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Field Translocation of Mountain Pine Beetles Suggests Phoretic
Mite Communities Are Locally Adapted, and Mite Populations
Respond Variably to Climate Warming
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Simple Summary: Climate warming has significant effects on forest insect populations, particularly
bark beetles, which cause millions of hectares of forest tree damage. Bark beetles live alongside a
diverse host of other organisms which affect the success of beetle attacks on trees and are also affected
by climate changes. Here, we explore climate effects on symbiotic mite communities associated with
the mountain pine beetle (Dendroctonus ponderosae). We show that warming causes significant shifts
in the abundance of mites. These effects were dependent on source population, suggesting mite
populations are adapted to their local climates. Understanding beetle–mite patterns is important
because mites can directly affect beetle reproduction by feeding on eggs, or indirectly affect beetle
health by introducing fungi. Our results provide foundational information for understanding how
climate change will affect beetle–mite associations; and serve to help determine how these shifting
associations will affect the success of bark beetles in forest ecosystems.

Abstract: Temperature is a key determining factor in the population dynamics of forest insects and
their associated biota. Bark beetles, often considered key agents of change in forest ecosystems, are
particularly affected by warming in their environment. Beetles associate with various phoretic mite
species that have direct/indirect effects on beetle fitness and population dynamics, although there is
limited knowledge of how temperature affects these communities. Here, we use a field reciprocal
translocation experiment with the addition of a novel “warming” environment to represent future
changes in local environment in two populations of a keystone bark beetle species (Dendroctonus
ponderosae). We hypothesize that mite community abundances as carried by bark beetles are sig-
nificantly altered when not in their native environments and when subjected to climate warming.
We use multivariate generalized linear models based on species abundance data to show that mite
community compositions significantly differ across different field climates; and that these patterns
diverge between source populations, indicating local adaptation. Our study offers foundational
information on the general effects of simulated climate-warming on the compositional shifts of
common and abundant biotic associates of mountain pine beetles and may be used as a model system
for other important insect–mite systems.

Keywords: Dendroctonus ponderosae; mite communities; Acari; phoresy; climate warming;
field reciprocal translocation; local adaptation

1. Introduction

Temperature is an important factor in insect ecology [1–4]. Across North America,
changes in seasonality driven by increases in temperature have resulted in longer growing
seasons, rapid phenotypic adaptation, and range expansion of a variety of arthropod
species [5–7]. Adaptation and range expansion on a landscape scale are evident from bark
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beetle (Coleoptera: Scolytinae) attacks in forest ecosystems across North America [7–10].
Native bark beetle species have coevolved with conifer forests and are key agents of
change in these systems [11,12]. Critical events for population turnover, such as adult
emergence, flight patterns, aggregation, and reproduction of these beetles, are highly
dependent on temperature [13–15]. Warming, in particular, has allowed high-elevation
bark beetle species, such as the mountain pine beetle (Dendroctonus ponderosae Hopkins), to
expand their ranges [16–20], causing millions of hectares of forest tree damage [21–24].

Dendroctonus ponderosae, whose range spans most of western North America, is consid-
ered a keystone species with the potential to influence forests on a landscape level [19,25].
These beetles exhibit resilience to short-term changes in climate regimes [26], distinct ge-
netic differences across populations [27], and trait phenotypic plasticity [9]. They are also
directly associated with an array of symbiotic organisms (symbiota), forming a biodiverse
community comprising multiple interactions that directly and indirectly influence their
(beetle) performance [28–30]. Temperature is a determining factor for the presence/absence
and fitness of these symbiota as well [16,31,32]. Increase in temperature not only impacts
beetle development directly [33,34], but indirectly affects beetle performance through
influences on its symbiota [35].

Phoretic mites are a particularly abundant associate of D. ponderosae [29,36,37], form-
ing a spectrum of symbiotic interactions (i.e., acting as mutualists, antagonists, and/or
commensalists) [30,38]. Mites latch on to adult beetles prior to emergence from the tree
and are carried into new tree environments where they are deposited into new beetle
galleries [39–41]. Mites reproduce in these galleries, sharing and competing for niche
space within the bark beetle system [30,36]. Beetle fitness may be positively and/or and
negatively correlated (depending on the beetle species) with the abundance of mites and
the presence of specific mite species, particularly those species that parasitize beetle eggs or
have the potential to alter the fungal environment [42–45]. However, unlike other biological
associates, particularly the mutualistic fungi [46,47], there is limited information on climate-
and temperature-driven patterns in phoretic mites [31,48]. Similar to how mutualistic
fungi of D. ponderosae (and the beetles themselves) exhibit variability in their fitness and
mutualistic associations across different populations [6,10,35], the overall mite community
composition of these beetles also varies; with these differences largely driven by species
replacement or, in some cases, species elimination [37]. Differences in climatic factors,
particularly temperature, can often explain shifts in species composition but this remains
untested on a population level for phoretic mite associates of D. ponderosae.

In this study, we explore shifts in beetle–mite communities driven by climate warming
by using a reciprocal field translocation experiment to identify whether direct changes in the
local environment, specifically temperature, affect the mite composition on emerging adult
D. ponderosae in the southwest United States; and whether mite abundance and composition
are determined by local adaptation to native environments. We additionally measure
effects of warming temperatures on mite communities with a novel field translocation
treatment outside the beetle’s historic distribution range to simulate “climate warming”
in its native range. Dendroctonus ponderosae populations from Utah and Arizona, though
distinctly different populations [9,26], have nested mite communities [37]; therefore, we
asked whether shifts in mite community composition could be explained by differences in
their local environment and climate warming. We hypothesized that the mite community
compositions on D. ponderosae (based on the presence and absence of species and their
abundances) are significantly affected by changes in their local climate. We specifically
predicted that: (1) warming causes a significant shift in the abundance of mite species; (2)
mite communities are locally adapted to their native beetle environments, and therefore
the observed patterns of shifts in mite communities across different field environments will
vary between source populations.
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2. Materials and Methods

We used two populations of D. ponderosae from Utah (UT) and Arizona (AZ) within
the beetle’s known range in the southwestern United States for our field translocation
experiment. The populations are latitudinally separated, with Arizona being the more
southern population of the two (Figure 1; Table 1).
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Figure 1. Field sites for translocation experiment. Blue circles on Logan Canyon, Utah (LC) and
Lockett Meadow, Arizona (LM) indicate the origin of the two beetle populations in this study.
Centennial Forest, Arizona (CF), shown as a red circle, serves as the third “novel” experimental
climate-warming environment for both populations.

Table 1. Detailed information on source populations, translocation environments, and novel experimental warming
environment for the reciprocal translocation experiment. Population and field environment codes as stated in this table are
frequently used in explaining results.

Field Location Relevance to
Populations

Host Tree
(Pinus sp.)

Latitude
(N)

Longitude
(W)

Elevation
(m.)

Total Mean
Temp (◦C)

Average Min
Temp (◦C)

Average Max
Temp (◦C)

Logan Canyon
(LC), UT Native (UT) P. flexilis 41.93 111.44 2204 4.7 −28.5 30.4

Lockett Meadow
(LM), AZ Native (AZ) P.strobiformis

hybrid 35.35 −111.62 2604 9.2 −14.2 28.6

Centennial
Forest (CF), AZ

Novel
Warming

(P.ponderosa
habitat) 35.14 −111.71 2106 10.2 −14.2 32.8

2.1. Parent Beetle Collection and Host Tree Environment

We identified two high-elevation five-needle white pine trees (Pinus flexilis E. James in
UT and Pinus strobiformis Englm hybrids in AZ [49]) infested with D. ponderosae in fall 2016.
Beetle infestations were confirmed using visual characteristics [50]. In spring 2017, we cut
the infested P. strobiformis hybrid trees and stored them upright in emergence containers
in the Northern Arizona Forest Entomology Lab. Similarly, we cut and stored infested
P. flexilis at the Rocky Mountain Research Station (RMRS) Laboratory in Logan, Utah in
spring 2017 prior to adult beetle emergence.

P. flexilis and P. strobiformis are closely related high-elevation five-needle white pine
species with similar morphological and physiological characteristics [51,52]; and were even
considered subspecies of P. flexilis until recently [51]. Active gene flow between the two
species indicates successful reproductive hybrids (such as the P. strobiformis hybrids found
in Northern Arizona) [49]. There is also substantial evidence of local adaptation to hetero-
geneous climatic conditions within populations of these tree species, largely explaining the
divergence between the two species [49]. Differences between trees are therefore more at-
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tributable to differences in climatic conditions. Differences in D. ponderosae host preferences
across its geographic distribution are also credited to differences in local climate [15]. We
consequently rationalize that differences in the internal host tree environment, regardless
of whether they are P. flexilis or P. flexilis x P. strobiformis hybrids, are most likely to be
influenced by differences in local climate and introduced beetles into host trees harvested
from their native environments for the translocation experiment.

2.2. Translocation Preparation

Upon beetle emergence in August 2016, we collected and sexed mountain pine beetles
from each population based on acoustic and morphological sex characteristics [53,54]. We
collected beetles daily and stored live beetles in Petri dishes lined with moistened filter
paper at 4 ◦C for no longer than 10 days. For each beetle population (AZ and UT), we
harvested three healthy, un-attacked P. flexilis and P. strobiformis hybrid trees from the
original beetle collection locations (LC and LM; Figure 1), approximately 38 cm diameter
at breast height, and cut them into logs measuring ~46 cm in length. To seal in moisture,
we coated the exposed cut-ends of the logs with paraffin wax (Gulf Wax®). We introduced
male–female beetle pairs into logs of their natal host tree environment, as described below
(Figure 2A).
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Figure 2. Methods for experimental field translocation experiment, providing details on beetle infestation in logs (A);
A-frame structures used to hang logs (B); and field treatments, where red signifies warmer temperatures and blue tones
signify cooler field temperatures, on average, based on maximums and minimums as listed in Table 1 (C).

We prepared logs by drilling ten to twelve 5-mm holes, ~6 cm apart, into the phloem
at the anatomical bottom end of the log. These holes served as entry points for mating
beetle pairs. Females are the first to arrive at a tree to make entry points, while males
follow in response to female pheromones [50]. Therefore, we introduced females into the
prepared holes first, allowing them to burrow in before introducing male beetles behind
them and sealing the holes using a fine plastic mesh.

2.3. Reciprocal Translocation and Field Environmental Profiles

Of the 54 total logs, we retained nine logs from each population in their native field
environments. We translocated another nine logs from each population, by swapping
between LC and LM. We placed the remaining nine logs from each population in a third
“novel” environment just outside the beetle’s historical range, but still within its potential
range, located at Centennial Forest (CF), Northern Arizona at an elevation lower than that
of LM, in ponderosa pine (Pinus ponderosa) forest habitat. This location served as a proxy
for “climate warming” in both populations (Figure 2C; Table 1). While D. ponderosae have
not historically occurred in Northern Arizona ponderosa pine habitat, this serves as a proxy
for future warming in their native higher elevation habitats, where warming may cause
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their native host trees to become more susceptible to beetle attack. Dendroctonus ponderosae
are also capable of attacking ponderosa pine trees at other geographic locations [55,56].

At each field site, we used three large A-frame structures to hang the logs and protect
them from harsh weather. We randomized and hung logs such that there were an equal
number of Utah and Arizona logs under each A-frame (Figure 2B). We placed the logs
at each of the three field sites (LC: 30th July, 2016; LM: 10th August, 2016; and CF: 11th
August, 2016) for ~1 year (duration of beetle development) until the emergence of the next
generation of beetles. All bolts were protected from external disturbance by a plastic mesh
covering around individual logs, equipped with an opaque collection jar at the bottom for
emergence (Figure 2B).

To determine the overall temperature profiles of the three field sites, we collected
air and internal log temperature using CR1000 measurement and data loggers (Campbell
Scientific, Logan, UT, USA) which recorded data hourly for the duration of the experiment,
specific details of which are available in a previously published study [26]. We used
these data to calculate daily maximum and minimum temperatures for the beetle log
environment in all three field sites to make inferences on environmental temperature
effects. The native environment of UT beetles at LC was, on average, the coldest site
with the lowest average minimum temperature (Table 1). LM, the native environment
of AZ beetles, had warmer winter temperatures on average than LC. The novel warm
environment (CF) had the warmest temperatures on average with the highest average
maximum temperature, although minimum temperatures were similar to those of LM,
and served as the novel warming environment for both populations (Table 1). Internal log
temperatures did not vary within sites [26].

Detailed beetle emergence patterns (synchrony, development rate, genetic differences
in populations) have already been published [26]. Here, we present successful beetle
emergence per site estimated based on the number of beetles per site and the number of
successful galleries (Figure S1) per site to provide information about mite abundances
relative to beetle emergence across sites and populations.

2.4. Mite Collection and Identification

In July–August 2017, approximately one year after the experimental setup, we col-
lected emerging D. ponderosae from the reciprocal translocation study logs. We collected
emerging beetles every 4 days during non-peak emergence and every 2 days during peak
emergence. We stored beetles in individual gel capsules in the freezer for mite collections.

From the total number of emerged beetles, we sampled a subset of 100–107 beetles
for mites from each population and location. Note that the remaining emerged beetles
from these logs were used in a study identifying local climate effects on beetle physiology
and fitness that is already published [26]. We counted and identified each mite using
a dissecting microscope (for more information on the specific anatomical attachment of
these mites, see Figure S1). We transferred all mites onto glass slide mounts with lactic
acid medium. We used lactic acid to degrade mite surface proteins and reveal internal
structures for species identification. We identified mites to the highest possible taxonomic
resolution and were assisted by numerous mite taxonomists (see acknowledgements) and
other identification sources [57,58]. We stored voucher specimens at the Forest Entomology
Lab at Northern Arizona University’s mite collections and imaged voucher specimens at
the Museum of Northern Arizona for identification purposes.

2.5. Data Analysis

We used a generalized linear model (GLM) in the MASS package [59] to analyze
beetle emergence data, and a negative binomial generalized linear model (GLM) with two
predictor variables for multi-variate data in the mvabund package for RStudio [60] to assess
differences in mite species abundances across populations and field sites. The principal
model fitting function, manyglm, allowed us to obtain population-level global estimates
for differences in community composition through multiple species testing while treating
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beetle population and field sites as interacting effects (Avgabundance = Population × Field
Treatment; where “Population” and “Field Treatment” are explanatory variables). The
negative binomial distribution best fit the data, accounting for the numerous zeros and
overdispersion of variances. Model assumptions were met and confirmed by QQ-plot and
Dunn-Smyth residuals generated by the plot function in the mvabund package [60]. This
method also provided individually fitted GLMs for each mite species within and across
treatments and populations. To account for correlation in testing, we used one-thousand
bootstrap iterations via “pit.trap” resampling—a bootstrap procedure for regression models
with discrete, multivariate responses [61]. We regarded weak correlations as insignificant
in the case of very rare species.

We used an analysis of variance (ANOVA) to determine site level differences in
beetle emergence data, and Tukey’s HSD test for pairwise differences in beetle emergence.
For mite pairwise comparisons, we determined significant differences using the ANOVA
function (“anova.manyglm”) built into the mvabund package (ver. 4.1.6, https://CRAN.
R-project.org/package=mvabund). This also provides pairwise comparisons using a free
stepdown resampling procedure. We conducted all analyses in R ver. 3.6.2 (R Core Team,
2019, <CRAN MIRROR>/bin/windows/base/release.htm), using average emergence of
beetles per week and raw mite abundance data. Mite abundances were pooled across all
logs within a field environment as the internal phloem temperature of logs did not vary
within sites [26]. We used the total number of successful galleries per site (Figure S1) and
the total number of beetles emerged to calculate a metric for beetle emergence success.

3. Results
3.1. Beetle Emergence Patterns

Beetles performed best at the novel warm site (CF) for both populations, as reflected
in the higher number of progeny per successful parent beetle pair in the novel warming
climate, and there was no significant difference between the average number of beetle
progeny between populations (Figure 3). Utah beetles had fewer successful progeny per
parent beetle pair when translocated to LM, compared to their native environment at
LC. For the AZ population, there were fewer beetle progeny per pair at LC translocation
environment (Figure 3) which was, on average, cooler than its native environment at LM
(Table 2).

Table 2. Mite collection information including total number of beetles examined for mites, percent mite occurrence per
beetle, and estimated projected total number of mites per gallery in each population for all three field environments. The
estimated mites per gallery is the number of mites associated with each successful parent beetle gallery per site.

Population Field Environment Total No. Beetles
Examined

% Beetles with
Mites

Estimated Mites
per Gallery

List of Species
Associated with Populations

Arizona

Native (LM) 107 59.8% 56.7
Tarsonemus ips Lindq.

Trichouropoda utahensis Wis. & Hirsch.

Translocated (LC) 100 66% 59.5
Proctolaelaps subcorticalis Berlese

Histiogaster sp.

Novel Warm (CF) 101 63.4% 131.3

Utah

Native (LC) 101 72.3% 149.5
Tarsonemus ips Lindq.

Tarsonemus endophloeus Lindq.

Translocated (LM) 100 80% 167.9
Trichouropoda utahensis Wis. & Hirsch.

Proctolaelaps subcorticalis Berlese

Novel Warm (CF) 103 68% 57.5 Histiogaster sp.

https://CRAN.R-project.org/package=mvabund
https://CRAN.R-project.org/package=mvabund
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3.2. Overall Mite Community Differences

Five mite taxa were found across both beetle populations; four of which were identified
to the species level (Table 2). Of these, one species, Tarsonemus endophloeus Lindq, only
occurred with UT beetles (Table 2) and were rare (<0.1 mites per beetle). Five mite taxa
were observed on UT beetles, and four mite taxa on AZ beetles (Table 2). On average, more
phoretic mites were associated per beetle in the UT population than the AZ population
in all environments except the novel warm environment (Figure 3). Information on the
specific morphology and attachment of mites on beetles can be found in the Supplementary
Materials (Figure S2).

Using the total number of beetles emerged from each site and the number of successful
galleries (i.e., the number of successful parent beetle pairs from the initial inoculation), we
calculated the number of mites found in each successful parent beetle gallery as an estimate
of mite success at each field treatment. We found that AZ beetles in the novel warm climate
treatment had twice the number of mites per beetle gallery than their native environment
(Table 2). Utah populations, on the other hand, had more than twice the number of mites
per gallery in their native environment (LC), compared to the novel warming environment
(CF) where they had significantly fewer mites per beetle gallery (Table 2).

Mite community composition (based on a cumulative global estimate from individ-
ual species GLMs) significantly differed between AZ and UT populations (Dev = 45.76,
df = 610; pr (>Dev) = 0.001) and among three field environments (Dev = 34.07; df = 608;
pr (>Dev) = 0.001). Interaction of population origin and field environment also had a
significant effect on mite community (Dev = 65.94; df = 606; pr (>Dev) = 0.001). More
phoretic mites were associated per beetle in the UT population than in the AZ population
in all environments except the novel warm environment (Figure 3). Mite abundances per
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beetle were significantly greater in the novel warm environment (CF) than both the native
environment (LM) and the coolest field environment (LC) for AZ beetles (Figure 3).

Average overall mite abundances per beetle were significantly higher in the native
environment (LC) and at the translocated environment in LM than the novel warm envi-
ronment (CF) for UT populations (Figure 3).

3.3. Individual Species Differences within and Across Populations

Tarsonemus ips Lindq was the most abundant mite in both populations, with 1.13 (±0.2)
mites per beetle, with an estimated 34 mites per successful beetle gallery in the native AZ
population (Table S1); and 4.8 (±0.63) mites per beetle and with an estimated 139 mites
per successful beetle gallery in the native UT population. The mean number of mites per
beetle differed significantly between populations (Table 3), and across treatments within
populations (Table 3; Figure 4). The abundance of these mites increased significantly in the
novel climate warming environment (CF) for Arizona populations with nearly double the
mites per successful gallery; however, the number of mites reduced by more than two-fold
at the novel warming environment for the UT population (Table S1; Figure 4).

Table 3. Analysis of variance tables for individual species generalized linear models (GLMs) by
population (i.e., Arizona vs. Utah populations), and across field environment.

Variable DF Dev Pr (>Dev)

Tarsonemus ips Lindq.

Population 610 29.08 0.001 **
Field Environment 608 1.6 0.441

Population: Field Environment 606 32.35 0.001 **

Trichouropoda utahensis Wis. & Hirsch.

Population 610 0.013 0.911
Field Environment 608 13.767 0.01 *

Population:Field Environment 606 22.893 0.001 **

Proctolaelaps subcorticalis Berlese

Population 610 11.052 0.001 **
Field Environment 608 9.115 0.03 *

Population: Field Environment 606 5.352 0.135

Tarsonemus endophloeus Lindq.

Population 610 3.407 0.02 *
Field Environment 608 4.588 0.03 *

Population: Field Environment 606 0.001 0.784
Field environments are as follows: Logan Canyon, Utah = LC; Locket Meadow, Arizona = LM; Centennial Forest,
Arizona = CF. LC is the native environment for Utah populations and LM is the native environment for Arizona
populations. CF represents a novel warming environment. ** = Highly significant (p < 0.01); * = Significant
(p < 0.05). These values also corroborate the global community estimates as shown in Table S1.

Tarsonemus endophloeus Lindq was the rarest mite species, with 0.07 (±0.04) per beetle
and between 0–1 mites per successful beetle gallery where they occurred (Figure 4; Table S1).
T. endophloeus was only found in the native environment for UT beetles (Figure 4; Table S1).
The abundance of these mites showed slight differences between the two populations
(Table 3) and across treatments (Table 3).
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Trichouropoda utahensis Wis & Hirsch was the second most abundant mite species on
both beetle populations (although they were more abundant in AZ than in UT), with 0.71
(±0.17) mites per beetle with an estimated 21 mites per successful gallery in the native
environment for AZ beetles; and 0.31 (±0.08) mites per beetle and an estimated 9 mites per
successful gallery in the native environment for UT beetles (Figure 4; Table S1). Phoretic T.
utahensis associated with Utah beetles differed significantly across environments (Table 3;
Figure 4) but did not differ significantly between environments for Arizona beetles (Table 3).
Their abundances significantly differed within the same environment between AZ and UT
populations (Table 3; Figure 4).

Proctolaelaps subcorticalis Berlese abundances varied significantly between beetle popu-
lations (Figure 4;Table 3) and across field environments within beetle populations, although
this was less significant (Figure 4; Table 3). There was no interaction between population
and environment (Table 3). Abundances of this mite species were extremely low across both
populations, with 0.02 (±0.01) mite per beetle with an estimated 0–1 mites per successful
beetle gallery on AZ beetles in their native environment; and 0.05 (±0.04) mites per beetle
and an estimated 2 mites per beetle gallery in the native environment for UT beetles.

Histiogaster sp. were also very low in abundance, and only found in the native
environment for the AZ population. A total of 0.06 (±0.03) mites per beetle, with an
estimated two mites per beetle gallery on the AZ beetles in their native environment; and
0.03 (±0.08) mites per beetle and an estimated one mite per successful gallery were found
at the native environment of UT beetles (Figure 4; Table S1). The abundance of these mites
did not vary significantly across field environments or between populations within a field
environment.

4. Discussion

Predicting community responses to climate change is challenging, as multiple factors
influence species responses to temperature [62–64]. These patterns are dynamic and
often inconsistent between species and across populations [65–67]. Even with controlled
laboratory experiments that tease apart specific trait-based responses to environmental
changes, patterns are not always clear and may not be applicable in a field setting [66–69].
Here, we used a field reciprocal translocation experiment to address potential future
changes in climate and how climate warming may affect mite communities associated with
a keystone bark beetle species [70,71] in western North America—the mountain pine beetle,
Dendroctonus ponderosae. Patterns in mite abundance and composition were not consistent
across beetle populations and environment treatments.

4.1. Temperature, Beetle Emergence, and Mite Abundance

Mite taxa identified in our study were consistent with those identified in other D.
ponderosae–mite studies [29,36,72]. The overall total diversity of mites was low for both
populations, although this may be a facet of manipulating and restricting the number of
beetle pairs in each treatment [31], which may exclude low abundance and rare species
that were not introduced during the experimental setup. Differences in the abundances of
phoretic mites associated with the original parent beetles may also explain why UT beetles
consistently had significantly more mites per beetle on average and a much higher num-
ber of mites per individual beetle gallery than AZ beetle populations. However, caution
should be exerted in the interpretation of these mite success metrics. Although not clearly
documented in this study, the frequency of mites may vary across the emergence period
with more mites per beetle during peak emergence and fewer mites per beetle in non-peak
emergence periods. Secondly, mite abundances may also vary with beetle reproductive suc-
cess across different populations. Other factors, such as fungal presence and composition
within trees, could also affect mite abundances on emerging beetles [31,48,73].

The environmental temperature profiles show that the native environments of both
beetle populations were, on average, cooler than the novel warming environment. All three
environments had varying temperature profiles which can directly affect mite development
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as mites are sensitive to fluctuations in temperature [31,48,74]. In general, our hypothesis
was supported in that phoretic mite populations varied in response to warming and change
in local climate within and across different populations. As predicted, beetle-associated
mite communities differ significantly within and across beetle populations, across temper-
ature regimes, and within temperature regimes between populations. Mite abundances
generally appeared to increase with warming in the AZ populations but decreased with
warming in UT populations, indicating that mites may have divergent responses to changes
in local environment. Climate warming caused an observed increase in the abundance of
Tarsonemus mites per beetle along with an increase in the number of beetles per gallery in
AZ populations. Contrarily, we observed a decrease in mite abundances per beetle in the
same climate warming environment for the UT population (although UT populations also
exhibited increased beetle progeny per gallery in this environment). Similarly, abundances
of Trichouropoda mites fluctuated with climate warming differently between the UT and AZ
populations, despite high numbers of beetle progeny in the climate warming treatment
for both populations. This suggests that, on a species level, mite populations have locally
adapted responses to climate warming, and that the mite populations of AZ beetles may
be better adapted to warming than their UT counterparts. This in turn may be explained
by local adaptation to cooler climates on average in UT source populations; or by poten-
tial differences in fungal composition and growth within trees in response to changes in
temperature regimes [35,75–77].

Few bark beetle–mite studies report the relationship between beetle emergence and
relative mite abundance [31,78]. Mite abundances can increase with beetle emergence in
Ips grandicollis bark beetles, suggesting that these mites and beetles exploit a mutually
beneficial environment [78], although this is contrary to observed patterns in D. ponderosae
populations [29,37]. While both beetle emergence and mite abundances per beetle increased
with climate warming for AZ D. ponderosae, this pattern was inconsistent with the UT beetle
population, where beetle emergence was favored by warming but mite abundances per
beetle were not. This suggests that while warming in the local environment may be
mutually beneficial for beetle–mite associations in some populations, they may be variably
adapted in other populations of the same beetle species. Similarly, a field study testing
the effect of temperature on mite communities associated with southern pine beetles
(Dendroctonus frontalis Zimm.) showed an increase in temperature can cause a decrease in
the abundance of Tarsonemus mites [73]. Trichouropoda mites, on the other hand, increased
with increase in temperature [73]. These effects may also be driven by the associated
fungal performance in specific temperature regimes as these beetles and most mite species
are dependent upon fungi for resources within the tree [31,41,48,73]. Thus, D. ponderosae
mite population patterns may be differentially adapted to environmental changes and
driven by unknown underlying genetic and/or abiotic factors rather than a direct effect of
temperature or beetle emergence alone (see “ecological implications” below).

As suggested by studies in the D. frontalis system [31,48], mites are sensitive to tem-
perature, with some mites being better suited for warmer temperatures than others. Den-
droctonus ponderosae and D. frontalis both attack multiple Pinus tree species [79], and carry
mites with similar taxonomy, morphology, and function [24,30,48]; therefore, patterns in
mite associations are comparable across beetle species. Lockett Meadow (LM), AZ, for
example, seemed to be most favorable for T. utahensis, and the novel warm environment
(Centennial Forest (CF), AZ) the least favorable; whereas T. ips was favored by the novel
warm climate treatment. Arguably, these patterns compliment the environmental filter-
ing hypothesis [76], which suggests shifts in species composition, particularly the loss of
species (reflected in significantly reduced abundances), across populations is explained
by differences in local environmental conditions and variation in the adaptation to these
local environments. However, methods for parsing the outcome of biotic interactions
from climate and temperature effects remain insufficient [80]. Given what we know of the
fungal associates of these bark beetles and their responses to temperature, it is possible that
relative performance of fungi within these logs may also be driving beetle–mite fitness and
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progeny abundances [29,31,69,81]. Further investigation is needed to confirm fungal effects
on mite communities in D. ponderosae and other similar bark beetle systems in relation to
climate change.

4.2. Ecological Implications

Dendroctonus ponderosae is a “mycangial beetle” (i.e., beetle possessing specialized
structures for the transfer and inoculation of fungi) and relies on mutualistic fungi for
nutrition and to potentially help neutralize tree defenses to overtake host trees [82–84].
This has consequences for niche exploitation, coexistence, and a causal chain of complex in-
teractions dependent on the community of symbiotic species associated with the host beetle
population [43,85,86]. D. ponderosae are associated with three known mutualistic blue-stain
fungi, Ophiostoma montium, Grosmannia clavigerum, and Leptographium longiclavatum [87–89];
however, these fungi exhibit variability in their mutualistic associations with beetles across
different populations [27,35], largely due to differences in fungal performance driven by
warming [32,35,75–77]. Therefore, while warmer temperatures favor the performance of
some fungi (e.g., O. montium), cooler temperatures serve as optimal conditions for others
(e.g., G. clavigera or L. longiclavatum) [35,77]. Compared to the other common fungal asso-
ciates, G. clavigera is the most nutritionally beneficial for D. ponderosae [82], but is not likely
to occur in beetle populations that are in warmer climates (i.e., beetle populations at lower
latitudes) where it is likely to lose its competitive advantage to O. montium [32,35,77].

Fungivorous (fungus-eating) and fungus-carrying mites, such as Tarsonemus sp.,
Proctolaelaps sp., and Trichouropoda sp., also form similar associations with blue-stain
fungi [30,31,81,85,90,91]. These associations can subsequently alter the fungal environment
within beetle galleries, leading to cascading effects on beetle–fungal associations and beetle
fitness [30,38,41,43,92]. Climate-driven shifts in fungal performance can therefore influence
mite–fungal associations and mite fitness, particularly for species that feed on and/or
vector fungi. While beetles may be adapted to one of three different fungi, mites may only
hold preference for one or two. Although G. clavigera is more nutritionally beneficial than
either O. montium or L. longiclavatum for D. ponderosae beetles, Reboletti [93] found that T.
ips associated with these beetles preferred to feed on and transfer O. montium rather than
G. clavigera. This suggests the relative performance of these fungi within our study trees
could drive phoretic mite abundance patterns. It is unknown whether L. longiclavatum is a
suitable resource for T. ips or other mite species, but in other conifer-infesting bark beetle
systems, Leptographium fungi are not often carried by phoretic mites [94].

Mites can directly and indirectly affect beetles either through predation of beetle
eggs, nematodes, other mites, and through the introduction and spread of mutualistic or
antagonistic fungi [41,44,80,95], thereby altering the fungal environment of beetle galleries.
The introduction of O. minus fungi by Tarsonemus spp. in the galleries of D. frontalis beetles,
for example, could create indirect negative feedbacks for D. frontalis, as it may outcompete
the beetle’s mutualistic O. ranaculosus fungus [38,44,96]. Similarly, the introduction of
O. novo-ulmi fungus (Dutch elm disease) by Tarsonemus and Proctolaelaps mite species
negatively affects Scolytus spp. bark beetle fitness in Ulmus trees by rapidly killing the host
tree [80–89]. Mites may also show preferences for specific host tree environments, although
these preferences are not clearly defined [29,97]. Mite composition has been shown to vary
between distinctly different host tree species, largely associating with beetles that colonize
their preferred tree environment [29,97], although there is overlap in generalist mite species
that can be found across multiple beetle/host tree environments.

Different symbiotic species also have variable strategies for niche exploitation and
coexistence [86,98], and modify the beetle’s environment in different ways. This creates
the potential for a series of eco-evolutionary feedbacks [98] driven by interactions across
the spectrum of symbiosis [47]. It may be argued that the drivers of these interactions (the
mite community of bark beetles) are innate, i.e., passed from parent beetle environment to
the offspring’s environment, because of the strong phoretic association between mites and
beetles [41]. The resulting feedback on beetle populations is therefore likely determined
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by the specific functional roles of the mites introduced into the beetle environment, the
frequency of these mite functional groups (i.e., the abundance of predators, fungivores,
etc.), and the presence of other organisms within the tree. Mites that alter the beetle–fungal
environment within the tree are indirectly shaping the beetle environment by influencing
fungal colonization patterns via the introduction of competing species [30,38,41,99]. Long-
term positive and negative ecological feedbacks therefore depend on the phoretic species,
their competitive advantage relative to other beetle associates, and by the environmental
conditions that drive these interactions. The resulting causal chains of interactions in
biotic communities can be important in determining selection for species and coevolution
between species within an ecological community [82,98,100]. Beetle–fungal interactions are
linked to such large-scale causal chain effects [86]; by the sheer frequency of association, it
may be that mite interactions also hold larger ecological and coevolutionary consequences
for forest bark beetle systems. The challenge that remains, however, is identifying the
specific interaction pathways that determine these causal chains of events on an ecosystem
level.

5. Conclusions

Differences in local environmental temperatures, particularly climate warming, can
have a significant effect on the mite assemblages of D. ponderosae beetles. These effects
differ based on the source population of beetles, suggesting that the community compo-
sition of phoretic mites are locally adapted to beetle populations, and therefore respond
differently to the climate warming scenario. While assessing and separating the influence
of environmental and genetic effects, along with biotic and abiotic factors, on long-term
ecological and evolutionary processes remains a challenge; observational field experiments
such as ours provide foundational information for predicting community shifts in common
biotic associations of ecologically and economically relevant bark beetles in the face of
anticipated warming in forest ecosystems.
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450/12/2/131/s1: Figure S1: Total number of successful galleries (i.e., parent beetle pairs) per
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locations on mountain pine beetles. Images Table S1: Mite species list, functional roles, average
abundances (per beetle) ± standard error between populations and across field environments, and
estimated total number of mites per beetle gallery for each species.
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