
cluster Profiler R package with padj <0.05 to find significant enrichments. To verify the
RNA-seq data, qRT-PCR analysis was performed using iTaqTM Universal SYBR® Green
Supermix (BIO-RAD, Berkeley, CA, USA). To calculate expression changes, the relative
2−∆∆Ct-method was used, and the Histone-3 (gene ID: 107950429) gene was used as a
candidate reference gene [20,21]. All primers that were used are listed in Data S1.

2.5. Untargeted Metabolite Analysis

For metabolite analysis assays with regard to the cotton, 25 mg of leaf tissue was
weighed, and 800 µL of extraction solvent (methanol/water, 1:1, v/v) was added to every
sample [22]. Then, the homogenized solution was centrifuged at 30,000× g and 4 ◦C for
20 min, and 550 µL of supernatant was transferred into a new tube. The analysis was
performed using a UPLC (Waters, Milford, MA, USA) system with an ACQUITY UPLC T3
column (100 mm × 2.1 mm, 1.8 µm, Waters, Milford, MA, USA), and the chromatographic
condition was identical to that used by Peng [23]. To detect metabolites in each sample, a
high-resolution tandem mass spectrometer (Xevo G2 XS, Q-TOF-MS, Waters, Manchester,
UK) was used in both positive and negative ion modes. The parameters were also the same
as those used by Peng [23]. For qualitative and quantitative analyses, all raw data were
analyzed using Progenesis QI (version 2.2) and the online KEGG database. To determine
differentially accumulated metabolites (DAMs) between cotton damaged by A. lucorum
and healthy cotton, the orthogonal projections to latent structure discriminant analysis
(OPLS-DA) was used. The relative importance of each metabolite to the OPLS-DA model
was checked using the variable importance in projection (VIP) metric [24]. Metabolites
with VIP ≥ 1.0, fold change > 1.2 or fold change < 0.83 and p-value < 0.05 were considered
as DAMs for group comparations.

2.6. Content of Phytohormones and Condensed Tannins Analysis

Deep-frozen cotton leaves were lyophilized. The quantitation of JA, SA, ABA and
JA-isoleucine conjugate (JA-Ile) were analyzed using a coupled liquid chromatography–
mass spectrometry system (LC-MS/MS, Waters, Milford, MA, USA) following Sun [25].
Condensed tannins were extracted and measured following Lin [26].

2.7. Statistical Analysis

Statistical comparisons of phytohormones, condensed tannins and their intermediate
products from different treatments were all carried out by one way-ANOVA followed by the
Tukey’s HSD test using the software SPSS 25, and a significance level of p < 0.05 was applied.

3. Results
3.1. RNA-seq Analysis of Cotton Response to A. lucorum Attack

To investigate global transcriptomic changes in response to A. lucorum feeding, data
from leaves damaged by A. lucorum for 0, 4, 12 and 24 h were collected. In total, 56,242 genes
were detected from all samples (Data S2). After the initiation of A. lucorum feeding,
13,254 genes showed altered expression at each time point. The samples at 4, 12 and
24 h exhibited 4623 (3847 up-regulated and 776 down-regulated), 6109 (4374 up-regulated
and 1735 down-regulated) and 10,851 (6236 up-regulated and 4615 down-regulated) DEGs,
respectively (Figure 1a). The number of up-regulated genes was superior to down-regulated
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DEGs at each time point assessed, while the number of down-regulated DEGs increased
much more rapidly than the number of up-regulated DEGs (Datas S3 and S4). The distri-
bution of up-regulated and down-regulated DEGs was calculated, and this information
is presented in a Venn diagram (Figure 1b,c). A large number of genes (a total of 7964)
increased in prevalence, but the number of genes (a total of 2262), which increased at every
time point, was severely limited. In addition, a unique set of genes decreased (a total of
5399), while only 249 genes decreased at every time point. A total of 1117 DEGs (820 up-
regulated and 297 down-regulated) only occurred 4 h post-infestation and then returned
to normal, while 3103 DEGs (2304 up-regulated and 3235 down-regulated) occurred 24 h
post-infestation.
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Figure 1. Transcriptomic and metabolomic overview of a time course of A. lucorum damage on cotton
plants. (a) Total number of individual transcripts that were significantly up- or down-regulated at
each time point. (b) Venn diagram illustrating the number of genes up-regulated during the time
course. (c) Venn diagram illustrating the number of genes down-regulated during the time course.
(d) Total number of metabolites that were significantly up- or down-regulated at each time point.
(e) Venn diagram illustrating the number of metabolites up-regulated during the time course. (f) Venn
diagram illustrating the number of metabolites down-regulated during the time course.

To further verify the RNA-seq results, eight DEGs were selected for qPCR analysis.
The expression patterns of the DEGs obtained from qPCR were consistent with those from
RNA-seq (Figure S1).

3.2. KEGG Analysis of Cotton Response to A. lucorum Attack

Subsequently, all DEGs were subjected to KEGG pathway analysis. The DEGs at 4,
12 and 24 h after A. lucorum feeding were classified into 10, 15 and 16 significant KEGG
pathways, respectively (p < 0.05) (Data S5). In these significant KEGG pathways, the
biosynthesis of phenylpropanoid, flavonoid and isoflavonoid compounds as well as the
metabolism of α-linolenic acid, plant hormone signal transduction, MAPK signaling and
plant–pathogen interaction were involved in the responses of cotton to A. lucorum at
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each time point. These KEGG pathways were considered to be involved in the defense
mechanisms of cotton in response to herbivores.

3.3. Dynamic Transcriptome Responses to A. lucorum Feeding

To better understand the dynamics of cotton transcriptomes in response to A. lucorum
herbivory, the total DEGs were subjected to different clusters using Short Time-series Ex-
pression Miner analysis (STEM) [27]. The DEGs were clustered into 13 important temporal
gene expression profiles (Figure 2). Profile 40 included 1015 transcripts that showed a
trend of up-regulated expression during the whole 24 h after A. lucorum feeding, and
transcripts in profile 42 and 48 also showed this trend. Transcripts in the abovementioned
profiles were immediately up-regulated at 4 h and continued to be up-regulated until 24 h.
The transcripts in profile 45, 46 and 49 also showed a trend of up-regulated expression
in the whole 24 h, but they reached a peak at 4 h or 12 h. Pathway enrichment analysis
showed that the transcripts in the two profiles mentioned above were mainly related to the
biosynthesis of phenylpropanoids, α-linolenic acid, flavonoids and pathways of plant hor-
mone signal transduction, MAPK signaling and plant–pathogen interaction (Data S6). This
result suggested the defense response of cotton was immediately induced by A. lucorum
herbivory and was continuously induced for a long time. Profile 1, 9 and 11 showed a trend
of down-regulated expression, and most genes included in these profiles were involved in
the primary metabolism, including C5-branched dibasic acid metabolism, glucosinolate
and photosynthesis-antenna proteins biosynthesis. These up- and down-regulations in
genes involved in cotton’s primary metabolism might be caused by the readjustment of the
primary metabolism in response to pest attacks.
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Figure 2. Clustering and classification of differentially expressed genes. The Roman numerals on the
left indicate the class. The number in the top left corner in each panel indicates the identification number
(ID), and the number in the bottom left corner of each panel indicates the number of genes in the cluster.

3.4. Metabolomic Analysis of Cotton Responses to A. lucorum Attack

To evaluate metabolic changes in response to A. lucorum infestation, cotton leaves were
analyzed using UPLC-QTOF-MS in both the positive and negative ion mode. Metabolite
abundance increased more slowly than gene expression. In total, 4710 metabolites were
detected from all samples (Data S7). There were 266 (106 up-regulated and 160 down-
regulated), 721 (422 up-regulated and 299 down-regulated) and 1338 (780 up-regulated and
558 down-regulated) DAMs in the samples at the 4, 12 and 24 h time points, respectively
(Figure 1d). The number of up-regulated DAMs was only lower than the number of
down-regulated DAMs at 4 h, while the number of up-regulated DAMs was higher at
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later time points. As shown in Figure 1, only a few metabolites (10 up-regulated and
32 down-regulated) changed at each time point (Figure 1e,f).

3.5. Phytohormone Levels Induced by A. lucorum

To evaluate the phytohormone level changes induced by A. lucorum, the concentrations
of JA, JA-Ile, SA and ABA in cotton leaves were analyzed. After plants were damaged
by A. lucorum, the JA content level continuously increased, and the content level at 24 h
was significantly higher than those at other time points. The content level at 12 h was also
significantly higher than that at the initial time point. The JA-Ile level showed a similar
trend, but only increased significantly at 24 h. The level of SA decreased significantly
during the whole infestation process, while the level of ABA did not change significantly at
any time point (Figure 3).
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Figure 3. Plant phytohormones changed after A. lucorum feeding on cotton leaves. JA, jasmonic acid;
JA-Ile, jasmonoyl-L-isoleucine; ABA, abscisic acid; SA, salicylic acid. Mean ± SE of n = 6; amounts
with different letters were significantly different at the 5% level according to Tukey’s HSD test.

3.6. Biosynthesis of Jasmonic Acid

In cotton plants, jasmonic acid is biosynthesized from α-linolenic acid by rate-limiting
enzyme allene oxide synthase (AOS) and other crucial enzymes, including lipoxygenase
(LOX), allene oxide cyclase (AOC), 12-oxophytodienoate reductase (OPR), OPC8-CoA
ligase (OPCL), acyl-CoA oxidase (ACX), enoyl-CoA hydratase (MFP) and acetyl-CoA acyl-
transferase (fad A) [28,29]. To explore the role of the JA pathway in response to A. lucorum
feeding, the expression levels of genes involved in JA biosynthesis were analyzed, and
the concentrations of intermediate products involved in JA biosynthesis were measured
(Figure 4). As shown in Figure 4b, most of the genes that encode the rate-limiting enzyme
AOS and other crucial enzymes, including LOX, AOC, OPR, OPCL, ACX, MFP and fad
A, were all up-regulated at the initial time point and continued to be up-regulated during
the infestation. Further chemical analysis revealed that the precursor α-linolenic acid was
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significantly decreased at the 4 h time point and remained at a low level during the infesta-
tion, and the content level of (9Z,11E,15Z)-(13S)-13-hydroperoxyoctadeca-9,11,15-trienoic
acid (13(S)-HPOT) did not significantly change during the whole infestation process. How-
ever, the levels of other upstream products, including (9Z,15Z)-(13S)-12,13-Epoxyoctadeca-
9,11,15-trienoic acid (12,13(S)-EOT) 12-Oxo-10,15(Z)-phytodienoic acid (12-OPDA), were
both significantly increased at the 24 h time point (Figure 4c). The content levels of 7-
Isojasmonic acid CoA at 12 h and 24 h were both significantly higher than those at other
time points. Due to the content levels of JA and JA-Ile being significantly increased, we
determined that the JA pathway was intensely induced by A. lucorum feeding.
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Figure 4. A. lucorum-induced responses in the jasmonic acid (JA) pathway. (a) Overview of the
JA pathway. Metabolites shaded in green were measured. Solid arrows represent established
biosynthesis steps, while broken arrows indicate the involvement of multiple enzymatic reactions.
(b) Heat map of the expression of genes associated with the JA pathway. (c) Intermediate products
contents in JA pathway cotton leaves. Values are mean ± SE of six biological replicates. Amounts
with different letters were significantly different at the 5% level according to Tukey’s HSD test.
Lipoxygenase (LOX); (9Z,11E,15Z)-(13S)-13-hydroperoxyoctadeca-9,11,15-rienoic acid (13(S)-HPOT);
allene oxide synthase (AOS); (9Z,15Z)-(13S)-12,13-epoxyoctadeca-9,11,15-trienoic acid (12,13(S)-EOT);
allene oxide cyclase (AOC); 12-oxo-10,15(Z)-phytodienoic acid (12-OPDA); 12-oxophytodienoate
reductase (OPR); 8-[(1R,2R)-3-Oxo-2-{(Z)-pent-2-enyl}cyclopentyl]octanoate (OPC-8:0); OPC8-CoA
ligase (OPCL); acyl-CoA oxidase (ACX); enoyl-CoA hydratase (MFP); acetyl-CoA acyl-transferase
(fad A).
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3.7. Biosynthesis of Condensed Tannins

In cotton plants, condensed tannins have protective roles against insect attacks [30].
They were biosynthesized from L-phenylalanine using a series of crucial enzymes including
L-phenylalanine ammonialyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA
ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase
(F3H), flavonoid 3′-hydroxylase(F3′H), dihydroflavonol reductase (DFR), anthocyanidin
synthase (ANS) and anthocyanidin reductase (ANR) [31]. In our study, the expression
of genes and the concentrations of intermediate products involved in condensed tannins
biosynthesis were analyzed (Figure 5). As shown in Figure 5b, nearly all of the genes that
encode crucial enzymes were activated in turn. The content levels of L-phenylalanine and
p-Coumaric acid were significantly increased at 4 h and then returned to normal. The
trans-Cinnamic acid level was significantly higher at 4 h than those at other time points,
but the content levels at 12 h or 24 h were also significantly higher than the initial level.
After plants were damaged by A. lucorum, the level of Dihydrokaempferol was significantly
increased during the whole infestation process, and the level of condensed tannins was
also found to be significantly increased after 24 h. These results indicate that the condensed
tannins pathway was also intensely induced by A. lucorum feeding.
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Figure 5. A. lucorum-induced responses in condensed tannins pathway. (a) Overview of the con-
densed tannins pathway. Metabolites shaded in green were measured. Solid arrows represent
established biosynthesis steps, while broken arrows indicate the involvement of multiple enzymatic
reactions. (b) Heat map of the expression of genes associated with the condensed tannins path-
way. (c) Intermediate products contents in condensed tannins pathway cotton leaves. Values are
mean ± SE of six biological replicates. Amounts with different letters were significantly different
at the 5% level according to Tukey’s HSD test. L-phenylalanine ammonialyase (PAL), cinnamate
4−hydroxylase (C4H), 4−coumarate: CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase
(CHI), flavanone-3-hydroxylase (F3H), flavonoid 3′−hydroxylase (F3′H), dihydroflavonol reductase
(DFR), anthocyanidin synthase (ANS), anthocyanidin reductase (ANR).
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4. Discussion

Since the commercialization of Bt cotton, A. lucorum has gradually become the most
significant pest in cotton-growing regions in China [15]. However, knowledge of defense
mechanisms in response to A. lucorum infestation has remained limited. In our study,
we analyzed the dynamics of transcriptomes in Bt cotton SGK321 after being attacked
by A. lucorum. Our analysis revealed that after plants were damaged by A. lucorum, the
gene expression in leaves changed continually in next 24 h, and more DEGs were up-
regulated than those that were down-regulated at each time point. This result indicated that
A. lucorum feeding induces more induction than suppression in gene expression. Similar
results were found after the evaluation of the transcriptomic changes in cotton plants
after chewing insects, such as H. armigera or Anthonomus grandis (Bohemian), had fed on
them [32,33]. However, when cotton plants were damaged by piercing–sucking insects such
as Bemisia tabaci (Gennadius) or Aphis gossypii (Glover), more DEGs were down-regulated
than those that were up-regulated at each time point [34,35]. The difference in global
transcriptome changes might be caused by the feeding behavior of A. lucorum. Unlike
other vascular feeders, such as aphids and whiteflies, A. lucorum is a mesophyll feeder,
which uses its stylet to probe into plant host tissue and shred cells in order to feed on
the tissue [36]. Due to this “lacerate and flush” feeding strategy, A. lucorum causes more
physical damage to cells than aphids or whiteflies, and the damage they cause is similar to
that caused by chewing insects [37].

Plant-induced defense to herbivores is mediated by phytohormones, especially JA
and SA, which both play fundamental roles in the modulation of plant defense against
herbivores [38]. SA-JA crosstalk in plant–herbivore interactions determined the effective-
ness of induced resistance [39]. In our study, genes involved in the KEGG pathway of
“α-linolenic acid metabolism” were activated after plants were damaged by A. lucorum. The
increase in contents of JA and its intermediate products was also detected at the time points
analyzed. Meanwhile, the expression of crucial enzyme isochorismate synthase (ICS) in SA
biosynthesis was reduced, and the content of SA decreased significantly during the whole
infestation process (Data S8). These results indicated that the JA pathway plays a primary
role in cotton’s defense mechanisms against A. lucorum, and the SA pathway is attenuated
after cotton plants are damaged by A. lucorum. However, a previous study considered
SA signaling to be dominant in cotton defense mechanisms against A. lucorum, and in
another study, it was suggested that the JA pathway is responsible for the elicitation of
cotton defense mechanisms against A. lucorum without attenuating the SA pathway [40,41].
Another study proved that different genotypes of plants will show totally different induced
defense mechanisms [42]. Some research also proved that plant-induced defense mecha-
nisms follow a pest density-dependent response [43,44]. We speculated that the differences
in gene expression in both JA and SA may be induced by the different densities of pests or
different cultivars of cotton. This work should be completed in future.

Condensed tannins were the most important secondary metabolite in cotton’s defense
mechanisms against pests. Some previous studies have proved that condensed tannins could
minimize the damage caused by A. lucorum, and their content levels had a significant positive
correlation with cotton’s resistance to A. lucorum [26,45]. Recently, studies have explained
resistance mechanisms in which condensed tannins had a negative impact on probing the
behaviors of A. lucorum [46,47]. In our study, most of the genes that encode crucial enzymes in
condensed tannins biosynthesis were up-regulated during the whole infestation process. The
content levels of condensed tannins and their intermediate products were also significantly
increased after plants were damaged by A. lucorum for 24 h. This phenomenon indicated that
cotton plants activate a defense system to resist A. lucorum damage.

However, condensed tannins only provided an incomplete picture of the direct defense
responses of cotton plants to pests, and another defense substance, gossypol, also inhibited
insect performance. Previous studies have proved gossypol also had a negative impact on
the probing behaviors of A. lucorum [47]. In our study, we found that the content level of
(+)-δ-cadinene, which has always been considered to be an initial material of gossypol, was
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significantly increased in herbivore-induced plant volatiles, while the content level of gossypol
in leaves was significantly decreased (unpublished). A recent study suggested that cotton
plants activate a specific and mitigated defense strategy to A. lucorum feeding. This defense
strategy replaces the gossypol-related defense mechanism because less extensive damage is
caused by the stylets of A. lucorum [41]. Although the gossypol biosynthetic pathway has been
reported [48], in our study, the genes that encode crucial enzymes and contents of intermediate
products were not analyzed. This work should be completed in future.

5. Conclusions

In our paper, we evaluated the induced defense of Bt cotton at the seedling stage in
response to A. lucorum attacks. The dynamic transcriptomic analysis showed a rapid and
strong response in the first 4 h after being attacked by A. lucorum, which continued to cause
changes until 24 h had passed. The integrated analysis of the transcriptomic and metabolic
data revealed that JA mediates the defense mechanisms in cotton plants, and condensed
tannins manage the defense mechanism against A. lucorum. This work not only clarified
the defense mechanism of cotton against A. lucorum, but might be of significance in the
discovery of unknown defensive genes, the breeding of cotton cultivars and improving the
integrated pest management of A. lucorum.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/insects13040391/s1. Data S1. Primers used for quantitative RT-
PCR analysis. Data S2. Genes detected in all samples. Gene expression levels were shown by FPKMs.
All samples harvested at 0, 4, 12 and 24 h following A. lucorum infestation. Data S3. All up-regulated,
differentially expressed genes in cotton leaves induced by A. lucorum for 4, 12 and 24 h. Data S4. All
down-regulated, differentially expressed genes in cotton leaves induced by A. lucorum for 4, 12 and
24 h. Data S5. KEGG pathway enrichment analysis of DEGs in transcriptome of cotton induced by
A. lucorum for different period of time. Data S6. Overrepresentation analysis of each profile using
Short Time-series Expression Miner (STEM) analysis tool to identify metabolic pathways that are
being regulated. Data S7. UPLC-TOF-MS data from negative and positive ion modes. Data S8. Gene
expression of isochorismate synthase in cotton after plants were damaged by A. lucorum. Figure S1.
Comparison of expression levels of selected genes in RNA-seq and qRT-PCR analysis.
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