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Simple Summary: The coconut mite is one of the most well-known and serious pests of coconut
fruits worldwide, and it has spread to most regions where coconuts are produced; in Thailand, Aceria
guerreronis Keifer (Acari: Eriophyidae) is a quarantine pest. We conducted a geometric morphometric
analysis and molecular identification on coconut mites collected from Thailand to obtain their origin
and history. Our findings will provide a genetic resource for future functional studies on the relative
phylogenetic relationship of coconut mites, which will be performed to understand how coconut mite
species interact with their host plant. These findings will be helpful in designing pest management
strategies against quarantine pests in Thailand.

Abstract: One of the most impactful pests in several coconut production regions across the world
is the coconut mite, Aceria guerreronis Keifer. Scholars can obtain some necessary biogeographic
information about coconut mites from studies that explore the geographic patterns of morphological
variations and molecular properties among coconut mite populations from various locales. To
investigate the geographical origin, ancestral host associations, and colonization history of the mite
in Thailand, we obtained DNA sequence data from two mitochondrial (16s and COI) and one nuclear
region (ITS) from coconut mite samples originating from 25 populations; additionally, we analyzed
the morphological variations in the prodorsal shield and the coxigenital and ventral regions of the
mite idiosoma. From the results of experiments using both identification methods, we identified
the mite as the coconut mite, A. guerreronis (Acari: Eriophyidae). According to the phylogenetic
analysis results of the 25 mite samples, we classified the mites as being closely related to mites found
by the authors of a previous report in India. We are the first to report the results of a geometric
morphometric analysis and molecular identification of A. guerreronis in Thailand, and our findings
support the idea that the mites’ origin and invasion history are not well documented, which makes it
difficult to apply quarantine procedures and search for biological pest control agents.

Keywords: acarology; morphometry; molecular techniques; Cocos nucifera L.

1. Introduction

The invasive coconut mite Aceria guerreronis Keifer (Acari: Eriophyidae) has spread
and become well established in the main coconut (Cocos nucifera L. (Arecaceae))-growing
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regions [1–3]. Keifer described the coconut mite in 1965 [4] based on samples gathered
in the Mexican state of Guerrero. Coconut mite outbreaks typically occur during the dry
season, which causes considerable financial losses for coconut producers [2,5]. Coconut
mite colonies are concealed underneath the bracts of the fruits, where they feed on the
meristematic tissue, which leads to surface scars, deformation, premature fruit drop, and
reduced size, weight, albumen, water content, and yield [1,2,6,7]. Up to 60% of the crop can
be lost when coconut mites are present [8], and a reduction in the copra yield or even the
premature dropping of fruits can also occur [9,10]. Additionally, due to obvious necrosis
brought on by this pest, the price of coconuts intended for the fresh market has been
remarkably lowered [2,5].

Coconut is a palm plant grown in more than 90 countries, especially in tropical areas,
with over 12 million hectares of land dedicated to its growth, and over 80% of its production
is in Asia [11,12]. Thailand is the sixth largest coconut producer in the world [13], and
approximately 80–90% of its coconut products are exported; as a result, the total cultivation
area of coconuts in Thailand is approximately 19,840 hectares overall, and 320,000 tons of
coconuts have been produced (Ministry of Commerce, Nonthaburi, Thailand) [12,14,15]. As
Thailand is located in tropical and subtropical areas, its weather is favorable for coconut
mites [2,13]. According to reports, the eriophyid Colomerus novahebridensis Keifer, which
inhabits the same general habitat as A. guerreronis, i.e., the area between the bracts and the
adjacent fruit surface, has occasionally caused considerable damage to Thailand’s coconut
plantations [13,16]. Coconut mites have damaged coconuts in the Americas and Africa for over
40 years, and for the last 20 years, they have also arrived in Asian countries such as India and
Sri Lanka; as a result, studies exploring coconut mite biology, ecology, taxonomy, management,
and economic importance have been continually published [2,3,17,18]. Recently, coconut
plantations in Thailand have had A. guerreronis outbreaks [19]. Moreover, A. guerreronis are
known as vectors of plant pathogens [20], and they have been reported in the plant quarantine
list of Thailand [19]. However, A. guerreronis has not been reported as a coconut pest in
Thailand in previous research. Therefore, we aimed to identify A. guerreronis populations from
five different major coconut production areas in Thailand via their morphology and molecular
properties, and we also aimed to provide information that officials can use to prevent A.
guerreronis infestations.

2. Materials and Methods
2.1. Coconut Mite Sampling and Identification

A. guerreronis specimens were collected in agricultural plots in 5 localities (Figure 1),
located in the central, eastern, and western regions of Thailand.

Samples from 25 A. guerreronis populations were collected from coconut fruits pro-
duced in the area reported in Figure 1 and Table 1. Mites were collected by directly
examining fruits under a stereomicroscope, preserving them in 99% absolute alcohol to
perform molecular identification, and subsequently mounting them on slides in a modified
Berlese medium [21]. Fifteen perfect-condition female specimens from each population
were chosen for analysis and mounted in the dorsoventral position. The analyzed slide-
mounted specimens were deposited in the mite reference collection of the Department of
Entomology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng
Saen Campus, Nakhon Pathom 73140, Thailand.

Table 1. Sampling localities of A. guerreronis populations. Codes and numbers of measured females.

Continent Country Locality Code Number of Females

Asia Thailand Chachoengsao a 15
Nakhon Pathom b 15
Pathum Thani c 15
Ratchaburi d 15
Samut Sakhon e 15
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Figure 1. Studied area of coconut mite A. guerreronis distribution in Thailand.

The mites were observed under a phase contrast light optical microscope (Leica DM100
LED) (100× objective). The morphology and nomenclature follow Lindquist [22] and the
systematic classification is based on Amrine et al. [23]. The morphological characteristics
essential for the determination of species were compared with the original description
of this species [4]. The phase contrast optical microscope (Leica DM100 LED, Leica Mi-
crosystems Ltd., Heerbrugg, Switzerland) was linked to a digital camera (Leica MC170
HD), which was then linked to a computer to capture the images of the body regions of the
chosen specimens. Images of the prodorsal shield and coxigenital region were obtained
using a 100× magnification objective, and images of the ventral region were obtained
using a 40× magnification objective. To conduct the landmark digitization, the prodorsal
shield, coxigenital, and ventral sections of the A. guerreronis body were each individually
assessed (including the coxigenital region and opisthosoma). These regions were selected
because of their taxonomic importance and because a high number of landmarks could
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be defined. Ten landmarks in the prodorsal shield (Figure 2A), twelve in the coxigenital
(Figure 2B), and nineteen in the ventral section (Figure 3) were selected. The classification of
landmarks was based on [24,25]. Landmark data were produced with a series of programs
called TpsUtil64 ver. 1.81 and Tpsdig264 ver. 2.32 software [26,27] and plotted. Defor-
mation grids were obtained as thin-plate spline warps using MorphoJ software version
1.07a [28,29] and were plotted and used to explain deviations in the shape of each species
from the average landmark configuration (consensus). Using a PCA of the covariance
matrix of the population-averaged Procrustes coordinates, shape differences among the
studied populations were further investigated. PCA was carried out using the MorphoJ
program [28,30].
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Figure 2. Morphological landmarks selected from prodorsal shield and coxigenital region of
A. guerreronis according to [24,25]: (A) prodorsal shield, (1) left base of frontal lobe, (2) anterior
central tip of front lobe, (3) right base of frontal lobe, (4) extremity of left lateral line on shield poste-
rior margin, (5) base of left scapular seta (sc), (6) extremity of left admedian line on shield posterior
margin, (7) extremity of median line on shield posterior margin, (8) extremity of right admedian
line on shield posterior margin, (9) base of right scapular seta (sc), (10) extremity of right lateral line
on shield posterior margin; (B) coxigenital region, (1) base of left coxal seta I (lb), (2) base of right
coxal seta I (lb), (3) base of left coxal seta II (la), (4) base of right coxal seta II (la), (5) base of left coxal
seta III (2a), (6) base of right coxal seta III (2a), (7) left joint of the anterior portion of genital seta (3a)
tubercle with the anterolateral margin of coverflap, (8) projection of anterocentral tip of coverflap,
(9) right joint of the anterior portion of genital seta (3a) tubercle with the anterolateral margin of
coverflap, (10) base of left genital seta (3a), (11) posterocentral tip of epigynium, (12) base of right
genital seta (3a).

2.2. Molecular Identification
2.2.1. Sample Collection

A total of 25 coconut mite samples were collected and stored at −20 ◦C. Thus, all
subsequent extractions were performed with approximately 200 pooled adult mites. These
samples were obtained from one breed distributed across 5 provinces in Thailand (Table 2).
Animal handling and experimentation followed the animal experimental procedures and
guidelines approved by the Ethics Committee of Kasetsart University (ID Code ACKU65-
AGK-039).
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Figure 3. Morphological landmark selected from the ventral region according to [24,25]: ventral
region, (1) base of left coxal seta I (lb), (2) base of right coxal seta I (lb), (3) base of left coxal seta
II (la), (4) base of right coxal seta II (la), (5) base of left coxal seta III (2a), (6) base of right coxal
seta III (2a), (7) left joint of the anterior portion of genital seta (3a) tubercle with the anterolateral
margin of coverflap, (8) right joint of the anterior portion of genital seta (3a) tubercle with the
anterolateral margin of coverflap, (9) base of left genital seta (3a), (10) base of right genital seta (3a),
(11) posterocentral tip of coverflap, (12) base of left lateral seta (c2), (13) base of right lateral seta (c2),
(14) base of left ventral seta I (d), (15) base of right ventral seta I (d), (16) base of left ventral seta II (e),
(17) base of right ventral seta II (e), (18) base of left ventral seta III (f ), (19) base of right ventral seta
III (f ).

Table 2. Coconut mites collected from provinces in Thailand.

Samples Total Coconut Mite Samples

Chachoengsao (C) CT1, CT2, CT3, CT4, CT5, CT6 (6 samples)
Nakhon Pathom (N) NT1, NT2, NT3, NT4, NT5 (5 samples)
Pathum Thani (P) PT1, PT2, PT3, PT4, PT5 (5 samples)
Ratchaburi (R) RT1, RT2, RT3, RT4, RT5, RT6 (6 samples)
Samut Sakhon (S) ST1, ST2, ST3 (3 samples)

2.2.2. Total DNA Isolation

The total DNA was isolated from the coconut mites using the CTAB buffer method.
As a first step, 0.6 mL of the CTAB buffer was added, and the buffer was homogenized
with the sample. Then, the homogenized sample was incubated overnight at 65 ◦C, frozen
for 15 min at 20 ◦C, and incubated for a further 15 min at 65 ◦C. Then, 0.5 mL of chloro-
form/isopropanol (24:1) was added, thoroughly mixed by shaking, and then incubated
for 2 min at 25 ◦C. Samples were centrifuged at 12,000× g for 5 min. The DNA exclusively
remained in the upper aqueous phase, and was transferred to a fresh tube. The DNA in the
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aqueous phase was precipitated by adding 0.5 mL of isopropyl alcohol. Then, the sample
was incubated overnight at 4 ◦C. Afterwards, the supernatant was removed, the DNA
pellet was air-dried, and then dissolved in 20 µL of RNase-free water before being stored at
−20 ◦C. Finally, the DNA concentration and purity were assessed via gel electrophoresis
using a NanoDrop Spectrophotometer 2000 (ThermoFisher Scientific, Waltham, MA, USA).

2.2.3. PCR Amplification and Sequencing

The amount of DNA was multiplied using a PCR with a random hexamer primer. The
PCR was amplified using the tree primer set of rDNA-ITS (F-rDNA-ITS: AGAGGAAG-
TAAAAGTCGTAACAAG and R-rDNA-ITS: ATATGCTTAAATTCAGGGGG [31]), 16S
mtDNA (F-mtDNA-16S: CCGGTCTGAACTCAGATCACG and R-mtDNA-16S: CGCCT-
GTTTAACAAAAACAT) [32], and COI mtDNA (F-mtDNA-COI: GGATCACCTGATATAG-
CATTCCC and R-mtDNA-COI: CCCGGTAAAATT AAAATATAAACTTC [32]). PCR am-
plifications were performed using a Taq® 2X Master Mix (New ENGLAND BioLabs® inc.,
Ipswich, MA, USA) in a final volume of 25 µL containing 12.5 µL of 2X Master Mix, 1 µL of
each primer (10 pmol/µL), 8.5 µL of dH2O, and 2 µL of DNA, which was multiplied with
a random hexamer primer (100 ng/µL). The cycling profile included a 5 min preliminary
denaturation cycle at 95 ◦C, followed by 40 denaturation cycles at 95 ◦C for 30 s, annealing
at 50 ◦C for 30 s, and extension at 72 ◦C for 30 s, with a final extension at 72 ◦C for 5 min.
The PCR products were separated via electrophoresis on a 2% agarose gel and visualized
under ultraviolet light. Sequencing of the PCR product samples was carried out at ATGC
Co., Ltd. (Ward Medic IDT, Bangkok, Thailand).

2.2.4. Data Analysis

DNA sequences were manually checked using BioEdit [33] and then aligned using
the ClustalW algorithm in MEGA 11.0 [34]. All the mtDNA16S sequences were aligned
and trimmed to 400 and 600 bp, corresponding to the nucleotide positions (nps) 1–600 of
the coconut mite (A. guerreronis) reference sequence DQ063558.1(USA), DQ063570.1(SrL),
DQ063575.1(Ind), DQ063553.1(Br), DQ063564.1(Ben), DQ063562.1(Tanc), DQ063561.1(Ven),
and DQ063560.1(Mexc). All the rDNA ITS sequences were aligned and trimmed to 987 bp,
corresponding to the nucleotide positions (nps) 1–987 of the coconut mite (A. guerreronis)
reference sequence DQ060624.1(Br), DQ060623.1(Ind), DQ060618.1(SrL), DQ060599.1(Tanc),
DQ060597.1(Ben), DQ060582.1(Ven), DQ060580.1(USA), and DQ060576.1(Mexc). All the
mtDNA COI sequences and trimmed to 494 bp, corresponding to the nucleotide positions
(nps) 1–494 of the coconut mite (A. guerreronis) reference sequence MT253711.1, MT019905.1,
and JX289538.1. The evolutionary history of the genomic DNA and mtDNA was inferred
by using the maximum likelihood method, the Tamura 3-parameter model [35], and the
Kimura 2-parameter model [36]. Initial trees for the heuristic search were obtained au-
tomatically by applying the Neighbor-Join and BioNJ algorithms to a matrix of pairwise
distances, which were estimated using the Tamura 3-parameter model. The topology
was then selected using the superior log likelihood value. Evolutionary analyses were
conducted in MEGA11 [34].

3. Results
3.1. Coconut Mite Sampling and Identification

Based on comparing the morphological characteristics of the mite from our research
with the original description of this species [4], we concluded that it was Aceria guerreronis.
The symptoms of coconut fruits with A. guerreronis attack have yellowish-to-brownish
triangular scars that start at the margin of the bracts and increase as the fruit grows
(Figure 4).
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Figure 4. Most of the nuts older than 8 weeks showed dried-up attack symptoms caused by A.
guerreronis: (A) eight-week-old nuts without infestation; (B) nut showing spread-out attack symptoms
and premature fruit drops; (C) different life stages of A. guerreronis from the mite-infested nut below
tepals and (D) on nut.

3.2. Landmark-Based Morphometric Methods

Analyses were carried out in order to learn more about the morphological differences
across A. guerreronis populations. The consensus shapes, based on the prodorsal shield of
the 9 landmarks, the coxigenital area of the 12 landmarks, and the ventral regions of the
19 landmarks belonging to 75 A. guerreronis individuals from five localities, are shown in
Figures 5A, 6A and 7A, respectively. Moreover, in Figures 5B–F, 6B–F and 7B–F, thin-plate
spline deformation grids are depicted as variations in the A. guerreronis morphology from
five locations in Thailand.

By applying a multivariate analysis (PCA), we discovered that the A. guerreronis pop-
ulations from the sampled localities morphologically varied. The PCA performed on the
shape coordinates of 19 landmarks in the ventral region of 75 specimens from the five
studied populations resulted in 34 principal components, with the first two components
explaining 51.75% of the total variation (PC1 29.29%, PC2 22.46%). Then, the PCA per-
formed on the shape coordinates of nine landmarks in the prodorsal shields of 75 specimens
from the five studied populations resulted in 16 principal components, with the first two
components explaining 70.89% of the total variation (PC1 60.75%, PC2 10.14%). Moreover,
the PCA performed on the shape coordinates of 12 landmarks in the coxigenital areas
of 75 specimens from the five studied populations resulted in 20 principal components,
with the first two components explaining 47.83% of the total variation (PC1 35.99%, PC2
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11.84%). When we plotted the populations against their respective values for PRIN1 and
PRIN2 (Figures 5–8), we found that several mite populations, namely Ratchaburi (d) and
Samut Sakhon (e), were dispersed along both axes, showing considerable morphometric
diversity within each of them. On the other hand, mites from other populations, including
Chachoengsao (a), Nakhon Pathom (b), and Pathum Thani (c), were concentrated in a very
small area of the graphic, indicating a higher degree of morphometric similarity within
each of those populations.

Insects 2022, 13, x FOR PEER REVIEW 8 of 19 
 

 

3.2. Landmark-Based Morphometric Methods 
Analyses were carried out in order to learn more about the morphological differences 

across A. guerreronis populations. The consensus shapes, based on the prodorsal shield of 
the 9 landmarks, the coxigenital area of the 12 landmarks, and the ventral regions of the 
19 landmarks belonging to 75 A. guerreronis individuals from five localities, are shown in 
Figures 5A, 6A, and 7A, respectively. Moreover, in Figures 5B–F, 6B–F, and 7B–F, thin-
plate spline deformation grids are depicted as variations in the A. guerreronis morphology 
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two components explaining 70.89% of the total variation (PC1 60.75%, PC2 10.14%). More-
over, the PCA performed on the shape coordinates of 12 landmarks in the coxigenital ar-
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3.3. Molecular Identification

Based on the morphological characteristics, we initially identified the coconut mite
strains (Table 2) as belonging to A. guerreronis. We recovered a total of 42 sequences for
three genomic regions, including 10 for the rDNA ITS, 22 for the mtDNA 16S, and 10 for
the mtDNA COI from the 25 A. guerreronis samples that we analyzed. Due to difficulties in
obtaining the PCR amplification, which were likely brought on by the degraded state of
some of the materials, we did not sequence every DNA template for the three DNA areas.

The tree with the highest log likelihood (−1445.42) is shown (Figure 9), and the
percentage of trees in which the associated taxa clustered together is shown next to the
branches. This analysis involved 18 nucleotide sequences. We included the 1st + 2nd + 3rd
+ Noncoding codon positions, which resulted in a total of 833 positions in the final dataset.
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The percentage of trees in which the associated taxa clustered together is shown
next to the branches. We used a discrete Gamma distribution to model the evolutionary
rate differences among the sites (five categories (+G, parameter = 6.5149)). This analysis
involved 30 nucleotide sequences. We included the 1st + 2nd + 3rd + Noncoding codon
positions, which resulted in a total of 636 positions in the final dataset. The tree with the
highest log likelihood (−4493.79) is shown (Figure 10).

The trees with the highest log likelihood (−2254.25) of the 600 bp PCR product and
(−1278.80) of the 400 bp PCR product are shown (Figure 11). The percentage of trees in
which the associated taxa clustered together is shown next to the branches. We automat-
ically obtained an initial tree(s) for the heuristic search by applying the Neighbor-Join
and BioNJ algorithms to a matrix of pairwise distances, which we estimated using the
Tamura 3-parameter model and then selecting the topology with a superior log likelihood
value. This analysis involved 19 nucleotide sequences. We included the 1st + 2nd + 3rd
+ Noncoding codon positions, and totals of 433 positions (600 bp PCR product) and 405
positions (400 bp PCR product) were present in the final dataset.
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The tree with the highest log likelihood (−1353.95) is shown (Figure 12), and the
percentage of trees in which the associated taxa clustered together is shown next to the
branches. We used a discrete Gamma distribution to model evolutionary rate differences
among the sites (five categories (+G, parameter = 1.7145)). The rate variation model allowed
for some of the sites to be evolutionarily invariable ([+I], 8.39% sites). This analysis involved
13 nucleotide sequences. We included the 1st + 2nd + 3rd + Noncoding codon positions,
which resulted in a total of 392 positions in the final dataset.

Insects 2022, 13, x FOR PEER REVIEW 15 of 19 
 

 

 
Figure 12. Evolutionary analysis by maximum likelihood method of mtDNA COI. 

4. Discussion 
We first reported and identified coconut mites in Thailand as A. guerreronis based on 

their morphological and molecular properties, which we obtained with multiple DNA 
sequences. We found that these methods were useful in supporting or augmenting the 
conventional morphology and that they enhanced the characterization and validation of 
genetic barcoding. Morphometric analyses can help researchers resolve the issue that con-
ventional taxonomic approaches are insufficient to delimit morphologically identical 
eriophyoid mites that inhabit various plants. Because of this, many mites have been re-
garded as either different entities or as a single oligophagous species. In all existing stud-
ies, researchers have performed analyses similar to [2,37–42]. It should be emphasized 
that several morphological characteristics may help researchers distinguish between con-
generic species or species that belong to various eriophyoid genera. In addition, morpho-
logical/morphometric and genetic variations in eriophyoid mites such as Colomerus vitis 
(Pagenstecher), the erineum strain (Eriophyidae) from grape vines, can differ according 
to geographical areas, sampling seasons, host plant physiology, and environmental fac-
tors [43,44]. 

After analyzing the morphological variability of the mites using geometric morpho-
metric techniques on three body regions of A. guerreronis populations inhabiting five lo-
calities of Thailand, our general conclusions are as follows: The results of a principal com-
ponent analysis (PCA) show generally comparable patterns for all population combina-
tions from the various geographic regions. They clearly demonstrate that A. guerreronis 
had variations across its geographic distribution range. We anticipate that any of those 
factors could account for the morphological differences across A. guerreronis populations 
that resulted from the mites inhabiting coconut hosts in various geographical locations. In 
some cases, the results of the morphometric investigations show that environmental in-
fluences were not the primary variability determinants. Sometimes, according to the re-
sults of morphometric assessments, environmental factors were not the primary variabil-
ity determinants. Following the findings of Navia et al. [25], some populations in 

Figure 12. Evolutionary analysis by maximum likelihood method of mtDNA COI.

4. Discussion

We first reported and identified coconut mites in Thailand as A. guerreronis based on
their morphological and molecular properties, which we obtained with multiple DNA
sequences. We found that these methods were useful in supporting or augmenting the con-
ventional morphology and that they enhanced the characterization and validation of genetic
barcoding. Morphometric analyses can help researchers resolve the issue that conventional
taxonomic approaches are insufficient to delimit morphologically identical eriophyoid
mites that inhabit various plants. Because of this, many mites have been regarded as either
different entities or as a single oligophagous species. In all existing studies, researchers have
performed analyses similar to [2,37–42]. It should be emphasized that several morphologi-
cal characteristics may help researchers distinguish between congeneric species or species
that belong to various eriophyoid genera. In addition, morphological/morphometric and
genetic variations in eriophyoid mites such as Colomerus vitis (Pagenstecher), the erineum
strain (Eriophyidae) from grape vines, can differ according to geographical areas, sampling
seasons, host plant physiology, and environmental factors [43,44].

After analyzing the morphological variability of the mites using geometric morphome-
tric techniques on three body regions of A. guerreronis populations inhabiting five localities
of Thailand, our general conclusions are as follows: The results of a principal component
analysis (PCA) show generally comparable patterns for all population combinations from
the various geographic regions. They clearly demonstrate that A. guerreronis had variations
across its geographic distribution range. We anticipate that any of those factors could
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account for the morphological differences across A. guerreronis populations that resulted
from the mites inhabiting coconut hosts in various geographical locations. In some cases,
the results of the morphometric investigations show that environmental influences were
not the primary variability determinants. Sometimes, according to the results of morpho-
metric assessments, environmental factors were not the primary variability determinants.
Following the findings of Navia et al. [25], some populations in neighboring Brazil from
climatically comparable regions, as well as those from the northeastern coastal region, did
exhibit very noticeable differences. This clearly implies that the observed physical variation
in such groups is tightly correlated with the genetic background of the species.

The fact that the morphology of Eriophyoidea mites may be related to their habitat
structure is well known [25,37,45]. We found that the A. guerreronis population collected
from different localities in Thailand was morphologically similar to the geographically
varied ventral regions’ closest populations (Chachoengsao, Nakhon Pathom, and Pathum
Thani), but that it was different from Samut Sakhon and Ratchaburi.

The shape of Eriophyoidea mites may be related to their habitat structure. Hence,
Navia et al. [25] investigated morphological variations in the ventral regions, prodorsal
shield, and coxigenital area among A. guerreronis populations in America, Africa, and
Asia. Their findings regarding the coxigenital and ventral areas confirmed the origin
and invasion history of this species, which agreed with those obtained using molecular
markers [46]. Furthermore, their finding that substantial morphological variations existed
between American populations supported earlier claims that A. guerreronis originated in the
United States, whereas the similar morphology between the African and Asian populations
suggested a shared origin and rapid separation of those populations.

Researchers have recently reported that Aceria guerreronis is present in Asia, specifically
in India and Sri Lanka [25,46,47]. The connection between the African and Asian popula-
tions reveals their related genetic characteristics, suggesting that the Asian populations
resulted from an introduction from Africa. In Thailand, A. guerreronis is classified as a
quarantine pest that is prohibited under the Plant Quarantine Act B.E. 2507 (1964) (No. 3)
B.E. 2550 (2007), and there have never been reports of A. guerreronis in Thailand before.
The results of our phylogenetic analyses on the 25 mite samples, which identify the mites
that were closely related to mites from an earlier publication in India, suggest that both
populations had a common origin.

The results of rDNA ITS and mtDNA COI sequences reveal that the A. guerreronis
collected from Chachoengsao and Ratchaburi were closely related to those from an earlier
publication in India [48]. Moreover, the results of the mtDNA 16s sequences not only show
that the A. guerreronis collected from Samut Sakhon were closely related to those from
earlier publications in Brazil, India, Sri Lanka, Tanzania, Benin, Venezuela, America, and
Mexico, but they also show that Nakhon Pathom and Pathum Thani were closely related to
those from an earlier publication on Samut Sakhon [48].

Recently, the Department of Agriculture (DOA) Thailand reported that the coconut
mite, A. guerreronis, has been discovered in 18 provinces of Thailand, including Amnat
Charoen, Chainat, Suphanburi, Kamphaeng Phet, Lop Buri, Nakhon Pathom, Nakhon
Sawan, Nakhon Ratchasima, Pathum Thani, Phetchabun, Phichit, Phitsanulok, Ratchaburi,
Saraburi, Sing Buri, Suphanburi, and Amnat Charoen; additionally, 4.2% of all the trees that
were surveyed had fruit damage. The important coconut-growing regions of Thailand’s
upper north, northeast, and south did not have this species. The results of this study reveal
that A. guerreronis is also present in two provinces, Chachoengsao and Samut Sakhon, in
addition to Nakhon Pathom, Pathum Thani, and Ratchaburi.

Other Asian and Pacific locations where coconut mites have not yet been detected
may be at risk for experiencing coconut mite infestations. This is because the primary way
coconut mites are introduced to remote locations entails the movement of any propagation
tissue from palm trees, as well as the transit or exchange of propagation host plant material,
especially from Thailand, which represents a quarantine risk.
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In conclusion, the coconut mite A. guerreronis is not only a serious threat to coconut
plantations, but it is also a quarantine pest in Thailand. We isolated coconut mites from
infested plants and identified them based on their morphological characteristics and molec-
ular properties, which we obtained using multiple DNA sequences. We are the first to
detail a geometric morphometric analysis and molecular identification of A. guerreronis in
Thailand. To discover efficient biological control measures, researchers must determine
the historical distribution of the mite. Knowing the population spread patterns is also
economically important because the coconut mite still poses a threat to Asian nations
where it has not yet been found. Understanding its spread could help scholars predict the
likelihood of future incursions and could help them direct quarantine measures to stop the
spread of the pest.
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