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Simple Summary: The extant distribution of many plants and animals is the result of the dynamics
of the last ice ages with their recurrent advances and retreats of the northern ice sheet and the
glaciers in the mountains. The arctic-alpine distribution is a special case where a species occurs
in the subarctic/arctic regions and locally restricted in the alpine mountain regions of central or
southeastern Europe. Among the ground beetles, several species display this type of distribution,
one of which is Pterostichus adstrictus. In Europe, this ground beetle has been thought to have its
southernmost occurrences in Wales and southern Scandinavia. In this study, we provide the first
reliable record of P. adstrictus from the Austrian Alps based on morphological determination and
comparison to other closely related species as well as molecular genetic data. Furthermore, the
seasonal occurrence as well as empirical habitat preferences of P. adstrictus in the Austrian Alps are
described.

Abstract: The last ice age considerably influenced distribution patterns of extant species of plants
and animals, with some of them now inhabiting disjunct areas in the subarctic/arctic and alpine
regions. This arctic-alpine distribution is characteristic for many cold-adapted species with a limited
dispersal ability and can be found in many invertebrate taxa, including ground beetles. The ground
beetle Pterostichus adstrictus Eschscholtz, 1823 of the subgenus Bothriopterus was previously known
to have a holarctic-circumpolar distribution, in Europe reaching its southern borders in Wales and
southern Scandinavia. Here, we report the first findings of this species from the Austrian Ötztal
Alps, representing also the southernmost edge of its currently known distribution, confirmed by
the comparison of morphological characters to other Bothriopterus species and DNA barcoding data.
Molecular data revealed a separation of the Austrian and Finish specimens with limited to no gene
flow at all. Furthermore, we present the first data on habitat preference and seasonality of P. adstrictus
in the Austrian Alps.

Keywords: biogeography; Bothriopterus; DNA barcoding; cytochrome c oxidase subunit 1 (COI);
nunatak hypothesis
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1. Introduction

With their recurrent periods of glacial advances and retreats, the Pleistocene glacial
cycles are considered one of the most important drivers of current distributional patterns
and patterns of genetic diversity in animals and plants [1–3]. This particularly applies to
arctic-alpine taxa, which are characterized by a disjunct occurrence in two geographically
distant areas, the subarctic to arctic plains and hills, and the high mountain ranges of
the Alps and/or other Eurasian mountains [4]. This large-scale disjunction occurs in
numerous species of plants and animals, typically taxa that are characterized by poor
dispersal capacity [1,5–8].

Among the ground beetles, a notable number of arctic-alpine species is known.
Furthermore, profound faunistic knowledge on this species group—particularly in the
Alps [1,9,10]—makes this beetle family a promising model system for comparative phylo-
geographic studies, in particular with respect to effects of Quaternary climatic changes on
current species distribution and patterns of genetic diversity.

Arctic-alpine ground beetles are generally widespread across the Tundra. In Central
Europe, some of the species are quite common, inhabiting relatively large regions, such
as Nebria gyllenhali (Schönherr, 1806), which lives in riparian habitats along mountain
brooks [11–13]. Other species, however, have distributions split up into a few small and
separated relict populations in the Alps or Carpathians, such as Patrobus septentrionis
septentrionis Dejean, 1828 [12,14], which lives above the timberline.

In the present study we show that Pterostichus adstrictus Eschscholtz, 1823, is another
example of this particular type of arctic-alpine distribution. This species has a holarctic-
circumpolar distribution, ranging from Northern Europe to Eastern Siberia, North Korea
and Japan [15,16], but is also widespread across Alaska and Canada [17]. In North America
it is frequently encountered as one of the most common ground beetle species [18–21].
In Europe, however, the southernmost occurrences were documented from Northern
Ireland, Wales and southern Scandinavia [22–24] and, thus far, there have been no records
from the Alps. Interestingly, the first molecular study based on DNA barcodes revealed
haplotype-sharing of specimens of P. adstrictus and P. oblongopunctatus (Fabricius, 1787)
from populations of Finland and Germany [25]. Here, we describe the first findings of
P. adstrictus in the Austrian Ötztal Alps confirmed by morphological and DNA barcode
data. We further discuss morphological and mitochondrial DNA sequence variation across
the species’ distribution and provide data on habitat preferences and seasonal dynamics of
this species in the Alps.

2. Materials and Methods
2.1. Study Area and Sampling

Field observations and sampling were carried out in the Ötztal Alps, which are among
the largest mountain groups within the Eastern Alps. They comprise several summits above
3500 m and are heavily glaciated in higher altitudes. The study area has a relatively dry
intra-montane climate with low annual precipitation values: The annual mean precipitation
was 1100 mm at the Gepatschalm (1903 m, Kaunertal, Austria) from 2009 to 2015 and 920
mm at the Weißsee (2465 m, Kaunertal, Austria) from 2006 to 2015. Consequently, it is part
of the driest region of the Austrian Alps [26]. Starting in the Kaunertal and Taschachtal,
where P. adstrictus was found during a faunistic inventory by chance, the investigations
were further extended to eight other areas in the mountain group that were selected by
extrapolating the observed habitat choice parameters (elevation, habitat type) of the species.
Altogether, we looked for P. adstrictus in ten areas, nine of which are located in the North
Tyrolean Central Alps (Austria) and one south of the Alpine main ridge in South Tyrol
(Italy) (Table 1). Sampling of the ground beetles was done using pitfall traps and collection
by hand. Throughout the field studies, empirical observational data regarding habitat
parameters (altitude, geomorphology, vegetation) were recorded.
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Table 1. Sampling localities and dates. The table lists details about the origin of the samples as well
as the dates and ranges of altitudes that have been sampled by different collectors. Geographic
coordinates are not presented in order not to endanger the populations by possible collectors.

Sampling Date Origin Collector Altitude

11.08.2009 AUT, North Tyrol,
Fissladbachtal Christian Mairhuber 1990–2230 m

16.07.2009
AUT, North Tyrol,

Griestal near
Mandarfen

Wolfgang Paill 1840–2000 m

17.06.2009, 18.06.2009,
13.07.2009, 14.07.2009,
15.07.2009, 11.08.2009,
25.08.2009, 01.09.2009,

17.06.–14.07.2009,
10.05.2010, 22.09.2010,
16.07.2016, 13.08.2016

AUT, North Tyrol,
Kaunertal

Thomas Frieß,
Barbara-Amina
Gereben-Krenn,

Christian Mairhuber,
Wolfgang Paill

1870–2270 m

11.08.2009 AUT, North Tyrol,
Kaiserbergtal Wolfgang Paill 2160–2520 m

11.08.2009, 09.06.2010,
13.07.2010, 21.07.2010,
18.08.2007, 19.08.2010,

21.09.2010,
09.06.-13.07.2010,
13.07.-19.08.2010,
19.08.-21.09.2010

AUT, North Tyrol,
Platzertal

Thomas Frieß,
Wolfgang Paill 2100–2520 m

12.08.2009 AUT, North Tyrol,
Radurschlbachtal

Thomas Frieß,
Christian Mairhuber 2210–2280 m

12.08.2009 AUT, North Tyrol,
Rifflbachtal Wolfgang Paill 2230–2410 m

13.08.2009 AUT, North Tyrol,
Rofental

Christian Mairhuber,
Wolfgang Paill 2340–2390 m

18.06.2009, 15.07.2009,
26.08.2009

AUT, North Tyrol,
Taschachtal

Christian Mairhuber,
Wolfgang Paill 1970–2110 m

12.08.2009 ITA, South Tyrol,
Langtauferertal Wolfgang Paill 1890–2020 m

2.2. Species Determination and Morphological Comparison

Ground beetles were determined morphologically following [27]. In the case of
P. adstrictus, we additionally used [28,29] and compared our material with specimens
from Northern Europe and China/Yunnan. The nomenclature follows [30]. All ground
beetle vouchers are deposited in the National History Museum Graz (Studienzentrum
Naturkunde).

In order to characterize the Austrian P. adstrictus beetles based on morphological traits,
we measured the following characters in 30 specimens: number of foveolate setigerous
punctures on elytral interval 3, length of pronotum along its median line, length of elytron
from the tip of the scutellum to the apex, width of the elytron at its broadest position and
length and width of the hind wings. Male genitalia were prepared, cleared in lactic acid
and embedded in Euparal. In order to compare P. adstrictus data with those of the only
two other European species of the subgenus Bothriopterus (Pterostichus oblongopunctatus
(Fabricius, 1787) and Pterostichus quadrifoveolatus Letzner, 1852), we also studied Austrian
and Czech material of these species and incorporated literature data [31–35].

2.3. Molecular Characterization

Total genomic DNA of seven P. adstrictus specimens and three P. oblongopunctatus
specimens (stored at the University of Graz) was extracted from leg muscle tissue using a
DNeasy® Blood & Tissue Kit (Qiagen, Hilden, Germany). A 658 bp fragment of the mito-
chondrial COI gene, corresponding to the typical DNA barcoding region sensu Hebert [36],
was amplified using the Phusion polymerase (Thermo Fisher Scientific, Waltham, MA,
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USA) protocol, following the manufacturer’s instructions. The same primers were used
for both PCR and cycle sequencing, namely C_LepFolF and C_LepFolR [37]. PCR prod-
ucts were purified with ExoSAP-IT (Thermo Fisher Scientific). The sequencing reaction
followed the protocol in [38]. Sequencing products were purified with SephadexTM G-50
(Amersham Biosciences, Little Chalfont, UK) and visualized on an ABI 3130xl capillary
sequencer (Applied Biosystems, Foster City, CA, USA). Double-stranded sequences were
assembled and checked for mitochondrial pseudogenes (numts) by looking for the presence
of internal stop codons, frameshifts as well as double peaks in chromatograms with MEGA
10.0.5 [39]. All new DNA barcodes were deposited at the Barcode of Life Data Systems
(BOLD: www.boldsystems.org, ACAR001-21-ACAR010-21) [40]. Parallel to this, all new
sequences were deposited in GenBank (accession numbers: MW472683-MW472692). For
the analysis we also included all published DNA barcodes of the subgenus Bothriopterus,
i.e., P. adstrictus (n = 18), P. quadrifoveolatus (n = 8) and P. oblongopunctatus (n = 26) (see
Supplementary Material Table S1) ([25,41–45]).

Sequences were aligned using MUSCLE [46] as implemented in MEGA 10.0.5. MEGA
was also used to calculate Kimura-2-parameter distances (K2P; [47]) among groups of
interest. A statistical maximum parsimony haplotype network was constructed with TCS
1.21 based on default settings [48] implemented in the software package PopART v.1.7 [49]
to infer evolutionary relationships and geographical distributions among the recorded
haplotypes.

3. Results
3.1. Morphological Characterization of Austrian P. adstrictus in Comparison to Asian Populations

As one of the most striking features, the representatives of the subgenus Bothriopterus
had distinctly foveolate setigerous punctures on the third elytral interval (Figure 1). Since
there are species-specific differences with regard to this character, the number of the
foveolate punctures was determined. In the alpine specimens, 50% of the elytrons had
five punctures, whereas in 27% of the cases there were six and in 23% only four punctures.
Notably, the number of foveolate punctures differed between the right and left elytra in
more than half of the beetles examined (57%). The average number of punctures was 5.0
per elytron in the Alpine animals, while for specimens from Yunnan/China 6.6 (n = 20,
10 beetles) punctures per elytron were estimated. This difference between Austrian and
Chinese beetles was highly significant (t-test, p < 0.0001).
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Figure 1. Habitus of male (a) and female (b) Pterostichus adstrictus from the Kaunertal (Ötztal Alps, Austria). Figure 1. Habitus of male (a) and female (b) Pterostichus adstrictus from the Kaunertal (Ötztal Alps, Austria).

The ratio of elytra length to the length of the pronotum was 2.62 ± 0.06 in the Austrian
animals (Kaunertal: 2.62 ± 0.06, Taschachtal: 2.62 ± 0.06), but only 2.51 ± 0.06 in the beetles
from Yunnan/China (n = 10). This difference between Austrian and Chinese beetles was
also highly significant (t-test, p < 0.0001).

www.boldsystems.org
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The membranous wings of P. adstrictus from the Ötztal Alps were well developed.
They were on average 1.44 ± 0.05 times as long and 1.67 ± 0.09 times as wide as the elytra.
These values hardly differed among the sexes or among the two examined populations
(Kaunertal, Taschachtal).

The median lobe of the aedeagus of the examined specimens had a characteristic and
constant external shape. This particularly applied to the tip, which in the ventral view was
sharply tapered. The internal sac also showed typical structures, although sclerites were
missing (Figures 2 and 3a).
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3.2. Morphological Differentiation and Determination of the European Bothriopterus

Within the subgenus Bothriopterus, P. adstrictus is difficult to distinguish from the other
two European species, P. oblongopunctatus and P. quadrifoveolatus. Males are most reliably
distinguished by comparing the outer shape of the aedeagi. In contrast to P. adstrictus, the
tip was not tapered but rounded in the two other species (Figure 3). External morphological
characters that are visible from the outside, like the shape of the pronotum (Figure 4) and
the color of the tibia, can also be used. For putting together a determination table (Table 2),
we considered both our newly obtained data as well as information from the literature (see
above).
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Table 2. Synoptic key for the three European Pterostichus species of the subgenus Bothriopterus. The determination characters
are compiled from own new data and the literature [27–29].

P. adstrictus P. oblongopunctatus P. quadrifoveolatus
Number of the foveolate
punctures on 3rd elytral

interval
mostly 5 or 6 (4–8) mostly 4 (2–9) mostly 3 (2–4)

Base of the pronotum from
inner impression to posterior

angle

almost straight or moderately
angled forwards laterally almost straight angled forwards laterally

Side border of the pronotum moderately wide, widened
towards posterior angle

narrow, not widened towards
posterior angle

moderately wide, not
widened towards posterior

angle
Vertex (head behind the eyes) without punctures without punctures with punctures

Color of the elytra black, with bronzed luster, in
females dull

black, with bronzed to
greenish luster black, with bronzed luster

Color of the tibiae blackish, almost as dark as
femora

reddish-brownish, distinctly
paler than femora

blackish, almost as dark as
femora

Color of the palpi Blackish reddish-brownish blackish

1st antennal segment as long as 3rd segment as long as 3rd segment clearly shorter than 3rd
segment

Shape of the aedeagus in
lateral view less evenly arcuate, apex long more evenly arcuate, apex

short
more evenly arcuate, apex

long
Shape of the aedeagus in

ventral view
aedeagus almost straight,

apex acuminate
aedeagus weakly bent, apex

almost obtuse
aedeagus clearly bent, apex

obtuse
Size of the aedeagus in lateral

view big (about 3 mm) big (about 3 mm) small (about 2 mm)

Size of the membranous
wings

relative long (ratio wing to
elytra >1.3)

relative short (ratio wing to
elytra <1.3)

relative long (ratio wing to
elytra >1.3)

Total body length (data from
literature) 10.4–13 mm 9.5–13.0 mm (mean: 11.4) 8.5–11.9 mm (mean: 10.3)
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3.3. Analysis of the DNA Barcode Data

In total, 25 DNA barcode sequences of P. adstrictus, 29 sequences of P. oblongopunctatus
and eight sequences of P. quadrifoveolatus were analyzed. Intraspecific K2P distances ranged
from 0% to a maximum of 2.8% for P. adstrictus, 0% to 0.2% for P. quadrifoveolatus and 0% to
0.7% for P. oblongopunctatus (Table 3). Statistical maximum parsimony analysis revealed 14
different haplotypes (Figure 5). Haplotype-sharing was found for P. adstrictus specimens
from Finland and P. oblogopunctatus beetles from Austria in a dominant haplotype (h1, n
= 28) that was surrounded by all other haplotypes of P. oblongopunctatus (h8–h12), with a
maximum of three additional mutational steps (h12). In contrast, all Austrian P. adstrictus
sequences were grouped in two distinct haplotypes (h4, n = 4; h5 n = 3) that were separated
from haplotype h8 (P. oblongopunctatus from Germany, n = 2) by one (h5) and two (h4)
mutational steps, respectively. K2P distances between P. adstrictus specimens from Austria
and the haplogroup comprising P. adstrictus from Finland and P. oblongopunctatus from
Austria, Belgium, Finland and Germany ranged from 0.15% to 0.77% (Table 3), whereas all
P. adstrictus specimens from North America were found in a group with four haplotypes
(h2, h6, h7, h13), separated from the Austrian specimens by at least 1.69%. All specimens
of P. quadrifoveolatus were pooled in two haplotypes (h3, h14) and, with distances >7%,
distinct from all other analyzed Pterostichus specimens.

Table 3. Pairwise K2P-distances within and between distinct groups in the haplotype network (Figure 5).

P. adstrictus
(Austria)

P. adstrictus
(North America)

P. adstrictus
(Finland)/

P. oblongopunctatus
(Austria/Belgium/
Finland/Germany)

P. quadrifoveolatus
(Germany)

P. adstrictus
(Austria) 0–0.0015

P. adstrictus
(North America) 0.0169–0.0217 0–0.003

P. adstrictus
(Finland)/

P. oblongopunctatus
(Austria/Belgium/
Finland/Germany)

0.0015–0.0077 0.0201–0.028 0–0.0061

P. quadrifoveolatus
(Germany) 0.0720–0.0753 0.0702–0.0737 0.0702–0.0707 0–0.0015

3.4. Occurrence and Habitat Use of P. adstrictus in the Ötztal Alps

Pterostichus adstrictus was recorded in two of the ten study areas. Despite the appar-
ently geographically very restricted occurrence, the species’ populations in the Kaunertal
and the Taschachtal are remarkably large. A total of more than 150 individuals were caught
or observed. All records came from altitudes between 1875 and 2265 m above sea level.

Pterostichus adstrictus showed specific habitat requirements (stenotopic behaviour).
We found the species to prefer pioneer stages of gravel banks along mountain brooks
(Figure 6a). More dynamic and regularly flooded immediate riparian zones remain unin-
habited, however. The species was also missing in the transition zones of the surrounding
habitats of alpine heath, meadows and pastures. However, the more stable, rarely flooded
inner and higher parts of the gravel banks were populated. Apparently, there was a spe-
cial preference for areas with patchy herbaceous vegetation. Here, the beetles lived on
moderately moist, sandy raw soils under larger stones.
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Figure 6. Typical habitats of Pterostichus adstrictus in the Kaunertal (Ötztal Alps, Austria): gravel bank (a), moraine (b).

Some specimens were also found in silicate scree slopes deposited by historical glacial
activity (Figure 6b). These moraines structurally resemble gravel banks along mountain
brooks, with their high proportion of sandy fractions, patchy vegetation, constant degree
of soil humidity and sufficient stability of the raw soil, at least at the flattened lower slope
areas, where P. adstrictus was captured.

Based on a biotope mapping, a potentially populated area of approximately 0.3 km2,
0.18 in the Kaunertal and 0.13 in the Taschachtal was assumed. An exact visualization of the
areas inhabited by P. adstrictus was not done here in order not to endanger the populations
by possible collectors.

www.eurocarabidae.de
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3.5. Seasonality

The seasonal appearance of P. adstrictus in the Ötztal Alps starts soon after the snow
melts in May. High surface activity was documented from mid-June to mid-August with
a maximum during July. The second peak in September represented inactive individuals
that were found in their overwintering holes under big stones. In July and August, larvae
were observed, and in September, immature, newly hatched adults (Figure 7).
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3.6. Accompanying Ground Beetle Fauna

At the local sites in the Kaunertal and the Taschachtal, P. adstrictus formed strikingly
individual-rich populations; sometimes it was even the most common ground beetle.
Among the species regularly found alongside P. adstrictus awee Cicindela campestris Lin-
naeus, 1758, Nebria gyllenhali (Schönherr, 1806), Bembidion bualei Jacquelin du Val, 1852,
Sinechostictus ruficornis (Sturm, 1825), Sinechostictus stomoides (Dejean, 1831), Amara erratica
(Duftschmid, 1812) and Amara quenseli quenseli (Schönherr, 1806). Syntopy with other
larger Pterostichini such as Pterostichus jurinei (Panzer, 1802) and Pterostichus multipunctatus
(Dejean, 1828), both common in the Ötztal Alps, was rare. The accompanying occurrences
of several other arctic-alpine and boreo-montane species or of taxa with high agreement
with these types of distribution were striking. These included the above-mentioned N.
gyllenhali, A. erratica and A. quenseli quenseli as well as Trechus rubens (Fabricius, 1792),
Miscodera arctica (Paykull, 1798) and Cymindis vaporariorum (Linnaeus, 1758).

4. Discussion
4.1. Morphological Characterization

Pterostichus adstrictus belongs to the species-poor subgenus Bothriopterus, which has
two main distribution areas, one in East Asia and one in North America [15,50,51]. In
addition to P. adstrictus, two other Bothriopterus spp. are documented in Europe: P. oblon-
gopunctatus and P. quadrifoveolatus. All three are relatively difficult to distinguish from
one another, but based on characteristics of the pronotum and of male genitalia they are
characterized as separate species. In scientific literature, there is no doubt concerning their
taxonomic status [15,32,51,52].

Within its large distribution area, the morphology of P. adstrictus, and especially the
prothorax shape, varies [18]. In the past, a large number of taxa have been described that
are currently considered synonyms of P. adstrictus [15,53]. The beetles from the Ötztal
Alps, in fact, showed slightly different body proportions in comparison to specimens
from northeastern North America. For example, the elytra were slightly longer in re-
lation to the pronotum in the alpine populations (mean = 2.62) than in the latter ones
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(mean = 2.51; [29]). The same value as in North America was found in specimens from
Yunnan/China (mean = 2.51).

Furthermore, the number of foveolate punctures in the beetles from the Ötztal Alps
seemed to be reduced. Although no statistical data exists about the number of this punc-
tures from other populations of P. adstrictus, [18] (p. 486) gave an indication on that. He
stated, that there are five or six and “very seldom 4” punctures on the third elytral in-
terval. The specimens used for comparison from Yunnan/China also had a significantly
higher average number of points than those from the Ötztal Alps. However, it is uncertain,
whether this difference has taxonomic significance. It might well be that this difference in
the number of foveolate punctures was due to specific environmental conditions, as has
been previously shown for P. oblongopunctatus, with the number of pits on the elytra being
related to soil moisture [54,55].

On the other hand, the male genitalia seemed to be highly conserved across the
whole distribution area. When comparing animals from the Ötztal Alps with that from
Yunnan/China, no differences in the external shape of the aedeagi were found. Also, male
genitalia of North American specimens seemed to be similar, as indicated by an illustration
by [18], to which [29] refers to.

4.2. DNA Barcode Analysis and Origin of Alpine Populations

The arctic-alpine disjunction observed in numerous cold-adapted species is usually
caused by Pleistocene climatic oscillations. During glacial maxima, the Alps were nearly
entirely covered by ice [56,57]. Consequently, species survival was mostly restricted to
larger unglaciated areas at the Alpine periphery, particularly in the southwestern, southern
and eastern parts. From there, numerous species managed to repopulate former devastated
areas [58,59]. In a few cases, confirmed based on genetic data [60,61], a scenario that seems
to also apply to the distribution pattern of Pterostichus adstrictus. This hypothesis is also
supported by the co-occurrence long-term survival in inner alpine regions on ice-free
mountaintops (nunataks) has been recently of Miscodera arctica, another species with a
highly disjunct arctic-alpine distribution in the Kaunertal.

The analysis of the molecular data confirmed a clear differentiation of the European
specimens of Pterostichus adstrictus from those of North America, indicating a lack of
gene flow in the recent past. This also becomes evident in terms of genetic distances,
with values ranging from 1.69% up to 2.17%. The most prevalent haplotype of Northern
European P. adstrictus was shared with P. oblongopunctatus from Central and Northern
Europe [25,42], whereas the Austrian P. adstrictus formed a separate but closely related
clade with a minimum distance of 0.15% to a haplotype of Pterostichus oblongopunctatus
(Figure 5). Application of the widely used “conventional” phylogenetic COI divergence
rate of 2.3% per MY [62] would imply that the alpine and artic populations diverged in
the Middle Pleistocene, ~300 KYA, but well before the last glacial maximum (~18–25 KYA).
Indeed, this “conventional” divergence rate for the COI is not universal, with quite some
variation, especially among higher taxa [63]. In addition, there is increasing empirical
evidence for a time dependency of the molecular clock, with phylogenetic substitution
rates considerably overestimating recent events on the population level [64–66]. Hence, it
might well be that the alpine and arctic populations split much more recently.

The lack of mitochondrial divergence between P. oblongopunctatus and northern P. ad-
strictus, despite the clear differences in morphology [31,33,67], indicates either recent
divergence or, more likely, a recent mitochondrial introgression event. However, the pu-
tative direction of this suggested phenomenon remains unclear with the data available.
There is increasing evidence from many different animal species that range-wide (or across
large parts of a species’ distribution) mitochondrial replacement is more common than
previously thought [68–71] and hybridization/introgression has been repeatedly reported
in carabid beetles [72–74], including the genus Pterostichus [43,75]. Unfortunately, here,
mitochondrial data alone are insufficient to clarify which processes underlie the observed
haplotype sharing between P. oblongopunctatus and northern P. adstrictus. In addition, no
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hybrids in Scandinavia are known so far. To conclusively disentangle the effects of recent
divergence and potential introgression and infer robust population divergence times in
P. adstrictus, comprehensive nuclear multilocus data of more specimens from different
localities are needed.

4.3. Faunistic Interpretation and Historic Data

The discovery of P. adstrictus can be considered a surprise. Even though the species
clearly has a very restricted distribution in the Alps, it is very likely that it spans a larger area
than just the two areas where we found it. At the two sites where we found P. adstrictus, this
conspicuously large beetle was very abundant. In general, the Ötztal Alps are well studied
in terms of coleopterology, both in historical [76–82] and also more recent times [83–88],
with a particular focus on Obergurgl at the eastern border of the Ötztal Alps [89–91]. Yet,
none of these previous studies reported a potential presence of P. adstrictus in the Ötztal
Alps.

However, literature suggests that our findings of P. adstrictus may indeed not be the
first for Austria. In fact, specimens reported as P. oblongopunctatus by [80] in the Kaunertal
from elevations of 1930 m above sea level could actually refer to P. adstrictus. The two
species are easy to confuse and, in the Alps, the former only exceptionally exceeds 1500 m
above sea level [92–94]. Additionally, there are unconfirmed reports about a population of
P. adstrictus in the Hohe Tauern. This large mountain group is the highest part of the Eastern
Alps, situated about 70 km east of the Ötztal Alps. Finally, ref [95] reported Pterostichus bore-
alis Zetterstedt, [96] Platysma oblongopunctata var. borealis Zetterstedt and [97]—apparently
just following [95]—reported Pterostichus vitreus Dejean, each from Austria’s biggest glacier
Pasterze. However, these reports were previously not considered in the literature [98–100]
or regarded as untrustworthy [101,102]. A more recent search for P. adstrictus in the area
of the Pasterze glacier was unsuccessful and it still remains unclear whether historical
collection material can bring certainty about a further occurrence of P. adstrictus in the Alps.

4.4. Habitat Preference and Physiological Adaptations

The relict populations of P. adstrictus in the Alps are restricted to the alpine region
above the timberline and show stenotopic habitat use. In contrast, the circumpolar popula-
tions of the species are more eurytopic, inhabiting a variety of habitats from the northern
coniferous forest to the subarctic region [103].

Consistent with the observations from the Ötztal Alps, P. adstrictus in Northern Europe
prefers forest-free, open (grassland) habitats on gravel soils (moraine) with sparse and
patchy vegetation [22,103]. However, the species additionally uses open forests and forest
edges in Scandinavia [103], apparently prefers moors and moist heath locations in Ireland
and England [23,24], regularly occurs in cultivated arable land in northern Norway [22,67]
and in moderately moist to dry meadows in Iceland [104]. Contrasting biotope preferences
from different parts of the area are also known from Siberia [105]. Thus, P. adstrictus
colonizes forests in the extreme continental sector, while in the eastern transitional sector,
open habitats are preferred.

In North America, P. adstrictus can be found from coastal regions to high altitudes
in the mountains and accordingly inhabits an even broader range of biotope types such
as forests, hedges, meadows, fields, coastal tundra and even gravel pits, gardens and
roadsides [106]. There, the species is classified as a eurytopic forest dweller. It prefers
coniferous forests, frequently living on its edges or in clearings and regularly benefitting
from forest fires and wind breaks [107–110].

The common denominator characterizing all of the P. adstrictus habitats seems to
be spatiotemporal dynamics and instability. For example, semiopen forests require peri-
odic turnover processes, as do locations characterized by glaciers or mountain streams.
Populating habitats with temporal and spatial instability would require certain mobility.
Indeed, spontaneous flight observations [111], catches from flight interception traps [112]
and findings from artificial light sources [106] have been reported for P. adstrictus. Records
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from drifted detritus [106] and findings from a young volcanic island [104] also indicate
the species’ ability to fly. This should also apply to the beetles found in the Ötztal Alps.
Indeed, the membranous wings of the examined beetles were well developed. However,
the measured values did not match those of regular flyers such as Harpalus rufipes (De Geer,
1774) or Bradycellus harpalinus (Audinet-Serville, 1821) [113]. In addition to the size of the
hind wings, another anatomical feature, namely the presence of flight musculature, should
be used to assess the individual’s ability to fly. Although this has not been investigated in
the present study, it can be assumed that populations with such wing shapes do produce
individuals with flight ability.

The findings on the seasonal activity of P. adstrictus in the Ötztal Alps agree with
data for Scandinavian populations [114,115]. The species is a spring breeder with summer
larvae, although findings of newly hatched beetles in the early summer [53,115] and of
gravid females in autumn [18,106] indicate that hibernation in the larval or even pupal stage
might exceptionally occur. The species therefore has a flexible life cycle, contrary to other
ground beetle species with summer larvae that are “true summer breeders” with adult
hibernation only. Gonad maturation appears far less linked to the change from short to long
day conditions than it does for the closely related temperate species, P. oblongopunctatus
and P. quadrifoveolatus [116]. Furthermore, the ability of P. adstrictus to develop quicker and
more successfully in a wider temperature range than found in temperate species seems to
be an adaptation to the special climate of the (sub)artic region.

4.5. Accompanying Ground Beetle Fauna

The fauna co-occurring with P. adstrictus contains a considerable number of arctic-
alpine, boreo-montane or similarly ranging species. The finding of Miscodera arctica in the
Kaunertal is particularly noteworthy. This species populates a huge circumpolar, arctic-
alpine range, which is quite similar in extent to that of P. adstrictus. The small alpine area
consists of some disjunct populations, from Graubünden (Berniner Alps to Ortler Alps),
via Vorarlberg (Verwallgruppe) to South, North and East Tyrol (Ötztal Alps, Stubaier Alps,
Sarntaler Alps, Dolomites, Villgratner Berge, Kreuzeckgruppe) [79,93,117–119]. Miscodera
arctica has now been documented for the first time from the part of the Ötztal Alps north of
the Alpine main ridge. Cicindela campestris, Amara erratica and Cymindis vaporariorum, three
drought-tolerant species [27,120], were found together with P. adstrictus, indicating that
also P. adstrictus might prefer rather dry habitats in the Alps.

5. Conclusions

Pterostichus adstrictus is known as a cold-adapted ground beetle with a circumpolar
distribution. In the present study we have shown, based on both morphological and DNA
barcoding data, that the species is not restricted to the arctic/subarctic region. Pleistocene
relict populations are also present in the Alps, where this species appeared to be quite
abundant in suitable habitats. We found the species only at two sites in the Ötztal Alps,
but it is very likely that it is also present in other alpine regions, though probably, not
particularly common. Haplotype sharing between northern P. adstrictus populations and
P. oblongopunctatus indicates recent divergence and/or mitochondrial introgression in
regions of current or past sympatry and calls for follow-up studies. In order to clarify the
phylogenetic relationships and extent of potential interspecific geneflow in the subgenus
Bothriopterus and the temporal patterns of intraspecific divergence within P. adstrictus,
nuclear multilocus data should be applied.
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