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Simple Summary: The organosilicone is commonly used as surfactant ingredient in agriculture.
Some pilot studies showed pesticidal activities of some organosilicone surfactants. This study
examined the toxicity of an organosilicone, Silwet 408, to the two-spotted spider mite Tetranychus
urticae and explored the field usage of this chemical in pest control. We tested this chemical on
eggs, nymphs, and adults of T. urticae. We applied a two-sprays strategy to enhance the field control
efficacy based on the high toxicity of Silwet 408 to nymphs and adults and the lack of toxicity to eggs
of T. urticae. However, their phytotoxicity should be taken under consideration. Our study improved
our understand of the toxicity and safety of organosilicone surfactants. The results provide a basis
for the usage of this chemical in mite control.

Abstract: Organosilicone molecules represent important components of surfactants added to pesti-
cides to improve pest control efficiency, but these molecules also have pesticidal properties in their
own right. Here, we examined toxicity and control efficacy of Silwet 408, a trisiloxane ethoxylate-
based surfactant, to the two-spotted spider mite (TSSM), Tetranychus urticae and its crop hosts. Silwet
408 was toxic to nymphs and adults of TSSM but did not affect eggs. Field trials showed that the
control efficacy of 1000 mg/L Silwet 408 aqueous solution reached 96% one day after spraying but
declined to 54% 14 days after spraying, comparable to 100 mg/L cyetpyrafen, a novel acaricide.
A second spraying of 1000 mg/L Silwet 408 maintained control efficacy at 97% when measured
14 days after spraying. However, Silwet 408 was phytotoxic to eggplant, kidney bean, cucumber,
and strawberry plants, although phytotoxicity to strawberry plants was relatively low and declined
further seven days after application. Our study showed that while the organosilicone surfactant
Silwet 408 could be used to control the TSSM, its phytotoxicity to crops should be considered.

Keywords: Tetranychus urticae; organosilicone; trisiloxane ethoxylate; acaricide; crop safety

1. Introduction

The two-spotted spider mite (TSSM), Tetranychus urticae Koch, is an important arthro-
pod pest that feeds on more than a thousand plant species, including vegetables, fruit trees,
cotton, and corn [1,2]. Due to its small body size, high fecundity, and extremely high pesti-
cide resistance, TSSM is one of the most difficult pests to control in agricultural production
systems [3–6]. Many methods have been developed to control TSSM, such as biological
control using predatory mites [7–9], chemical control using various acaricides [10,11], and
plant-based control using resistant cultivars and intercropping [12,13].

Chemical control is the most commonly-used method for managing TSSM due to its
easy application and low economic cost [14–16]. However, TSSM has developed resistance
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to almost all chemical classes of acaricides applied against it. TSSM shows resistance even
to those acaricides that have only been in use for a few years [4,17]. Resistance in TSSM has
been reported in more than 40 countries [18–21].

Spray adjuvants are often used in applications of pesticides to increase control effi-
cacy [22–24]. Adjuvants can substantially reduce the usage of active ingredients required
to control various pests and diseases [25]. Organosilicone surfactants, especially trisiloxane
surfactants, have been applied as efficient adjuvants with herbicides, desiccants, defoliants,
insecticides, acaricides, fungicides, plant growth regulators, and foliar nutrients [26–29].
They have excellent wettability and spreadability to reduce the surface tension of water,
thereby making the distribution of active ingredients on waxy or hydrophobic surfaces
more uniform [30].

Some studies have found that organosilicone products show pesticidal activity to
several pests, such as spider mites, aphids, citrus leaf miners, and armyworms [31–34]. The
organosilicone surfactants may achieve effective control against pests through mechan-
ical respiratory inhibition or interference with critical physiological processes [12,32,35],
although this depends on the nature of the chemicals, target pests, and developmental
stages of the pests. An organosilicone surfactant (Silwet L-77) showed high lethal bioactiv-
ity against the immature/adult stages of the melon aphid Aphis gossypii, western flower
thrips Frankliniella occidentalis, and the Pacific spider mite Tetranychus pacificus [26,36],
nymphs of the silverleaf whitefly Bemisia argentifolii [37], and nymphs but not eggs and
adults of the Asian citrus psyllid Diaphorina citri [25]. Cowles, Cowles, Mcdermott, and
Ramoutar [32] found that three organosilicone surfactants (Silwet L-77, Silwet 408, and
Silwet 806) were toxic to adult TSSM, although other life stages were not considered even
though effective control will depend on effects across life stages given that this pest has
overlapping generations.

Despite organosilicone surfactants holding promise in pest control, they also have
potential environmental risks [38]. The organic silicone adjuvant, Breakthru S240, may have
impacted the growth, breeding, and sex differentiation of a small planktonic crustacean
Daphnia magna (Crustacea: Phyllopoda) at 0.2 mg/L [39]. Several organosilicone surfactant
adjuvants (Dyne-Amic, Syl-Tac, Sylgard 309, and a modified trisiloxane) were detected
harming honey bee olfactory learning more than other nonionic adjuvants (Activator 90,
R-11, and Induce) [40]. While Silwet L-77 showed no phytotoxicity or negative effects on
shoot growth of citrus [25] and table grape [26], it caused severe phytotoxicity in tomato
leaves [37].

In this study, we investigated the toxicity and field control efficacy of the organosilicone
surfactant, Silwet 408, to TSSM. We further evaluated the safety of this chemical to crops
when applied to common host plants of TSSM (strawberry, eggplant, cucumber, and
kidney bean).

2. Materials and Methods
2.1. Testing Chemicals

The trisiloxane ethoxylate-based surfactant, Silwet 408, was produced by General
Electric Company (Boston, MA, USA). We chose cyetpyrafen, a complex II inhibitor com-
monly used against spider mites, as a positive control in field trials [41,42]. The 30% cyet-
pyrafen suspoemulsion (SE) was produced by Shenyang Sciencreat Chemicals Co., Ltd.,
(Shenyang, China).

2.2. Testing Mites

A laboratory population of TSSM was used in toxicity tests. This population was col-
lected from strawberries in Xiaoshan District, Hangzhou City, Zhejiang Province, and had
been reared on kidney bean (Phaseolus vulgaris) in the laboratory at 25 ◦C, 60 ± 5% relative
humidity, and a 16:8 L:D photoperiod without exposure to acaricides for one year prior
to experiments.
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2.3. Bioassay

For the bioassay, we used 100 mL transparent plastic cups (4.5 cm in height, 5.5 cm
in bottom diameter, 6.5 cm in top diameter) to keep the TSSMs. A layer of 0.2% agar was
placed on the bottom of the cups to avoid leaves drying out. Fresh leaves of kidney bean
were cut to fit the cup and put onto the agar with the lower side on top. The borders of the
leaves were sealed using 0.2% agar. The Silwet 408 was diluted into multiple concentrations
from 167 to 1000 mg/L with distilled water. About twenty nymphs or female adults
of TSSM were transferred to the prepared kidney bean leaf in the cup. Four biological
replicates were conducted for each treatment and control. Individual cups with TSSMs were
immediately sprayed with a 5 mL solution of Silwet 408 in the upper vial of a Potter Spray
Tower (Burkard Scientific, London, UK) at 68.9 kPa. Then, we covered the cup containing
treated TSSMs with a layer of tissue paper to prevent escape of the TSSMs and to absorb
moisture. The tissue paper was fixed using a plastic cup cover with a 2 cm diameter hole.
Mortality was assessed under a Stemi 305 stereomicroscope (Zeiss, Jena, Germany) 24 h or
48 h after spraying. The TSSMs were considered dead if no movement of appendages was
observed when they were prodded with a fine brush.

The toxicity of Silwet 408 to eggs of TSSM was determined following a standard
method for mites recommended by the FAO (Food and Agriculture Organization of the
United Nations) [43,44]. Five mated female adults were allowed to oviposit on a kidney
bean leaf disc of 3 cm diameter for 24 h. About 20 eggs were moved to a double-sided tape
on a glass slide. Three concentrations (1000, 333, and 200 mg/L) of Silwet 408 aqueous
solution were used to treat the eggs of TSSM. The slides were dipped in a test solution
for 5 s. The number of hatched eggs was counted daily. Four biological replicates were
conducted for each treatment and control. The treated nymphs, adults, and eggs of TSSM
were kept at 25 ◦C, 60 ± 5% relative humidity, and a 16:8 L:D photoperiod. We used
distilled water as a control. Four biological replicates were conducted for each treatment
and control of bioassays for eggs.

The corrected mortality was calculated as:
Corrected mortality = (mortality in treatment group − mortality in control group)/

(1 − mortality in control group).

2.4. Effect of Storage on the Acaricidal Activity of Silwet 408 Aqueous Solutions

To examine storage time on the acaricidal activity of Silwet 408 aqueous solutions, we
stored the 1000 mg/L solution, a recommended concentration for field control of TSSM, for
4, 8, 16, 24, and 48 h. Then, the stored solutions were used for bioassays with TSSM female
adults, as described above.

2.5. Field Trial on Control Efficacy of Silwet 408

The control efficacy of Silwet 408 to TSSM was tested on strawberry plants grown in a
greenhouse in Beijing, China. The greenhouse was 60 m long, 8 m wide, and 4.3 m high.
Strawberries of the “beauty” cultivar were planted on 28 August 2019. The TSSMs occurred
naturally on the strawberry plants. The experiments were conducted in March 2020 when
the strawberry plants were in the middle fruiting stage. Before spraying treatments, a
compound leaf was marked and the number of nymph and adult TSSMs on the leaves was
counted. Three concentrations of Silwet 408 diluted with water were sprayed evenly on the
back and top sides of leaves (333, 500, and 1000 mg/L). We used the acaricide cyetpyrafen
as a positive control and water as a negative control. Cyetpyrafen was diluted with distilled
water to obtain a concentration of 100 mg/L. Spraying was carried out using a 15-LTC
Electric Sprayer (Matabi, Goizpers C.L., Antzuola, Spain) with an application of 900 kg
solution per hm2. Eight replicates were conducted for each treatment using ten strawberry
plants as a replicate. The number of nymphs and adults of TSSM was counted and recorded
1, 3, 7, and 14 days after the treatments.

To cope with a declining control efficacy, we sprayed three concentrations of Silwet
408 again on previously treated strawberries 14 days after the first treatment. Four replicates
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were conducted for each treatment using ten strawberry plants as a replicate. The number
of nymphs and adults TSSM was counted and recorded 14 days after the second spraying.

The dropping rate of TSSMs was calculated as:
Dropping rate of TSSM (%) = 100 × (number of TSSMs before spraying − number of

TSSMs after spraying)/number of TSSMs before spraying. This measure can be negative if
there is an increase in mite numbers on leaves across count times, which happened in some
controls (see Results). Therefore, we also calculated the control efficacy of the treatments as:

Control efficacy (%) = 100 × (dropping rate of TSSMs of the treatment − dropping
rate of TSSMs of the control)/(100 − dropping rate of TSSM of control).

2.6. Impact of Organosilicon on Different Crops

Four host plants of TSSM (strawberry (beauty), eggplant (Jingqie No.6), kidney bean
(Yunpin No. 1), and cucumber (Jinchun No. 3)) were used to estimate the potential adverse
effects of Silwet 408 on crops. The tested strawberry, eggplant, kidney bean, and cucumber
plants had 5–7 compound leaves, 3–4 leaves, 2–3 leaves, or 5–6 leaves, respectively. Crops
were treated with 1000, 2000, or 4000 mg/L Silwet 408. The spraying treatments were
conducted using a 500 mL volume manual sprayer. The application rates of Silwet 408 on
strawberry, eggplant, kidney bean, and cucumber plants were 18, 9, 13, and 8 mL/crop,
respectively. The treated crops were transferred to incubators set at 20, 25, 30, or 35 ◦C and
with a 16:8 L:D photoperiod. Each treatment had three replicates. The phytotoxicity of
Silwet 408 to these crops was investigated 1, 3, and 7 days after treatment according to the
Pesticide-Guidelines for Field Efficacy Trials (GB/T 17980.28-2000) required by the Ministry
of Agriculture of China. The classification criteria in these guidelines are as follows:

Grade 0: no injury;
Grade 1: the injury area accounts for more than 5% of the whole leaf area;
Grade 3: the injury area accounts for more than 6–10% of the whole leaf area;
Grade 5: the injury area accounts for more than 11–25% of the whole leaf area;
Grade 7: the injury area accounts for more than 26–50% of the whole leaf area;
Grade 9: the injury area accounts for more than 50% of the entire leaf area.

The phytotoxicity index of treated plants was calculated as:
Phytotoxicity index = Σ [(number of injured leaves at grade i × corresponding grade i)/

(total leaf number × 9)] × 100.

2.7. Data Analysis

The TSSM (egg, nymph, and female adult) mortality and corrected mortality was
calculated using Abbott’s formula [45]. Six doses of Silwet 408 were tested to calculate LC50.
The lethal concentration of 50% (LC50) of treated TSSMs (nymph and female adult) and
its 95% confidence intervals was calculated based on mortality by using a probit analysis
implemented in DPS v12.01 (DPS software, Hangzhou, China). The difference between the
LC50 values was determined by the ratio of lethal concentrations; if the 95% confidence
intervals of the ratio between two concentrations crosses 1 (e.g., 95% CI = 0.9–1.1), there
is no difference between two lethal concentrations [46]. Statistical analyses on corrected
mortality, control efficacy, and the phytotoxicity index were conducted in SPSS 20.0 (SPSS
Inc., New York, NY, USA). The normal distribution and variance homogeneity were mea-
sured, and then ANOVAs were applied. One-way ANOVAs followed by Tukey HSD tests
were undertaken to test statistical differences in dropping rate and control efficacy among
treatments. A multi-way ANOVA with fixed factors was first conducted to determine
the effects of concentration, days after treatment, crop species, temperature, and their
interactions on the phytotoxicity index. This was followed by three-way ANOVAs for
each crop after treatment to investigate the effects of concentration, temperature, time, and
interactions on the phytotoxicity index. Treatment values are shown as mean values and
standard errors.
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3. Results
3.1. Toxicity of Silwet 408 to TSSM

Bioassay results showed that Silwet 408 has high toxicity to adults and nymphs of
TSSM with an LC50 of 291 and 427 mg/L, respectively, 24 h after spraying, and 282 and
386 mg/L respectively, 48 h after spraying (Table 1). There was some overlap of 95% con-
fidential limits of LC50 values for the adult and nymph stages when examined 24 h after
spraying but not at 48 h. These results suggest similar toxicity of Silwet 408 to adults
and nymphs. However, Silwet 408 lower than 200 mg/mL indicated a lack of toxicity
against adult TSSM, which makes the regression not significant. The corrected mortality
of TSSM eggs treated with 200, 333, and 1000 mg/L Silwet 408 aqueous solution was
−1.66 ± 4.58%, 4.00 ± 4.71%, and −1.84 ± 2.16% respectively, when examined 48 h after
spraying (Table 1, Figure S1). These results indicate a lack of toxicity of Silwet 408 when
applied to TSSM eggs.

Table 1. Toxicity of the organosilicone Silwet 408 to different developmental stages of Tetranychus urticae.

Stage n Time
(Hour)

Regression
Equation

SE of
Slope

LC50 (95% CL)
(mg/L) df χ2

Adult 20 24 11.42x − 23.14 1.27 291.07
(249.13–418.39) 3 34.87

48 17.36x − 37.53 2.37 281.60
(266.40–307.17) 2 1.93

Nymph 20 24 6.76x − 12.79 0.65 427.05
(397.31–467.50) 4 13.26

48 5.67x − 9.67 0.59 386.52
(321.23–585.00) 3 17.16

n, sample size per dose-group; LC50, lethal concentration 50; CL, 95% confidential limit; χ2, chi-square.

Female adult TSSMs were treated with 1000 mg/L of Silwet 408 aqueous solution
stored for 4, 8, 16, 24, and 48 h at room temperature after dilution. The treated adults all
died 24 h after spraying treatments, indicating that 48 h storage after dilution did not affect
the acaricidal activity of Silwet 408.

3.2. Control Efficacy of Silwet 408 to TSSMs in Field

One day after the first spraying, the dropping rate of the treated TSSMs was 96% and
97% for 1000 and 500 mg/L Silwet 408, respectively, and 94% for 100 mg/L cyetpyrafen
(Table 2). The dropping rate of mites treated with 100 mg/L cyetpyrafen and 1000 and
500 mg/L Silwet 408 was significantly higher than that of 333 mg/L Silwet 408 and water
treatments (F = 227.885, df = 4, 35, p < 0.001) (Table 2). When we examined the dropping rate
on day fourteen, it declined to 28%, −24%, −32%, and 40%, for 1000, 500, and 333 mg/L
Silwet 408 and 100 mg/L cyetpyrafen treatments, respectively. On day fourteen after
spraying application, TSSMs treated with 1000 mg/L Silwet 408 or 100 mg/L cyetpyrafen
showed a higher dropping rate than 500 mg/L Silwet 408, 100 mg/L Silwet 408, and water
treatments (F = 13.205, df = 4, 15, p = 0.008) (Table 2).

The control efficacy differed among treatments one day after spraying treatment
(F = 21.582, df = 3, 28, p = 0.006); the efficiency of 1000 mg/L Silwet 408 was similar to
that of 100 mg/L cyetpyrafen or 500 mg/L Silwet 408. The control efficacy of 1000 mg/L
Silwet-408 was approximately equivalent to that of 100 mg/L cyetpyrafen, and their control
efficacy was significantly higher than that of 500 and 333 mg/L Silwet 408 treatments
(F = 35.867, df = 3, 12, p = 0.006); Silwet 408 with concentrations of 333 and 500 mg/L
showed the lowest control efficacy compared with the other treatments, with values of
16% and 21%, respectively (Table 2).
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Table 2. Control efficacy of the organosilicone Silwet 408 to Tetranychus urticae on greenhouse
strawberry as measured by dropping rate (DR) and control efficiency (CE).

Chemical Con.
(mg/L)

Day 1 Day 3 Day 7 Day 14 Day 14 after 2nd Spray

DR (%) CE (%) DR (%) CE (%) DR (%) CE (%) DR (%) CE (%) DR (%) CE (%)

Silwet 408
1000 95.8 ± 1.6a 96.1 ± 1.6a 89.3 ± 2.4a 91.8 ± 2.0a 53.5 ± 4.6ab 69.8 ± 3.1a 28.4 ± 5.8a 54.2 ± 2.0a 94.9 ± 1.5a 97.2 ± 0.9a
500 96.7 ± 0.7a 97.0 ± 0.6a 88.4 ± 2.4a 91.0 ± 1.8a 55.9 ± 4.9ab 72.1 ± 2.9a −24.0 ± 12.4b 20.7 ± 5.2b 79.7 ± 6.0a 89.5 ± 2.3b
333 65.3 ± 5.7b 68.6 ± 5.1b 67.9 ± 4.1ab 75.4 ± 2.8b 31.9 ± 5.3a 56.1 ± 4.7b −32.3 ± 11.3b 15.8 ± 1.5b 71.2 ± 2.3a 84.7 ±0.5b

Cyetpyrafen 100 93.8 ± 1.3a 94.4 ± 1.2a 83.6 ± 3.4b 87.0 ± 2.8a 81.1 ± 3.7b 88.4 ± 1.9c 40.3 ± 5.5a 61.4 ± 3.4a 76.0 ± 3.0a 87.1 ± 1.5b

Water - −10.4 ± 1.8c - −30.1 ± 6.5c - −62.0 ± 14.4c - −56.7 ± 12.0b - −89.1 ± 16.9b -

Means for each treatment in the same column followed by the same lowercase letter are not significantly different
(p < 0.05, one-way ANOVA with Tukey HSD test). Con., concentration.

We applied another spray treatment 14 days after the first spraying on the same
strawberries; the dropping rate was 95%, 80%, 71%, and 76% for 1000, 500, and 333 mg/L
Silwet 408 and 100 mg/L cyetpyrafen, respectively, on day 14 after the second spraying
and treatments differed significantly (F = 10.177, df = 3, 12, p = 0.046). The control efficacy
of 1000 mg/L of Silwet 408 was 97%, significantly higher than for the other treatments
(Table 2). These results indicate that a second spraying application of Silwet 408 increased
the control efficacy of TSSMs compared to a single application.

3.3. Phytotoxicity of Silwet 408 to Crops

Silwet 408 at concentrations of 4000, 2000, and 1000 mg/L led to various degrees
of phytotoxicity symptoms on strawberries, eggplants, kidney beans, and cucumbers
(Table S1, Figure 1). The ANOVA indicated a significant difference in the interactions
between concentration, temperature, and crop as well as between concentration, time, and
crop. There was a tendency for more damage to occur at higher concentrations, but for
strawberries, this effect was weaker at 7 days, and for eggplants, this effect was weaker
after one day (Figure 2). For kidney beans, damage was substantial at 20 ◦C when the lower
concentration was tested, whereas temperature effects were relatively minor for other crops
such as eggplants. Time and crop showed a strong two-way interaction (Table 3), reflecting
the absence of much effect of time on damage to cucumber and eggplants, but stronger
effects on strawberry, where a decline was observed, and kidney bean, where damage
increased with time (Figure 2). These results indicated that different crops reacted in diverse
ways to Silwet 408 and damage to strawberry was particularly low after 7 days regardless
of the concentration applied and temperature tested. On day one, the phytotoxicity index
of strawberries treated using 4000 mg/L Silwet 408 ranged from 36 to 66 at different temper-
atures, which was significantly lower than that of other treated crops (64–71 for eggplant,
46–72 for kidney bean, 67–74 for cucumber) (F = 31.871–401.814, df = 3, 8, p < 0.015). For
treatment of 1000 mg/L Silwet 408, the phytotoxicity index of eggplant was higher (12–17)
than strawberry (5–10), cucumber (0.6–3), and kidney bean (3–9) (Table S1).
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Figure 1. Phytotoxicity symptoms of treated crops and status of treated Tetranychus urticae adults
by water and Silwet 408. (A–D) Phytotoxicity symptoms of strawberry, kidney bean, eggplant, and
cucumber, respectively. (E) Adult of T. urticae treated using water. (F) Adult of T. urticae treated using
Silwet 408 aqueous solution.
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Figure 2. Effect of temperature on phytotoxicity of Silwet 408 to four crops. Plants were treated with
1000, 2000, and 4000 mg/L Silwet 408, respectively. The phytotoxicity of Silwet 408 to these plants
was investigated 1, 3, and 7 d after applications. The descriptive statistics are shown as the mean
value and standard errors of the mean.

Table 3. Effects of temperature, concentration, examination days after the spray application, and crop
on phytotoxicity index of four host plants of Tetranychus urticae.

Source df F p

Concentration (con.) 2 973.941 <0.001
Temperature (tem.) 3 2.410 0.067

Time 2 3.462 0.033
Crop 3 107.873 <0.001

Con. × tem. 6 0.901 0.495
Con. × time 4 1.637 0.165
Con. × crop 6 31.464 <0.001
Tem. × time 6 0.629 0.707
Tem. × crop 9 1.597 0.115
Time × crop 6 20.858 <0.001

Con. × tem. × time 12 0.414 0.958
Con. × tem. × crop 18 2.628 <0.001
Con. × time× crop 12 3.718 <0.001
Tem. × time× crop 18 0.450 0.975

Con. × tem. × time× crop 36 0.385 1.000
Error 288
Total 431

4. Discussion

Organosilicone surfactants are commonly used as synergists of pesticides because
of their favorable wettability, spreadability, adhesivity, and penetrability [22–24]. Our
study investigated the acaricidal activity of an organosilicone surfactant, Silwet 408, and
evaluated its effect on controlling TSSM in greenhouse strawberry plants. In addition, we
tested the phytotoxicity of Silwet 408 to four common host plants of TSSM.

A previous study had shown that the trisiloxane surfactant, Silwet 408, was toxic
to adults of TSSM [32]. In this study, we found that Silwet 408 was also toxic to TSSM
nymphs. However, Cowles, Cowles, Mcdermott, and Ramoutar [32] found that the LC50
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of Silwet 408 was 5.46 mg/L, much lower than the 282 mg/L value obtained for adults in
our study. In the previous study, the toxicity of Silwet 408 was tested using the dipping
method, which led the tested TSSMs being immersed in the surfactant solutions. Our study,
however, involved contact toxicity, which was achieved by using a spray tower. The leaf
dipping method exaggerates the degree of interaction between mites and the compound in
an environment compared with most foliar application methods [32,36].

To further investigate the control efficacy of Silwet 408 against TSSM in the field, a
field trial was conducted with the application of three concentrations of Silwet 408. We
found that 1000 mg/L Silwet 408 was comparable with 100 mg/L cyetpyrafen in its effect
on TSSM control. On day 14 and after second applications, the control efficacy of Silwet
408 was even higher than that of cyetpyrafen treatments. Although a relatively higher
concentration was applied to control TSSM, the organosilicone surfactant physically kills
TSSMs, which makes the development of resistance unlikely.

Although Silwet 408 was effective against TSSM, it had minor or no effect on TSSM
eggs. This organosilicone surfactant may act through respiratory inhibition by permitting
water to infiltrate the trachea or peritremes of pests [47,48]. It is, therefore, to be expected
that TSSM eggs are more tolerant to the effects of Silwet 408. We applied a second spraying
of Silwet 408 to tackle this issue given that hatched eggs would be exposed after the first
spraying. Our field trial demonstrated a 97% control efficacy 14 days after the second
spraying. In addition, the combined use of other acaricides to kill eggs provides a different
option to ensure control. Toxicity can, however, vary among different binary mixtures of
Silwet 408 and other acaricides, and more studies should be conducted to evaluate whether
there is synergism, additivity, or antagonism of Silwet 408 with selected chemicals [49].

Organosilicone surfactants have shown promising potential in TSSM management,
and the other risks associated with these adjuvants should be evaluated. To this end, we
conducted a phytotoxicity test on four common host plants of TSSM. Silwet 408 showed
phytotoxicity to all these host plants. Disease spots appeared on the leaves of strawberry,
cucumber, eggplant, and kidney bean. The phytotoxicity index of four crops indicated
that Silwet 408 exhibited strong phytotoxicity on eggplant and kidney bean, but relatively
low phytotoxicity on strawberry and cucumber. The phytotoxicity index of strawberry
plants declined on day seven after treatment, indicating that the symptoms of phytotoxicity
recovered through time. Previous studies have also suggested that the phytotoxicity of
organosilicone adjuvants varies among plants [25,26,40]. Our study showed that Silwet
408 could be used to control TSSMs on strawberries. However, the potentially toxic effects
of Silwet 408 on other non-target organisms, such as honey bees and natural enemies,
need further investigation. Relative humidity of the environment could also affect the
effectiveness of trisiloxane surfactants, given that Silwet L-77 was particularly effective
against the green peach aphid Myzus persicae under high humidity conditions [32,36].

5. Conclusions

Our results demonstrate the possibility of using Silwet 408 as a novel acaricide for
TSSM management. However, the practicality of using Silwet 408 under field conditions,
particularly where pollinators and predators are present, still needs further investigation.
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mortality of Tetranychus urticae eggs treated with three concentrations of Silwet 408 aqueous solution.
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