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Simple Summary: Immature blow fly development information is critical for temporal estimations
in death investigations. While there are phenotypic markers of development, they often do not
provide adequate precision and resolution. In order to ameliorate these issues, we have investigated
microRNAs as putative markers of immature development in the forensically relevant blow fly,
Cochliomyia macellaria. Using RNA sequencing, we were able to identify miRNAs present in immature
developmental stages, as well as identify miRNA which were significantly differentially expressed.
Through these analyses, we found likely markers of development time, some of which were validated
with qPCR methods. As a follow-up, we investigated factors which may influence expression of
miRNA throughout development, such as selected genotypic variation and sex. It was very clear that
genetic and abiotic factors can impact predictions of age, some of which may exhibit interactions. It is
important that future work investigate the markers most robust to genetic effects on development.

Abstract: Blow fly development is important in decomposition ecology, agriculture, and forensics.
Much of the impact of these species is from immature samples, thus knowledge of their development
is important to enhance or ameliorate their effects. One application of this information is the
estimation of immature insect age to provide temporal information for death investigations. While
traditional markers of age such as stage and size are generally accurate, they lack precision in later
developmental stages. We used miRNA sequencing to measure miRNA expression, throughout
development, of the secondary screwworm, Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae)
and identified 217 miRNAs present across the samples. Ten were identified to be significantly
differentially expressed in larval samples and seventeen were found to be significantly differentially
expressed in intrapuparial samples. Twenty-eight miRNAs were identified to be differentially
expressed between sexes. Expression patterns of two miRNAs, miR-92b and bantam, were qPCR-
validated in intrapuparial samples; these and likely food-derived miRNAs appear to be stable markers
of age in C. macellaria. Our results support the use of miRNAs for developmental markers of age and
suggest further investigations across species and under a range of abiotic and biotic conditions.

Keywords: miRNA; Calliphoridae; forensic entomology; development; carrion ecology

1. Introduction

Decomposition is a critically important ecosystem service that results in the recycling
of nutrients from deceased organisms back to the food web. Most research in this realm
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is on decomposition of autotrophic biomass and feces; however, there is a growing ap-
preciation for the need to consider heterotrophic biomass, including deceased animals, in
nutrient recycling [1,2]. Blow flies (Diptera: Calliphoridae) are often considered to be major
players in decomposition ecology [3,4]. These flies are primary colonizers of remains, often
known to appear within minutes of death [5,6]. Since these flies are adapted to surviving
on decaying matter, they have been studied broadly for their importance in forensic en-
tomology [7], cases of myiasis in agriculture [8,9], the spread of microbes [10–12], use in
maggot therapy in medicine [13,14], and even pollination [15–17].

Many of the aforementioned ecological services and applications of blow flies are
linked to knowledge of their immature development. In the case of forensic entomology,
development information for insects is used in conjunction with knowledge of decompo-
sition ecology to estimate a portion of the post-mortem interval (PMI), or the time since
death, associated with insect colonization [18,19]. Traditionally, physical markers, such as
size or weight, of each development stage are used to estimate the minimum PMI. While
these classical approaches are generally considered to be accurate, the duration of later
development stages and lack of easily identifiable intra-stadial markers are limitations
to these practices [20]. For example, the third instar larva is the longest larval stadium,
yet age–size correlations become increasingly inconsistent [20]. Additionally, there is a
high degree of both intra- and inter-species variation in the duration, both absolute and
relative, of the feeding and post-feeding larval stages [21–24]. In some species, such as
Phormia regina (Meigen), this difference is quite dramatic, where the onset of feeding third
instar to intrapuparial development takes up to 13 days, and 8.8 of those days are in a
postfeeding stage [22]. Similarly, metamorphosis in the puparium can last for 175 hours at
25 ◦C, significantly longer than other stages [24]. Therefore, classical approaches to predict
fly age based on external physical appearances are imprecise at later stages of development.
A variety of destructive and non-destructive attempts have been investigated to improve
precision in age estimates with these stadia [25–30]. The introduction of molecular markers
for age and development would therefore greatly increase the accuracy and precision of
the estimation of developmental progress.

Genes (mRNA) important for development can be remarkably conserved across the
animal tree of life [31,32], and the patterns by which these genes are expressed, temporally
and spatially, drive much of the diversity among species [33–36]. Transcriptomic informa-
tion such as this has wide applications across biology, stemming from basic research in
development and aging, to the understanding of complex developmental disorders and
diseases [37,38]. Though early work in the field of transcriptomics was restricted to model
organisms such as D. melanogaster, recent advancements in high-throughput sequencing
and bioinformatics have opened the door for in-depth genetic analysis of taxa for which
prior genomic knowledge was not available.

While there is promise to using mRNA makers for aging immature flies for forensic
entomology [29,39–43], the use of mRNAs as markers is also limited by the fragility of
mRNAs; mRNAs lack chemical and thermal stability of DNA [44,45] and may break down
quickly in the presence of RNases in the environment [46]. An ideal marker of age should
be chemically stable and preserved during collection, insensitive to environmental and
genetic factors, and can provide time information, especially at later developmental stadia
when classical approaches lose precision. One such marker showing promise comprises
microRNAs (miRNAs). These small non-coding RNAs are approximately 22 base pairs
long in a characteristic double-stranded hairpin structure, which can be conserved across
different species [47], making them more robust than mRNAs [48–50]. These small RNAs
function in RNA silencing and post-transcriptional down-regulation of mRNAs, which can
be utilized in the development of the popular RNAi technique [51]. The stability of these
small RNAs enables them to be accurately quantified, even in degraded RNA samples,
suggesting that they can be useful markers of age and development [48,52–54]. Previous
studies have shown that while half of these miRNAs are constitutively expressed, many
of them demonstrate developmentally regulated expression [48]. The fact that miRNA
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expression follows a development-dependent manner makes it possible for miRNA to be a
marker for insect age [55].

While miRNAs are shown to be differentially expressed (DE) in Lucilia sericata (Meigen),
a forensically relevant fly, at different developmental points [55], further research into the
longer development stadia across species of flies is needed—as is research into other foren-
sically relevant fly species. To address this shortcoming, we performed a preliminary study
of small RNA sequencing across the immature development of the secondary screwworm,
Cochliomyia macellaria (Fabricius). This is the first study, to our knowledge, that utilizes
miRNA expression from RNAseq in a developmental context using whole bodies of a
forensically relevant dipteran. We hypothesized that there would be an age-associated
differential expression of known miRNAs, which will further allow us to identify potential
markers of development and group samples by developmental stage. To address how
robust these potential markers of age are across a range of intraspecific genotypes, we
also performed small RNA sequencing of two different developmental time points of
C. macellaria, which were selected for fast or slow development time, as well as for a control
treatment. Subsequently, additional sequencing was performed to compare samples by
sex. We hypothesized that using expression information from wild-type development will
allow us to train a random forest model to predict both stage and development percentages
of samples from development time selection experiments. After assessing miRNA from
RNAseq data, we also worked to validate these markers with qPCR, preliminarily iden-
tifying two miRNAs that appear to perform as expected in novel samples. Additionally,
we identified a number of miRNA from the insects’ vertebrate food source, which can be
useful in differentiating feeding vs. postfeeding stages.

2. Materials and Methods
2.1. Insect Maintenance and Collection

In July of 2015, wild-type adults of Cochliomyia macellaria were collected from carcasses
in College Station, TX, USA (30◦36′05” N 96◦18′52” W) and identified morphologically.
Voucher specimens were deposited in the Texas A&M University Insect Collection under
the voucher numbers 728 (selection lines) and 731 (wild-type). Blow flies were maintained
in a BugDorm plastic cage (BioQuip 1452 Bug Dorm, 11.75” cube) and provided with
fresh deionized water and refined sugar ab libitum. Fresh bovine blood was provided as
a protein source for oogenesis on alternating days. Colonies were maintained at 28 ◦C
for a 14:10 light:dark (L:D) photoperiod. Four replicate cohorts of approximately 200–250
embryos were collected and raised on 100 g of bovine liver in 1.1 L glass canning jar with
approximately 100 g of sand. Jars were placed in a growth chamber (136LLVL Percival,
Percival Scientific Inc.) and reared at 25 ◦C with 50% humidity on a 14:10 L:D cycle.
Growth chambers were calibrated before the initiation of the study and checked daily to
ensure that temperatures were maintained. Samples often referred to as “puparial” or
“pupal” will be referred to as “intrapuparial” in this manuscript, though it should be noted
that pupal and intrapuparial periods of development differ [56]. Samples for wild-type
C. macellaria from the following life history “stages” were flash-frozen and stored at −80 ◦C
until RNA isolation: feeding third instar, early and late postfeeding 3rd instar larvae,
early intrapuparial, early–mid intrapuparial (mid intrapuparial 1), mid–late intrapuparial
(mid intrapuparial 2), and late-stage intrapuparial. Additionally, C. macellaria collected in
Longview, TX in July 2013, selected for 13 generations for fast and slow development, along
with a non-selected control treatment from the same collection event, were collected at the
early postfeeding and mid–late intrapuparial time points to compare the potential range of
expression across genotypes (collection and development times in Table 1). Whole jars of
larvae or intrapuparial samples were sampled, while control jars were used for comparison
of development time. The selection response for these strains can be seen in [57] and [58].
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Table 1. Collection and read counts for each C. macellaria sample. Number of Total Reads and Unique
Reads for each development point for reads up to 50 nt. Hours for development listed, as well as
the percentage of development complete. Numbers for each sample is the sum of the two technical
replicates for all three biological replicates (six libraries for each time-point). Distribution of total read
counts across read length can be found in Figures S1–S27. Wild-type C. macellaria had an average total
development time of 265 h (ranges 234–294 h). Control, and fast- and slow-developing lines collected
from Longview, Texas, USA had average development times of 285 (270–293 h), 255 (225–263 h), and
312 (299–334 h) hours, respectively. When the percentage is 100% for late intrapuparial samples, this
indicates that some adults had emerged when the samples were collected.

Samples
(Three Bio-Reps, Two

Technical Reps)

Hours to
Collection

(Development %
Complete)

Total Reads
(All Lengths)

Unique Reads
(All lengths)

Total Reads
Counts

(20–25 nt)

Unique
Reads

(20–25 nt)

Counts of
Reads for
Predicted
miRNA

Feeding 3rd instar 76–80 h (29.9%) 13,210,010 2,858,189 3,513,336 767,584 220,921
Early postfeeding 102–106 h (40.5%) 14,952,640 3,213,766 3,657,951 873,629 218,698
Late postfeeding 120–124 h (46.9%) 10,088,276 944,756 268,403 100,713 23,902

Early intrapuparial 136–140 h (52.2%) 8,887,998 697,479 237,896 74,940 32,738
Mid-intrapuparial 1 180–184 h (70.0%) 10,959,838 1,467,170 578,729 152,024 36,722
Mid-intrapuparial 2 236–240 h (90.5%) 10,731,968 1,134,567 348,102 93,491 15,441
Late intrapuparial 260–264 h (100.0%) 10,368,840 1,159,427 209,517 89,137 20,930

Control early postfeeding 115–119 h (40.7%) 15,604,997 3,148,131 1,819,746 593,846 147,927
Control-mid-intrapuparial 2 212–216 h (74.4%) 15,912,519 2,551,141 1,150,734 359,491 100,406

Fast early postfeeding 104–108 h (40.9%) 16,167,408 3,530,944 2,426,556 719,518 190,589
Fast mid-intrapuparial 2 192–196 h (75.0%) 14,619,401 3,005,893 2,103,762 585,688 139,318
Slow early postfeeding 127–131 h (40.5%) 10,596,116 1,221,303 449,203 144,935 9,295

Slow mid-intrapuparial 2 233–237 h (74.7%) 14,027,331 1,762,262 1,424,884 217,608 45,952

2.2. Small RNA Isolation and Sequencing

RNA was extracted from individuals using a Qiagen miRNeasy Kit and on-column
DNase treatment following manufacturer protocols (Qiagen Inc., Valencia, CA, USA) and
then was stored with Superase In RNase inhibitor at −80 ◦C. Samples were not identified
as to their sex, as there is not known to be significant differences in the development time
between sexes of C. macellaria [58]. Sample concentration and quality control were assessed
with a Nanodrop Spectrophotometer (Thermo Fisher Scientific Inc., Wilmington, DE, USA).
Samples were sequenced following standard protocols for Illumina TruSeq small RNA
library construction, 2S rRNA depletion (following Blenkiron, Tsai [55]), and sequencing at
the Texas A&M University AgriLife Genomics and Bioinformatics Services facility on rapid
mode of an Illumina HiSeq 2500. Sequencing quality control ensured that each sample
had approximately three million reads, each about 50 bp long [59,60]. For each time-point
and selection treatment, three individual samples were sequenced (biological replicates)
twice each (technical replicate), resulting in 78 libraries, with six libraries for each time-
point/treatment. Short RNA reads were deposited in SRA (selection lines: PRJNA548589,
wild-type: PRJNA548590).

In order to estimate effect of sex, C. macellaria were reared as above and identified as
male or female using a recently optimized mRNA method as in [61]. Five male samples
and six female samples were extracted as above and sequenced by Scripps Research with
five million reads per sample on the Illumina NextSeq 500 platform (San Diego, CA, USA).
Short RNA reads were deposited in SRA (sex identified: PRJNA876743).

2.3. Sequencing Data Analysis

All data parsing through sequence identification were completed using the Brazos
Cluster (Brazos Computational Resource, Academy for Advanced Telecommunications and
Learning Technologies, Texas A&M University). Scripts for this processing can be located at
https://github.com/cehjelmen/cmac-miRNA (accessed on 8 September 2022). Adaptors
were trimmed using cutadapt-1.10 and filtered to include all reads between 20 and 25
nucleotides in length. Unique numbers of reads for each length between 20–25 nucleotides
suggested we adequately sequenced miRNA for each sample (Table 1) A unique sequence
database was generated from sequence reads and all unique sequences were mapped to
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Flybase and all miRNAs in miRBase to identify conserved miRNAs [60,62–66]. Counts of
each miRNA were output to a .csv file to be further parsed for sequence analyses. To be
included for further statistical analyses, each miRNA had to be present with greater than
ten counts. The miRNA expression levels were normalized and differential expression
at different development time points was analyzed using DESeq2 in R [67,68]. Both
fold-change values and adjusted p-values were calculated for normalized data (Table
S1). Significantly differentially expressed (SDE) miRNAs were visualized in heatmap
format. Comparisons of miRNA expression level were also made between the early
postfeeding (EPF) and mid–late intrapuparial time points (MP2) for lines of C. macellaria
selected for development time to determine which miRNA markers are indicators of
genotypic differences in development. R scripts used for analyses can be found at https:
//github.com/cehjelmen/cmac-miRNA (accessed on 8 September 2022).

Normalized expression data for each sample in each development time point were
further investigated with a Principal Component Analysis (PCA) using the prcomp() com-
mand in R, and visualized with the ggplot2 and ggbiplot packages [69,70]. Normalized
expression data for selection lines were then plotted on the PCA for wild-type develop-
ment for comparison across genotypes. Random forest machine learning model analyses
were performed on normalized expression data using the randomForest() function in the
randomForest package in R in order to identify which miRNAs contribute most to the
correct identification of development time points in wild-type C. macellaria [68,71]. Mod-
els were built with 5000 trees using both percentage data and development time point
data. Additionally, normalized expression data for wild-type C. macellaria were used to
train the random forest model to predict development time points and the percentage of
development for flies selected for development time.

2.4. Evaluation and Validation

Sixteen miRNAs were selected for validation through qPCR based on previous knowl-
edge on development and information on SDE miRNAs in development of C. macellaria
(invertebrate: miR-1, miR-8, miR-10, miR-31a, miR-92b, miR-184, miR-276b, miR-277, miR-305,
miR-317, miR-957, miR-bantam, and miR-let7; vertebrate: miR-10a and miR-22). Intrapuparial
samples were selected for validation with qPCR, as intrapuparial development accounts
for most of the development time and cannot be morphologically separated as clearly as
larval development. Total RNA was extracted using an miRNeasy Kit (Qiagen, Hilden,
Germany) from three individual pupae for three independent biological replicates of four
distinct pupal time points each. Intrapuparial samples were used for qPCR as intrapuparial
development accounts for the largest portion of development. RNA quality and quantity
were assessed using a DeNovix spectrophotometer DS-11. Then, 1µg of total RNA was
treated with DNase I Amplification grade (Invitrogen, Thermo Fisher Scientific, Carls-
bad, CA, USA) and was reverse transcribed using the miScript RT II kit (Qiagen, Hilden,
Germany) in HiFlex buffer. Similarly, a negative RT reaction was set up to test for DNA
contamination. Quantitative PCR using the miScript SYBR green kit were conducted on a
Bio-RAd CFX96™ Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA,
USA). In total, 20 µL reactions in duplicates were set up with 2 ng of cDNA and 0.4 µM
small RNA specific (forward) primer and 2 µL of miScript universal (reverse) primer. Reac-
tion conditions consisted of an initial activation step of 95 ◦C for 15 min, and 40 cycles of
denaturation of 94 ◦C for 15 s, annealing at 55 ◦C for 30 s, and extension at 70 ◦C for 30 s.
Geometric means of 2S rRNA and U6-snRNA expression were used to normalize the target
miRNA expression levels [72]. Fold-change values were calculated using the 2(−∆∆Ct)
method [73].

3. Results
3.1. Sequencing Output and Identification of miRNA

Small RNA sequencing resulted in approximately 9,000,000–16,000,000 reads per
C. macellaria sample (Figures S1–S13), of which approximately 700,000–3,500,000 were
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unique sequences (Table 1). While we focused on reads between 20–25 nucleotides, there
was consistently a large peak of reads present in the distribution from 26–31 nucleotides,
likely indicating piwi-interacting RNAs (piRNAs). The proportion of reads from 26–31
nucleotides increased throughout development, both in terms of the entire sample and its
relation to miRNA reads (Figure S14). After filtering reads to lengths of 20–25 nucleotides
and mapping to miRbase and Flybase miRNA databases (Distribution of read counts by
read length found in Figures S15–S27), we were able to identify 217 different miRNAs in
our samples of C. macellaria (Table S1). Raw counts of each miRNA for each sample can be
found in Table S2. When compared to other miRNA studies in calliphorid and muscid flies,
115 mapped miRNAs were found to be unique to our study (Figure S28, Table S1).

3.2. Summary of Results for All of Immature Development

A principal component analysis (PCA) with normalized expression data for all miR-
NAs identified in this study could differentiate the development time points in wild-type
flies reliably, apart from feeding third instar from early postfeeding third instar (39.2% of
variation between PC1 and PC2, Figure 1).
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Figure 1. Identification and impact of vertebrate miRNA on the prediction of the development of
immature C. macellaria. (A) PCA of normalized expression information for all identified miRNAs
across development of C. macellaria. (B) PCA of normalized expression information for all identified
miRNA across development of C. macellaria, excluding those which were matched to vertebrates
from the database. Removing these vertebrate sequences had a modest effect on the percent variance
explained, but was able to separate the feeding 3rd instar and early postfeeding 3rd instar larval
samples. (C) Boxplot with jitterplot of miRNA levels for miRNA identified to be from Bos taurus, the
provided food source, across immature developmental stages. Expression level drops to nothing after
the early postfeeding 3rd instar stage.
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A random forest analysis using all normalized miRNA expression information from
wild-type C. macellaria predicted the development time point of samples with an out-of-box
error rate of 19.05% (Table S3). These errors in placement were always with adjoining time
points (e.g., early postfeeding classified as feeding third instar, late postfeeding classified as
early postfeeding, etc.) (Table S3). When percentage development data were used to train
the model, 86.62% of variation was explained.

3.3. Identification of Vertebrate miRNA

Out of the 217 miRNAs identified, 58 were identified from vertebrates and may repre-
sent a signal from the larval food source (bovine liver) (Figure 1 and Figure S29). Removal
of miRNA sequences identified as vertebrate from the PCA of wild-type C. macellaria had a
modest reduction in the percentage variation explained when compared to using all miRNA
data, and could separate feeding third instar and early postfeeding third instar (38.8%,
Figure 1A,B). These results are not surprising given that the immatures were provided
with liver from Bos taurus as a food source. If all miRNA sequences matched to Bos taurus
were plotted across development time, there is a sharp drop to zero expression with late
postfeeding third instar larvae, suggesting that the identification of B. taurus miRNA may
be helpful in distinguishing early and late postfeeding third instar larvae (Figure 1).

3.4. Analysis of Larval and Intrapuparial Samples with PCA and DESeq2 Methods

As immature flies are easily visually differentiated as either larval or intrapuparial
samples, further analyses were run separately on larval stages and intrapuparial stages.
DESeq2 analysis found ten SDE miRNAs among wild-type larval samples and 17 among
wild-type intrapuparial samples (adjusted p < 0.05, log2fold change >−1, Tables S4 and
S5, Figure 2A,B, Figures S32 and S33. A PCA of these SDE miRNA successfully separated
samples by development point and could explain 87.5% and 79.3% of the variation within
the first two components for larval and intrapuparial samples, respectively (Figure 3A,B).
In samples from C. macellaria selected for development time, DESeq2 analysis found 39 SDE
miRNAs among treatments in early postfeeding third instar larvae, four of which were also
identified to be SDE in wild-type larval samples (Figure 2C and Figure S7, Table S6).

In mid-intrapuparial samples from development time selected flies, 54 miRNAs were
identified as SDE among treatments, 13 of which were identified as SDE in wild-type
intrapuparial samples (Figure 2D and Figure S35, Table S7). Among the SDE miRNAs in
development time selected flies, 18 were identified in both sampled time points (Table S1).
When normalized expression information from early postfeeding third instar development
time selected samples was projected onto the PCA from wild-type larval development,
they clustered near the wild-type early postfeeding third instar samples (Figure 3A). In the
case of the development time selected for mid-intrapuparial samples projected onto the
wild-type intrapuparial PCA, fast and control samples clustered near mid-intrapuparial 1,
which have similar development percentages (74.4–75.0% in selected vs. 70.0% in wild-type
samples) (Figure 3B). Slow mid-intrapuparial samples clustered closely with the wild-type
mid-intrapuparial 2 samples (74.7% in slow vs. 90.5% in wild-type) (Figure 3B).
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Figure 2. Heatmaps of significantly differentially expressed (SDE) miRNAs from DESeq2 Analyses.
(A) SDE miRNA across larval development in wild-type C. macellaria. Names, fold-change, and
p-values can be found in Table S4. Heatmap with miRNA labels can be found in Figure S30. (B) SDE
miRNA across intrapuparial development in wild-type C. macellaria. Names, fold-change, and p-
values can be found in Table S5. Heatmap with miRNA labels can be found in Figure S31. (C) SDE
miRNA across development time selected early postfeeding larval samples of C. macellaria. Names,
fold-change, and p-values can be found in Table S6. Heatmap with miRNA labels can be found in
Figure S32 (D) SDE miRNA across developmental time in terms of mid-intrapuparial samples of C.
macellaria. Names, fold-change, and p-values can be found in Table S6. Heatmap with miRNA labels
can be found in Figure S33. Darker colors indicate higher levels of expression.
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Figure 3. PCA of significantly differentially expressed (SDE) miRNA across development of C. macel-
laria. PCA of normalized expression of miRNA identified to be SDE in wild-type samples (circles)
(A) PCA of larval development time points could explain 87.5% of the variance between the first
two principal components. (B) PCA of intrapuparial development time points could explain 79.3%
of the variance between the first two principal components. Samples selected for fast development
time (square), slow development time (diamond), and their controls (triangle) were projected onto
the PCA from the wild-type samples to determine clustering position of new samples from the PCA
model built from SDE miRNA from wild-type samples.
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3.5. Random Forest Models and Predication of Development Time

Random forest regression models were trained for both larval and intrapuparial
samples using normalized expression information from wild-type samples for miRNA
identified to be SDE in wild-type samples. The larval model could explain 68.06% of the
variation (mean of squared residuals = 0.0016), while the intrapuparial model could explain
84.59% of the variation (mean of squared residuals = 0.0056). When used to predict the
development proportion of development-time-selected samples, the larval random forest
model predicted the development proportion with high accuracy (within 1.2% of correct
development proportion, Figure 4A, Table S8). In the case of intrapuparial development-
time-selected samples, there was less accuracy (within 16.4% of correct development
proportion). The intrapuparial random forest model under-predicted the proportion of
development for fast and control samples by about 10% and over-predicted the proportion
of development in slow-development-selected samples by about 14% (Figure 4A, Table
S8). The predictions of development proportion for intrapuparial samples mirrors the
clustering pattern of the PCA projections, as slow-developing-samples clustered closely
with wild-type samples later in intrapuparial development (Figure 3B).
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Figure 4. Prediction of the proportion of development completed of development-time-selected sam-
ples using a random forest model with all data (A) and with two validated miRNA (B). (A) Random
forest models were trained with normalized expression information for miRNA determined to be
significantly differentially expressed in larval and intrapuparial development in wild-type C. ma-
cellaria. Normalized expression information from larval (bottom) and intrapuparial (top) samples
selected for differential development times and their controls were inputted into the model to predict
the proportion of development completed. The actual proportion of development completed for each
sample is on the left, while the proportion of development predicted to be complete from the random
forest model is on the right. Larval samples were predicted with high accuracy. The proportion
of development for fast and control intrapuparial samples was slightly underestimated, while the
proportion of development for slow-developing samples was overestimated. Actual proportions
of development and predictions can be found in Table S8. (B) Random forest models were trained
on normalized expression of miR-92b and bantam from wild-type samples. This model was used to
predict the development time of development-time-selected samples (Fast, Slow, and Control). This
model tended to under-predict the development time of the development-time-selected samples by
about 10–15 points. While there was an under-prediction, there did not seem to be a large effect of
the selection regime, suggesting these markers are more robust to the genotypic variation in these
selected lines. These results suggest that fast-developing lines were more accurately predicted.
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3.6. qPCR Validiation

Validation with qPCR found two miRNA that exhibited significantly different levels
of expression among intrapuparial development time points, miR-92b (Figure 5A,B) and
bantam (Figure 5C,D). Other miRNAs, such as miR-957, had high support for use according
to random forest and DESeq2 analyses, but were not validated with qPCR (Figure 5E,F).
When investigating miR-92b, both qPCR and transcriptomics found higher expression in
earlier intrapuparial development, which was even higher in larval development (Figure 5).
As for bantam, both miRNA transcriptome evidence and validation through qPCR found
higher expression in the late intrapuparial time point, with low expression in earlier
development (Figure 5). However, in the case of miR-957, there was higher expression with
subsequent development stages, suggesting that greater sampling is required to clarify the
points in development defining the period of time where expression increases. The two
miRNAs validated in intrapuparial samples (miR-92b and bantam) were used in a random
forest regression model to predict the development proportion of intrapuparial samples as
above. Using this model, 52.36% of the variation was explained (mean of squared residuals
= 0.0172). When using the random forest regression model trained with miRNA identified
as potential markers with qPCR validation, samples were predicted to have completed a
lower proportion of development than had occurred (Fast-, Slow-, and Control-developed
samples, Figure 4B). While there was an under-prediction in development proportion, there
did not seem to be an effect of selection regime, suggesting these markers are more robust
to the genotypic variation in these selected lines, suggesting that more markers may be
needed for a robust prediction of age with this random forest model (Figure 4B).

3.7. Analyses of Sex Biased Expression of miRNA

Subsequent sequencing was performed on early intrapuparial samples in which sex
was identified with mRNA methods [61]. These new miRNA reads were mapped to the
217 miRNAs identified in the initial portion of this study (Table S10). When comparing
between sexes in early intrapuparial samples reared at 25 ◦C, we found that 28 miRNAs
were SDE by sex (Tables S1 and S11). Of these 28 SDE miRNAs, only three overlapped
with those identified as SDEs in wild-type intrapuparial samples (miR-305, mir-375, and
miR-957), two were identified to be SDE in wild-type larval samples (miR-305 and miR-317),
and only one was shared between all three (miR-305) (Table S1, Figures S34 and S35). While
five of these SDE miRNAs were ones selected for validation with qPCR, there were no
differences in expression by sex for either bantam or miR-92b.
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Figure 5. Comparison of expression qPCR and RNAseq. Expression of qPCR (fold-change expression,
left) and RNAseq methods (normalized expression) (right) Letters correspond to results of Tukey’s
HSD posthoc test. Different letters between groups within plots indicate significant differences
(p < 0.05). Shared letters indicate no significant difference between groups. (A) miR-92b qPCR and
(B) miR-92b RNAseq methods. Expression in qPCR samples was found to be significantly higher in
mid-intrapuparial 1 than in late intrapuparial samples according to Tukey’s HSD (p < 0.05). (C) bantam
qPCR and (D) bantam RNAseq methods. Expression in qPCR samples was found to be significantly
higher in the late intrapuparial development point than the early intrapuparial samples according
to Tukey’s HSD (p < 0.05). (E) miR-957 qPCR and (F) miR-957 RNAseq methods. Expression was
not found to differ significantly between development time points in qPCR samples for miR-957,
according to Tukey’s HSD (p < 0.05).
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4. Discussion

To determine if there was age-dependent miRNA expression in the blow-fly Cochliomyia
macellaria, we sequenced, identified, and analyzed the expression of known miRNAs across
seven developmental time points in immature development (three third instars, four in-
trapuparial) of wild-type colony-raised flies. While miRNA have been identified in other
flies of similar forensic, medical, and veterinary relevance [55,74,75], this is the first study
outside of Drosophila, to our knowledge, which investigated patterns of miRNA expression
using RNAseq in the whole insect in a developmental context. Our methods allowed us to
identify 217 distinct, known animal miRNA sequences in C. macellaria (Table S1). Of these
217 miRNAs, 58 were mapped to known vertebrate miRNAs and had higher prevalence
in feeding third instar and early postfeeding larvae, suggesting they are a signal from the
larval food source (Figure S3). Although many of these sequences have been found in
related species of flies, our sequencing depth and sampling across development allowed
us to identify 115 miRNAs not identified in the aforementioned studies on medically and
forensically relevant flies (Figure S28). As this work is a preliminary study on the expression
of miRNA in the whole body of flies across developmental time, we only investigated and
identified previously known miRNA sequences from FlyBase and miRbase. There are likely
novel miRNAs to be discovered from our sequencing files, which could be identified in a
future study.

In wild-type samples, most development points clustered distinctly in a PCA using
normalized expression values for all identified miRNA, apart from some overlap in feeding
third instar and early postfeeding third instar development points (Figure 3). This overlap
could be because they are both within the third instar but could also be due to residual
miRNAs from the vertebrate food source rather than those endogenously produced by the
maggots. When plotting normalized counts of the sequences mapped to Bos taurus miRNA
(miR-191, miR-21, miR-22, miR-2904, miR-30a), we found a high detection in feeding third
instar larvae, as well as early postfeeding third instars, with a sharp drop to zero detection
in the late postfeeding and intrapuparial samples (Figure 1C and Figure S29). Interestingly,
when the 58 vertebrate miRNAs are excluded, we can clearly separate the feeding third
instar and early postfeeding larvae in our PCA analyses with only a slight difference in
the variance explained by the first two principal components (Figure S4). This information
may help differentiate feeding and postfeeding third instar larvae in forensic entomology,
which has been an acknowledged challenge in the field [20,22].

The presence of vertebrate miRNA may also be useful in identifying if evidentiary
samples were feeding as expected, since some cases have situations in which the larval
feeding substrate is ambiguous without molecular identification (e.g., a body found in a
dumpster that contains discarded food of animal origin). While cytochrome b sequencing
has been used to confirm the source of larval meals in the past [76–78], miRNAs would
simultaneously provide information regarding larval gut content and information that
could more precisely identify larval age. However, due to similarities in miRNA between
vertebrates, this information may not be able to differentiate the source of the gut con-
tent as reliably as mitochondrial DNA. Nevertheless, vertebrate miRNAs in larvae may
simultaneously help identify if the insects were feeding as expected and aid in visual
cues to help separate older postfeeding third instars from younger ones. Additionally, the
increasing presence of piRNA relative to miRNA in samples may provide a useful tool for
differentiating immature states but will require more investigation (Figure S14).

We found that miRNA expression in whole individuals differs significantly across de-
velopment time for C. macellaria and can indicate the proportion of development completed
according to three distinct analytical approaches: PCA, DESeq2, and random forest. The
ability to predict development proportion is not surprising, given that miRNA expression is
known to play a role in mRNA regulation [79], which is known to have a relationship with
development in forensically relevant flies [39,40,42]. The SDE miRNAs identified in our
study have been shown to be involved in developmental pathways in Cochliomyia hominivo-
rax (Coquerel), Lucilia sericata (Meigen), and Stomoxys calcitrans (Linneaus) (Table S1). For
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example, the SDE miRNAs from our study were found to be involved in the regulation of
pathways involved in metabolism [80–82], neural development and maintenance [83–85],
as well as circadian pathways [86]. The ability of miRNA expression to differentiate devel-
opmental time points and their structural stability compared to mRNA, make them ideal
candidates for markers of development time and justify further studies within C. macellaria
and across other species of forensic, medical, and veterinary importance.

Previous work on this fly has found developmental differences between different
populations and between years of collection [58,87]. Therefore, to address the consistency
of the observed expression patterns across a range of genotypes and populations, we per-
formed small RNAseq on two development time points in three populations of C. macellaria,
two selected for fast or slow development and their unselected control. When comparing
among selection lines, we found the fast and control lines have very similar expression
patterns, but differ significantly from the slow development lines, suggesting that selec-
tion has led to divergence in miRNA expression (Figure 2C,D). The DE miRNAs between
these developmentally selected samples have been shown to be involved in development,
immunity, nervous system, and metabolic pathways (Table S1). For example, in the fast
and control lines, there was a higher expression of miR-305 than the slow development
lines in both larval and intrapuparial samples (Tables S6 and S7), a miRNA known to be
involved with the insulin-signaling and Notch pathways in Drosophila, as well as adaptation
to nutrient deprivation [88,89]. These results suggest that these selection lines have not
only diverged significantly in their phenotypes [57,58], but also in their genotypes and
associated gene expression patterns, raising the possibility that some miRNAs identified
here represent the difference between chronological and physiological/biological age in
intrapuparial samples [90–93].

We found that models based on expression information from SDE miRNA in wild-type
samples could estimate the proportion of development in samples selected for develop-
ment time with reasonable accuracy (Figures 2 and 3), supporting the hypothesis that
variation in miRNA expression may be a robust predictor of the proportion of development
across genotypes in C. macellaria. In both PCA and random forest models, the proportion
of development completed for development-time-selected samples was accurately pre-
dicted in larval samples (Figures 2A and 3A, Table S8). Within intrapuparial samples, the
proportion of development was slightly underestimated in fast-developing and control
development samples, whereas the proportion of development in slow samples was over-
estimated (Figures 2B and 3A, Table S8). As there is a difference between chronological
age and physiological/biological age, it is possible that selection for development time in
C. macellaria acted on genes related to temporal age rather than physiological age [92–94].
If this is the case, slow-developing flies, while developing for the same proportion of
development as fast and control flies, have spent more time in development, which, in turn,
could lead to overestimation of the proportion of development. This issue of temporal
vs. physiological age may be exacerbated in the intrapuparial stage, as it is the longest
stadium of development. Overestimation and underestimation of development proportion
in genotypically variable samples, as well as their clustering with either an early–mid-
intrapuparial or late intrapuparial development, suggest that we may be able to at least
partition the longest stadium into three portions: early, mid, and late. The differentiation of
slow-developing flies, however, does suggest an upper limit to variation in estimates due
to genetic differences among individuals.

Two miRNAs validated with qPCR were found to have significant differences in ex-
pression between developmental time points (miR-92b and bantam, Figure 5A–D). Based
on previous work in Drosophila, these two miRNAs likely have important roles in intra-
puparial development in C. macellaria. In Drosophila, miR-92b is involved in regulating
myocyte enhancer factor-2 (Mef2) levels during muscle development [95]; while bantam has
been known to be involved in growth, cell proliferation and proapoptotic genes [96,97].
While the patterns of expression hold for the SDE miRNA validated with qPCR, the scales
of response seen in the qPCR analyses and small RNAseq data are not equivalent. The
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reduced scale of response seen in qPCR analyses suggests that these differences in miRNA
expression across time may be subtle and difficult to validate with a low sample size. For
example, miR-957 was identified to be a probable marker of development proportion from
both preliminary DESeq2 and random forest analyses, yet qPCR could not validate the
expression pattern (Figure 5E,F). Selection of miRNAs for validation was also performed
before the identification of the miRNAs, which were SDEs among selection genotypes and
sexes, leading to the selection of several miRNAs which are now known to vary based on
genotype or sex. For example, miR-957 was found to be DE between sexes in follow-up
sequencing, suggesting variation in expression due to differences in sexual development
(Table S1). Increasing the sample number in qPCR, as well as the careful selection of the
future miRNA of interest, will likely increase number of putative markers for the proportion
of development in C. macellaria. While we have identified and preliminarily validated two
potential miRNA markers of development in C. macellaria, future work should validate
the expression of these markers in a variety of environmental conditions to ensure their
reproducibility and robustness.

Further work must be done to further validate this miRNA dataset to identify useful
markers for estimating the proportion of development in C. macellaria. For example,
identified markers should be used to estimate the proportion of development in known
samples compared to the standard thermal summation modeling. This further validation
would provide information on if these miRNA markers reduce error in estimation when
compared to traditional methods. As molecular methods are more expensive and require
more energy, it is necessary for future work to address this validation. In addition to
further validation with qPCR, other known sources of variation in development should
be investigated to ensure the markers identified are robust to environmental changes and
genotypic differences. One such factor which results in variation in development time
is sex. Phenotypically, there is little difference in development progress between males
and females in C. macellaria [58], so we did not separate sexes in the initial sequencing for
this manuscript. However, a lack of phenotypic differentiation does not guarantee a lack
of molecular (e.g., miRNA) differentiation between the sexes. Therefore, our subsequent
sequencing efforts used recently optimized mRNA expression identification of sex [61]
to determine sex-specific differences in miRNA expression at one developmental time-
point. While 28 miRNAs were identified as DE by sex at the early intrapuparial stage,
there was very little overlap (three miRNA) of these identified miRNAs with those found
to be DE in wild-type intrapuparial development, none of which represented the two
qPCR-validated ones (Figures S34–35, and S38). While there were not many shared DE
miRNAs by sex and by wild-type development, there were more shared between those
by sex and by development-time-selected intrapuparial samples (13 miRNA) (Table S1,
Figures S36 and S38). When comparing the intersection of development-time-selected
intrapuparial samples, wild-type development of intrapuparial samples, and sex, only
two miRNAs overlap (Table S1, Figures S37 and S38). These results suggest that future
work should incorporate analyses of miRNA expression diagnostic of sex across more
developmental time-points [61,98]. As we reared our samples at a consistent temperature,
humidity, and light:dark cycle, it is also unknown how abiotic factors such as light or
temperature, which are known to affect the development of flies, impact patterns of miRNA
expression across development time. Further, it is unknown how consistent these patterns
of miRNA expression are across species within the family Calliphoridae and within other
insect families of forensic, medical, and veterinary importance.

5. Conclusions

In conclusion, we have furthered the understanding of C. macellaria development
with respect to miRNA expression with the goal of use in forensic sciences. We identified
additional miRNAs not previously identified in the species, profiled their expression across
larval and intrapuparial development in wild-type and development-time-selected flies,
demonstrated the ability to predict ages of development-time-selected samples to within
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16.4% of total development, and have validated some of these with qPCR. In addition, we
identified the potential to define larval diet by the vertebrate miRNAs found in their guts
and showed that this signal can be used to molecularly diagnose feeding versus postfeeding
third instar larvae. In doing so, we provide a basis for additional molecular and genomic
studies of blow fly development and the ecological, medical, and applied problems with
which they are associated.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/insects13100948/s1. Table S1: Compiled miRNA table: Comparing
counts of studies, sequences, differential expression information; Table S2: Counts of all miRNA Data
(wild-type and selection); Table S3: Random Forest results using all-data; Table S4: DESeq2 Results
for Wild-type Larval Samples; Table S5: DESeq2 Results for Wild-Type Intrapuparial Samples; Table
S6: DESeq2 Results for Selection EPF Samples; Table S7: DESeq2 results for Selection MP2 Samples;
Table S8: Random Forest Prediction Table; Table S9: Table of qPCR information; Table S10: Counts of
miRNA data for early-intrapuparial samples by sex; Table S11: DESeq2 Results for early-intrapuparial
samples by sex; Figure S1: Distribution of number of reads by read length for Feeding 3rd instar
samples; Figure S2: Distribution of number of reads by read length for Early postfeeding samples;
Figure S3: Distribution of number of reads by read length for Late postfeeding samples; Figure S4:
Distribution of number of reads by read length for Early intrapuparial samples; Figure S5: Distribution
of number of reads by read length for Mid intrapuparial 1 samples; Figure S6: Distribution of number
of reads by read length for Mid intrapuparial 2 samples; Figure S7: Distribution of number of reads
by read length for Late intrapuparial samples; Figure S8: Distribution of number of reads by read
length for Control early postfeeding samples; Figure S9: Distribution of number of reads by read
length for Control mid-intrapuparial 2 samples; Figure S10: Distribution of number of reads by read
length for Fast Early postfeeding samples; Figure S11: Distribution of number of reads by read length
for Fast mid intrapuparial 2 samples; Figure S12: Distribution of number of reads by read length
for Slow early postfeeding samples; Figure S13: Distribution of number of reads by read length
for Slow mid intrapuparial 2 samples; Figure S14: Proportions of RNA which are likely miRNA
versus piRNA; Figure S15: Distribution of number of reads by read length (20–25 nt) for Feeding
3rd instar samples; Figure S16: Distribution of number of reads by read length (20–25 nt) for Early
postfeeding samples; Figure S17: Distribution of number of reads by read length (20–25 nt) for Late
postfeeding samples; Figure S18: Distribution of number of reads by read length (20–25 nt) for Early
intrapuparial samples; Figure S19: Distribution of number of reads by read length (20–25 nt) for Mid
intrapuparial 1 samples; Figure S20: Distribution of number of reads by read length (20–25 nt) for
Mid intrapuparial 2 samples; Figure S21: Distribution of number of reads by read length (20–25 nt)
for Late intrapuparial samples; Figure S22: Distribution of number of reads by read length (20–25 nt)
for Control early postfeeding samples; Figure S23: Distribution of number of reads by read length
(20–25 nt) for Control mid intrapuparial 2 samples; Figure S24: Distribution of number of reads by
read length (20–25 nt) for Fast early postfeeding samples; Figure S25: Distribution of number of reads
by read length (20–25 nt) for Fast mid intrapuparial 2 samples; Figure S26: Distribution of number
of reads by read length (20–25 nt) for Slow early postfeeding samples; Figure S27: Distribution of
number of reads by read length (20–25 nt) for Slow mid intrapuparial 2 samples; Figure S28: Venn
diagram comparing number of miRNAs identified between calliphorid and muscid flies.; Figure S29:
Vertebrate miRNA Expression levels show decrease in expression after early postfeeding larval stages.;
Figure S30: Heatmap of significantly differentially expressed miRNA across larval development in
wild-type samples.; Figure S31: Heatmap of significantly differentially expressed miRNA across
intrapuparial development in wild-type samples.; Figure S32: Heatmap of significantly differentially
expressed miRNA across development time selected early postfeeding 3rd instar larval samples.;
Figure S33: Heatmap of significantly differentially expressed miRNA across development time
selected mid intrapuparial samples.; Figure S34: Heatmap of significantly differentially expressed
miRNA at early intrapuparial stage between male and female samples. ; Figure S35: Venn Diagram
of shared differentially expressed miRNA determined by DESeq2. Larval and Intrapuparial refer to
differentially expressed miRNA in wild-type development samples; Figure S36: Venn diagram of
shared differentially expressed miRNA determined by DESeq2 Development-time-selected samples
EPF (Early postfeeding) and MP2 (Mid-intrapuparial 2) and Sex; Figure S37: Venn Diagram of shared
differentially expressed miRNA in intrapuparial samples: Wild-type intrapuparial, Development-
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time-selected mid-intrapuparial 2 samples, and sex; Figure S38: Upset plot comparing differentially
expressed miRNA between all analyzed groups (Wild-type development, selection regime, and sex).
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