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Abstract: Excessive pollen harvesting by bees can compromise the reproductive success of plants.
Plants have therefore evolved different morphological structures and floral cues to narrow the
spectrum of pollen feeding visitors. Among “filtering” mechanisms, the chemical and mechanical
protection of pollen might shape bee-flower interactions and restrict pollen exploitation to a specific
suite of visitors such as observed in Asteraceae. Asteraceae pollen is indeed only occasionally
exploited by generalist bee species but plentifully foraged by specialist ones (i.e., Asteraceae paradox).
During our bioassays, we observed that micro-colonies of generalist bumblebee (Bombus terrestris L.)
feeding on Taraxacum pollen (Asteraceae) reduced their pollen collection and offspring production.
Bees also experienced physiological effects of possible defenses in the form of digestive damage.
Overall, our results suggest the existence of an effective chemical defense in Asteraceae pollen,
while the hypothesis of a mechanical defense appeared more unlikely. Pre- and post-ingestive effects
of such chemical defenses (i.e., nutrient deficit or presence of toxic compounds), as well as their role
in the shaping of bee-flower interactions, are discussed. Our results strongly suggest that pollen
chemical traits may act as drivers of plant selection by bees and partly explain why Asteraceae pollen
is rare in generalist bee diets.

Keywords: Asteraceae; pollen defenses; generalist floral visitors; Bombus terrestris; chemical protection;
mechanical protection

1. Introduction

Through pollen collection, bees act concurrently as effective pollinators and herbivores, since both
larvae and adults feed exclusively on pollen and nectar [1,2]. Like other herbivorous insects, bees
display a high diversity of interactions with their host plants, from strict specialization (i.e., oligolecty,
where bees collect pollen from flowers of a single genus, subfamily, or family) to broad generalization
(i.e., polylecty, where bees exploit flowers of more than one plant family) [3–5]. Regardless of floral
specialization, bees display numerous adaptations to discriminate among plant species and to enhance
floral resource foraging [1,6–8], which can compromise the reproductive success of plants. For instance,
bees can remove 95.5% of the pollen produced by flowers of Campanula rapunculus (Campanulaceae) [9]
and some solitary species require the entire content of more than 30 flowers, even more than 1000
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flowers, to feed a single larva [7]. In response to excessive pollen harvesting, flowering plants have
drawn up complex defense mechanisms and adaptations. In fact, flowers have evolved several
morphological traits that can be viewed as adaptations preventing excessive pollen harvesting by
bees, such as heteranthery, nototribic flowers (i.e., dorsal anthers hidden in the upper lip of the flower,
such as in Lamiaceae), keel flowers (i.e., ventral anthers hidden in a boat-shaped keel formed by the
fusion of the two lower petals of the flower, such as in Fabaceae), floral tubes, poricidal anthers and
progressive pollen release (reviewed in [8]).

Selection may also act on pollen traits to narrow the spectrum of pollen feeding visitors.
For instance, although Asteraceae are ubiquitous in most temperate habitats [10], they are only
occasionally exploited by polylectic species such as Bombus [11,12] and Colletes [4] (i.e., Asteraceae
paradox [4]). This Asteraceae avoidance cannot be explained by complex floral morphology, since
compound inflorescences ensure an easy access to both pollen and nectar over an extended time
period [4]. The failure of several unspecialized bee species to develop on Asteraceae pollen rather
suggests that it may possess unfavorable or protective properties so that bees might require physiological
adaptations to use it [13–19]. Although Asteraceae pollens are known to have low protein content, this is
seemingly not the only reason for the inadequacy of their pollen [20]. The pollen may actually lack other
essential nutrients, contain toxins, or display a low digestibility [4,13,17,20–22]. Such pollen protections
probably shape bee–flower interactions to lead to a narrowing of the spectrum of pollen-feeding visitors
in Asteraceae.

It is largely assumed that the synthesis of secondary metabolites constitutes a complex system
of chemical defenses in plants against herbivorous insect attacks [23,24]. Although these chemical
compounds are mainly studied in vegetative parts, some obviously occur in nectar and pollen of
flowering plants, with bee pollinators then exposed to their biological activities [24–32]. For instance,
sesquiterpene lactones are characteristic secondary metabolites in Asteraceae [33], with high
chemotaxonomic specificity [34]. Although they probably have evolved as defense through their
deterrence to herbivores [35], they also occur in pollen [36] and may display insecticidal activities [37].
Among chemical defenses, constraints could also act through nutrient availability. Although proteins are
often regarded as a reference in terms of nutritional quality, lipids are also important [38–41], including
sterols, essential compounds in bee physiology (e.g., pupation, ovary development) that are exclusively
exogenous [42,43]. The fact that ∂7-sterols often occur in Asteraceae pollen in higher proportions than
more common and usable sterols (i.e., 24-methylenecholesterol, ß-sitosterol, and ∂5-avenasterol) may
indicate a defense mechanism against excessive pollen harvesting [22]. In addition to these variations
of pollen primary and secondary metabolites, pollen also varies in its wall resistance properties,
which may result in incomplete digestion. Transmission electron microscopy has revealed that
Asteraceae pollen possesses a thick multilayer wall [44], which might inhibit the extraction of nutrients
and act as a mechanical defense [17,21]. Despite these hypotheses, it is unclear why Asteraceae pollen
is unsuitable for most bee species and the Asteraceae paradox remains unsolved. In the present study,
bumblebee micro-colonies (Bombus terrestris L.) were forced to feed on different diets to investigate the
unfavorable properties of Taraxacum pollen. From the observed patterns in foraging behavior, larval
development, and digestive damages, we infer possible mechanical or chemical protective properties
of Asteraceae pollen.

2. Material and Methods

2.1. Model System

Taraxacum officinale Weber (Asteraceae), or common dandelion, is an apomictic perennial
herbaceous species that originated in Eurasia, although is now cosmopolitan. Indeed, this invasive
species is capable of establishing under diverse environmental conditions and is now globally
distributed [45]. This weed has attractive floral capitula and it is frequently observed among native
vegetation [46,47], attracting a wide variety of insect pollinators including Hymenoptera, Diptera,
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and Lepidoptera [48]. Such attractiveness can be explained by the fact that each floret produces
abundant quantities of pollen and nectar that are easily accessible [49]. Dandelion is in flower for most
of the year but has a peak flowering time from late March to May when many pollinators emerge
after winter, including the buff-tailed bumblebee queens (Bombus terrestris L.). Dandelion flowers may
then be a useful food resource to early pollinators (i.e., emerging in early spring) when other flower
species are often few and sparse. Because this species is so widespread and can be locally abundant, it
is important to investigate whether its pollen might have negative effects on generalist pollinators and
determine its protective properties.

Bombus terrestris is one of the most abundant and widespread bumblebee species in the west
Paleartic. This social species is a highly polylectic bumblebee foraging on hundreds of different plant
species and numerous plant families [12,50,51]. As a consequence, it plays a relevant role as a pollinator
in wild and cultivated plant communities [50]. However, colonies do not show equivalent development
on all pollen species [22] and only occasionally exploit Asteraceae pollen [11,12].

2.2. Pollen Diets

How structural and chemical properties of Taraxacum pollen can impact pollinator behavior,
performance, and health was investigated by the use of five different pollen treatments: (i) control
diet, (ii) natural Taraxacum diet, (iii) crushed Taraxacum diet, (iv) phytosterols added to control diet,
and (v) lactones added to control diet (Figure 1). The control diet consisted of pollen loads with a
dominance of Salix sp. mixed with inverted sugar syrup (BIOGLUC®, Biobest, Westerlo, Belgium)
to obtain consistent candies. Salix pollen is described as an excellent resource for B. terrestris colony
development and is then unlikely to display traits acting as defenses [20,22,52]. The natural Taraxacum
diet consisted of pollen loads with a dominance of Taraxacum sp. mixed with inverted sugar syrup
to obtain candies. This pollen diet retained both mechanical and chemical properties of Asteraceae
pollen that could act as defenses against generalist bees. The crushed Taraxacum diet consisted of
Taraxacum pollen crushed under liquid nitrogen and mixed with inverted sugar syrup to obtain candies.
Microscopical examination revealed that at least 70% of Taraxacum pollen grains were broken after
crushing. This treatment allows for eliminating the mechanical protection of Taraxacum pollen while
retaining the chemicals that could act as defenses. The phytosterol- and lactone-supplemented diets
contained chemicals extracted from Taraxacum pollen (Supplement S1) mixed with the control diet,
which eliminated eventual mechanical protection of Taraxacum pollen but conserved either nutrients
or eventual defense secondary metabolites. The chemical extracts of Taraxacum pollen were mixed
with the control diet in ratios that mimic their proportions in the Taraxacum pollen diet. All treatment
diets contained the extract solvent (aqueous ethanol, 1:1; 0.4 mL/g of diet) to control for its potential
negative effects when assessing the added chemical treatments (i.e., phytosterol and lactone diets).
Pollen loads of Salix and Taraxacum were purchased from the company “Ruchers de Lorraine” and
were sold as organic nutrition complement (i.e., free of pesticides).

2.3. Bioassays

2.3.1. Experimental Design

The experiments were conducted at the University of Mons from February to May 2016.
Two-day-old workers of Bombus terrestris were collected from five different colonies (i.e., A, B,
C, D, and E) provided by Biobest bvba (Westerlo, Belgium). They were divided into 50 micro-colonies
(i.e., 10 micro-colonies per colony) of 5 workers and placed in different plastic boxes (10 × 16 × 16
cm). The micro-colonies were distributed among the different diets to ensure homogeneity of origins
(i.e., 2 micro-colonies from each founding colony per treatment for a total of 10 micro-colonies per
treatment) (Figure 1). These micro-colonies were fed ad libitum with sugar syrup (BIOGLUC®, Biobest)
and pollen candies in a dark room at 27 ◦C and 76% relative humidity during the 35-day period
following the first episode of egg-laying of a worker. New pollen candies were provided every 2 days
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(0.5, 1.0, or 1.5 g depending on the age of the micro-colony) to avoid nutrient alteration. Syrup and
pollen supplies as well as monitoring of micro-colonies were conducted in a darkroom under red light
in order to avoid disturbing colonies, as bees do not detect this range of the light spectrum. Such a
method using queenless Bombus terrestris micro-colonies for testing the suitability of pollen diets has
been validated previously and is accepted as a good estimate of queen-right colony development [53].Insects 2020, 11, x FOR PEER REVIEW 4 of 17 
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Figure 1. Experimental design and summary of diet treatments provided to B. terrestris.
Each micro-colony consisted of 5 workers fed for 35 days. Mortality, offspring production, and resource
collection (i.e., pollen and syrup) were monitored during or at the end of the bioassays.

2.3.2. Micro-Colony Performance

Feeding response and micro-colony development were evaluated based on: (i) composition
(i.e., number of eggs, non-isolated larvae, isolated larvae, pupae, non-emerged and emerged drones)
and fresh weight of offspring, (ii) larval ejection, (iii) pollen collection (i.e., amount of pollen consumed
and stored) (fresh matter), (iv) pollen efficiency (i.e., the weight of hatched offspring divided by the
total pollen collected per micro-colony), and (v) syrup collection (i.e., amount of syrup consumed and
stored) (parameters adapted from [53]). Pollen and syrup collections were measured by weighing
pollen candies and syrup container before their introduction into the micro-colony and after their
removal (i.e., every 2 days). All weight parameters (i.e., brood weight, pollen collection, and syrup
collection) were standardized by the total weight of workers in the micro-colonies to avoid potential
bias from worker activities (i.e., consumption and brood care).

2.3.3. Digestive Damages

For each treatment, a total of five bumblebee workers were randomly collected among the different
micro-colonies (i.e., one worker per founding colony) and cold-anesthetized prior to the cutting of
the abdomen. The abdomen cuticle was slightly incised and a lateral part was removed to facilitate
the fixation, dehydration, and paraffin-embedding processes. The prepared abdomens were fixed by
immersion in Duboscq–Brazil fluid (composition: formalin/acetic acid/ethanol containing 1% picric
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acid/distilled water, respective proportions: 260/70/425/245, v/v) for 48 h. After dehydration and
paraffin-embedding, abdomens were cut in serial sections of 5 µm thicknesses on a Reichert-Jung®

2040 microtome with the use of a softening agent (MollifexTM) and placed on silane-coated glass
slides. After rehydration, the sections were stained with hematoxylin, Ponceau-acid Fuchsin-Orange G
and light green (Masson’s Trichrome stain) to allow histological examination. Tissue sections were
examined and photographed with the help of a research optical microscope (Leitz® Orthoplan, Leica,
Wetzlar, Germany) equipped with a high sensibility camera (Leica® DFT7000 T, Wetzlar, Germany)
using the TWAIN driver and Corel PHOTO-PAINT® software.

2.4. Data Analysis

To test for differences in syrup collection, fitness (offspring mass; drone mass; number of individuals
within each developmental stage), pollen efficiency, and larval ejection among diet treatments, we
fitted a general linear mixed effects models with diet treatment as a fixed effect and colony as a random
factor. Syrup collection, total offspring mass, drone mass, and pollen efficiency per micro-colony were
analyzed using models with a Gaussian error structure (i.e., normally distributed residuals, “lme”
function, R-package “nlme”; [54]). For drone mass, we added micro-colonies as a hierarchical random
effect in the model so that the non-independence of the data could be taken into account (i.e., several
data points per micro-colony). We also assessed pollen collection over time with the day of experiment
as a continuous fixed effect and micro-colonies as a hierarchical random effect in the model (repeated
measures). As normality of the residuals was not respected, we used a gamma-distribution model and a
logit link function, which is adapted for continuous and non-normal data. Larval ejection was analyzed
using a binomial model with the number of ejected larvae and the total number of living offspring
produced per micro-colony as a bivariate response (“glmer” function, R-package “lmerTest”; [54]),
with an observation-level random effect added to the model to account for overdispersion (i.e., each
data point received a unique level of random effect that modelled the extra-parametric variation
present in the data; [55]). Numbers of individuals within each developmental stage per colony were
assessed using models with a Poisson distribution for count data after checking for overdispersion
(“glmer” function, R-package “lmerTest”; [54]). An observation-level random effect was added to the
Poisson models when data overdispersion occurred [55]. When a significant effect was found (p < 0.01),
multiple pairwise comparison tests were performed using Tukey contrasts and False Discovery Rate
adjustment to determine how diet treatments significantly differed from each other (“glht” function,
R-package “multcomp”; [56]). All analyses were performed in R version 3.4.0 [57].

3. Results

3.1. Micro-Colony Performance

3.1.1. Resource Collection

We found a significant effect of day (χ2 = 366.60, df = 1, p < 0.001) and diet treatment (χ2 = 53.59,
df = 4, p < 0.001) on pollen collection by B. terrestris micro-colonies. Post-hoc analyses indicated that
pollen consumption increased over time for all diet treatments (Figure S1) but that micro-colonies
fed natural and crushed Taraxacum diets collected half as much pollen as micro-colonies fed other
diets (Figure 2B, Table S1). We also found a significant effect of diet treatment on syrup collection
(χ2 = 18.73, df = 4, p < 0.001). Post-hoc test showed that micro-colonies fed the phytosterol diet collected
significantly higher amounts of syrup than micro-colonies fed natural and crushed Taraxacum diets.
Micro-colonies fed the control diet did not differ from micro-colonies fed the phytosterol and natural
Taraxacum diets, while micro-colonies fed lactone diet did not differ from micro-colonies fed all other
treatments (Table S1).
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Figure 2. Effects of diet treatments on B. terrestris in micro-colonies. (A) Details of a micro-colony,
photography N. Roger, (B) pollen collection in each micro-colony across treatments, (C) pollen dilution
in each micro-colony across treatments, (D) total mass of hatched offspring in each micro-colony across
treatments, (E) proportion of ejected larvae in each micro-colony across treatments, (F) number of
emerged drones in each micro-colony across treatments. Each small data point represents a micro-colony
and large points are mean values of each treatment. Error bars indicate the standard error of means.
Letters indicate significance at p < 0.01.

3.1.2. Fitness

We found a significant effect of diet treatment on the total mass of hatched offspring
(i.e., all developmental stages except eggs) produced by B. terrestris micro-colonies (χ2 = 122.41,
df = 4, p < 0.001). Post-hoc analyses indicated that micro-colonies fed natural and crushed Taraxacum
diets exhibited significantly lower production of hatched offspring than micro-colonies fed all other
treatments (Figure 2C; Table S1).

While all micro-colonies produced eggs, we found a significant effect of treatment on the number
of non-isolated larvae produced (χ2 = 15.54, df = 4, p = 0.004), with post-hoc Tukey analyses showing
that micro-colonies fed the natural Taraxacum diet produced less non-isolated larvae than micro-colonies
fed the control diet (Table S1). We also found a significant effect of treatment on the number of pupae
produced (χ2 = 32.50, df = 4, p < 0.001), with micro-colonies fed the control and phytosterol diets
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producing more pupae than bees in the natural and crushed Taraxacum treatments Table S1). We then
assessed if the diet treatment also affected the ability of a micro-colony rearing their offspring to
adulthood and found a significant difference in the number of emerged drones (χ2 = 49.88, df = 4,
p < 0.001), while their mass did not differ (χ2 = 10.45, df = 4, p = 0.033). Post-hoc pairwise comparisons
showed that micro-colonies fed control, phytosterol, and lactone treatments produced more adult
offspring than micro-colonies fed natural and crushed Taraxacum diets, which produced adults only
occasionally (Figure 2D; Table S1). We found no significant effects of treatment either on the number of
isolated larvae (pre- and post-defecating stages) or on the number of non-emerged drones (Table S1).

3.1.3. Stress Response

In response to a diet stress, adult bumblebees may display peculiar behavior, such as larval
ejection from the brood [20] or pollen dilution [22]. We found a significant effect of diet treatment on
the proportion of ejected larvae in micro-colonies (χ2 = 21.14, df = 4, p < 0.001). A post-hoc Tukey test
showed that micro-colonies fed the natural Taraxacum and phytosterol treatments exhibited higher
larval ejection than micro-colonies fed the control treatment. Larval ejection in micro-colonies fed the
lactone diet did not differ from all other diets, while larval ejection in micro-colonies fed the crushed
Taraxacum treatment was significantly lower than in micro-colonies fed the natural Taraxacum treatment,
but did not differ from micro-colonies fed the control, lactone, and phytosterol diets (Figure 2E; Table S1).
We also found a significant effect of diet treatment on pollen dilution (χ2 = 95.52, df = 4, p < 0.001).
Post-hoc analyses indicated that bumblebees fed natural or crushed diets collected a significantly
higher amount of syrup per gram of pollen compared to the other diets (Figure 2F; Table S1).

Another evaluated stress response was pollen diet efficiency, which highlights when a micro-colony
needs to consume more pollen to produce offspring, and, in turn, could be indicative of a digestibility
constraint or nutrient deficiency. We found a significant effect of treatment on pollen diet efficiency
(χ2 = 100.54, df = 4, p < 0.001), with micro-colonies fed the natural and crushed Taraxacum treatments
having a lower pollen efficiency than bees in all other treatments (Table S1).

3.2. Digestive Damage

3.2.1. General Histology

The bumblebee digestive tract, as in all arthropods, is composed of a cuticle-lined foregut
(stomodaeum), a midgut (mesenteron), and a cuticle-lined hindgut (proctodaeum). The mesenteron is
the principal site of nutrient digestion and absorption, as well as the first line of defense against the
absorption of ingested plant allelochemicals (Figure 3A). As such, it contains high activities of digestive
enzymes, as well as detoxification and antioxidant enzymes. The mesenteron is lined by a laminar
structure, the peritrophic membrane (PM), that consists of a network of chitin microfibrils within a matrix
of carbohydrates and proteins. This membrane plays a protective role against mechanical damage
from abrasive food particles, but also against ingested pathogens and certain plant allelochemicals
while allowing absorption of the nutrients straight into the hemolymph. The peritrophic membrane
also compartmentalizes the mesenteron lumen (L) into two compartments, the endoperitrophic space
(inside the membrane) that may contain pollen grains (P), and the ectoperitrophic space (outside the
membrane). Next along the digestive tract are the Malpighian tubules (MT) that occur in the region of
the sphincter (pylorus) separating the mesenteron from the ileum (I). These extensions of the digestive
tract are excretory organs that float freely in the bee body cavity.

The midgut epithelium represents an important interface between the insect and its environment
(Figure 3B). It consists of discrete crypts (Cr) and lies on the connective tissue (Con). This epithelium
is formed by a single layer of three cell types: (i) columnar or digestive cells responsible for enzyme
production and nutrient absorption, (ii) regenerative cells to replace dead cells, and (iii) endocrine cells
to secrete peptide hormones. Regenerative cells form cellular nidi (CN) in the base of the intestinal
crypts, where cell divisions occur. The columnar cells are the major cell type with numerous microvilli
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(Mv) forming, at the apical pole, a brush-like border that increases the surface area for both absorption
and secretion. They display a slightly granular cytoplasm and, at their center, a large ovoid and
euchromatic nucleus (Nu).
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Figure 3. (A) Cross-section of the digestive tract of bumblebee worker. (B) Details of intestinal crypts
and mesenteric epithelium. CN: cellular nidi; Con: connective tissue; Cr: intestinal crypts; Cy: granular
cytoplasm; I: ileum; L: lumen; MT: Malpighian tubules; Mv: microvilli; P: pollen grains; PM: peritrophic
membrane. Scale bar, 50 µm.

3.2.2. Treatment Effects

The control and natural Taraxacum treatments did not cause damage in the digestive tract
(Figure 4A,B, Table 1). The mesenteric epithelium displayed a normal organization for both treatments.
The morphology of digestive cells appeared to be normal without cytoplasmic vacuolization or pyknotic
nucleus. The nuclei had a smooth and regular appearance. No necrotic cells were observed both in the
base and at the apex of the intestinal crypts (Cr), which remained well shaped. Cellular nidi (CN) of
regenerative cells were observed in the base of the intestinal crypts. Microvilli (Mv) at the apex of the
digestive cells were well-developed, without any partial degradation.

Table 1. Signs of histopathological alterations in the digestive tract of B. terrestris workers fed various
diet treatments.

Digestive Damages
Treatment

Control Natural Taraxacum Crushed Taraxacum Phytosterol Lactone

Cytoplasmic blebbing X
Cytoplasm vacuolization X X
Disorganization of the
brush-like border X

Hydropic degeneration X
Interstitial edema X
Necrotic cells X X
Pyknotic nuclei X X

The crushed Taraxacum treatment induced marked histopathological alterations in the digestive
tract with features of apoptosis and necrosis (Figure 4C,D, Table 1). The intestinal crypts were still
visible but several necrotic cells (NC) detached from the epithelium and formed large clusters in the
mesenteron lumen. These necrotic cells were observed both in the base and at the apex of the intestinal
crypts. Cytoplasmic vacuolization (V) and pyknotic nuclei (PN) were well marked. Disorganization or
loss of the brush-like border and hydropic degeneration (HD), as well as cytoplasmic blebbing (BB)
were also frequently observed.
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Figure 4. Digestive tracts of the bumblebee workers exposed to the natural Taraxacum treatment (A,B),
the crushed Taraxacum treatment (C,D), the phystosterol treatment (E,F), and the lactone treatment
(G,H). BB: cytoplasmic blebbing; E: interstitial edema; CN: cellular nidi; Con: connective tissue;
Cr: intestinal crypt; Cy: granular cytoplasm of digestive cell; DC: detached cells; HD: hydropic
degeneration; L: lumen; MT: Malpighian tubules, Mv: microvilli; NC: necrotic cells; Nu: nucleus;
PN: pyknotic nuclei; SSM: striated skeletal muscle; T: tracheal system; V: cytoplasmic vacuolization.
The arrow indicates the loss of the brush-like border. Scale bar, 50 µm.
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The digestive tract damage of bees exposed to the phytosterol treatment were less severe
(Figure 4E,F, Table 1). The intestinal crypts were still well organized. However, isolated necrotic
cells (NC) and cellular debris were observed in the mesenteron lumen. Interstitial edema (E) in the
connective tissue that forms the central axes of intestinal crypts was also observed. Occurrence of
pyknotic nuclei (PN) was lower than for crushed Taraxacum treatment and we did not observe hydropic
degeneration despite cytoplamic vacuolization (V). The brush-like border was still homogeneous with
well-developed microvilli (Mv).

No degeneration of epithelial cells was observed in the digestive tract of bees exposed to the
lactone treatment (Figure 4G,H, Table 1). The mesenteron displayed a normal morphology as in the
control treatment: the intestinal crypts were well-formed with a homogeneous brush-like border.
Only some cells detached at the apex of the intestinal crypts (DC), which was probably due to normal
cell renewal.

4. Discussion

Our study assessed the impact of potential mechanical and chemical pollen defenses of Asteraceae
on the fitness of a generalist pollen forager through a mechanistic lab experiment. Bumblebee
micro-colonies fed non-Taraxacum pollen increased their pollen collection over time twice as much as
the micro-colonies fed natural and crushed Taraxacum pollen. Micro-colonies fed natural and crushed
Taraxacum pollen produced less offspring and especially reared less offspring to adulthood compared
with all other treatments. More larvae were ejected from micro-colonies fed natural Taraxacum and
phytosterol treatments than in the control treatment. Finally, bees in the crushed Taraxacum and
phytosterol treatments were more likely to exhibit digestive damage than bees fed all other treatments.
These results suggest physiological costs associated with the collection of Taraxacum pollen.

Our results provide evidence that Taraxacum pollen displays defenses that impose severe fitness
effects of reduced reproduction to the bumblebee micro-colonies by partly preventing larvae from
completing their development to adulthood in both natural and crushed Taraxacum treatments. Such low
suitability of Taraxacum pollen has already been highlighted in previous studies with a diet of pure
dandelion pollen that has been reported to impede larval development in non-specialist solitary bee
species like mason bees [4,17,18,58], prevent brood production in honey bees [59], and cause 100%
larval ejection in bumblebees [15]. The development failure of honeybees on Taraxacum pollen [58]
has been attributed to its lack in tryptophan and phenylalanine [60] and its deficiency in arginine [61]
(i.e., essential amino acids). If this nutritional hypothesis prevails as the sole explanation for pollen
defense in Taraxacum, our experimental design should have allowed bumblebees micro-colonies
to increase their food intake to compensate for any nutrient deficit. However micro-colonies fed
natural and crushed Taraxacum pollen treatments displayed reduced pollen collection compared with
micro-colonies fed all other diet treatments. Such a difference in pollen collection behavior and
reproduction reveals that no food compensation has occurred to balance the low efficiency of Taraxacum
pollen, suggesting that a nutrient deficit cannot be considered the sole pollen defense. However our
experiment does not provide support for totally rejecting the nutritional hypothesis as one of the
effective defense mechanisms in Asteraceae pollen.

The reduced pollen collection on Taraxacum diets may be indicative of feeding deterrence that
could be due to low digestibility (i.e., physical defense), nutrient deficit, or presence of toxic compounds
(i.e., chemical defense), which may be either directly toxic or interfere with nutrient assimilation [62,63].
Regarding the hypothesis of physical defense, Asteraceae pollen grains possess a thick multilayer wall
that retains sporopollenin [44], as well as high amounts of pollenkit [16]. These structural properties
of pollen grains could interfere with the nutrient assimilation process and render digestion difficult,
requiring specific enzymes for extracting nutrients [17,21]. Such a digestibility constraint has been
reported for honeybees fed Taraxacum [64] and could be responsible for the failure of Chelostoma
rapunculi (oligolectic on Campanula genus), C. florisomne (oligolectic on Ranunculus genus), and Hoplitis
adunca (oligolectic on Echium genus) to develop on Asteraceae pollen [17]. However, the fact that pollen
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efficiency in micro-colonies fed crushed Taraxacum treatment was close to that in micro-colonies fed
natural Taraxacum treatment indicates that Taraxacum unsuitability for bumblebees is not due to complex
pollen structure (i.e., mechanical defense) but rather to either missing essential dietary components or
presence of toxic compounds that interfere with physiological processes (i.e., chemical defense).

Chemical defenses of pollen may actually result in both pre-ingestive effects, by reducing pollen
collection, and post-ingestive effects, by reducing reproduction [65]. Pre-ingestive effects were evident
in our study since micro-colonies fed natural and crushed Taraxacum pollen treatments displayed
reduced pollen collection. Such regulation of food intake can be explained by the ability of bumblebees
to continuously assess the pollen quality through chemotactile cues (nutritional and non-nutritional
cues) prior to ingestion [66,67]. While it has been demonstrated that individual bumblebee foragers are
able to assess the overall amino acid (i.e., free and proteinogenic) and lipid contents of pollen to provide
their colonies with highly suitable food [41,67], toxic substances may also be detected and subsequently
affect foraging decision (i.e., chemosensory perception translated into behavioral response). For
instance, mitigation of unsuitable chemical properties may be achieved through pollen mixing behavior
during foraging (i.e., “toxin” dilution; [68]). The fact that bumblebees feeding on Taraxacum pollen (i.e.,
natural and crushed treatments) collected a higher quantity of syrup, which corresponds to some kind
of mixing behavior assumed to dilute the chemicals [22], supports the hypothesis of chemical defense
in Taraxacum pollen. However our pattern of pollen collection suggests that Taraxacum phytosterols
and lactones are unlikely to deter bumblebee feeding.

Post-digestive effects were less obvious than pre-ingestive ones in our experiment since reduced
reproduction in micro-colonies fed natural and crushed Taraxacum pollen treatments might be due
to either effective chemical defense of ingested pollen or malnutrition linked to the reduced pollen
collection. Although our data do not allow one hypothesis to prevail over another, digestive damage
in bumblebees fed the crushed Taraxacum diet might be indicative of an effective chemical defense
afforded by toxic compounds in the pollen. In crushing the Taraxacum pollen, we may actually have
increased the level of chemical defenses by improving the bioavailability of toxins but also the level
of physical damage by creating smaller shards of exine, which are more abrasive for the digestive
tract than intact exine; these, however, do not account for an original mechanical defense as these
shards were produced by crushing the Taraxacum pollen (i.e., experimental artifact) [65]. Nevertheless,
the chemical hypothesis is supported by our finding that bees fed the phytosterol diet also displayed
digestive damage. As in most Asteraceae species, Taraxacum pollen displays a high proportion of
δ7-sterols. Such an occurrence of these quite rare phytosterols may be foreseen as a defense mechanism
against excessive pollen harvesting and could have contributed to reduced reproduction in natural
and crushed Taraxacum treatments. The peculiar phytosterolic composition of Asteraceae pollen has
been already pinpointed as detrimental to bumblebee micro-colony development (i.e., slowing down
of micro-colony development and increase of larval mortality) [22,69]. Such a function of δ7-sterols
as a post-ingestive defense against herbivory has also been suggested in other insect groups, such as
grasshoppers [70–73] and two lepideptoran species [74,75]. By contrast, our results suggest no negative
post-ingestive effects of lactone treatment on micro-colony reproduction nor worker digestive tracts. It
is important to note that the impacts of pollen diet on the bee gut microbiota should also be taken into
consideration when investigating pollen post-ingestive defenses. Bacterial gut symbionts have been
shown to be important for parasite resistance and degradation of secondary plant metabolites, as well
as for pollen digestion and nutrient assimilation [76–80]. The bee microbiome is, therefore, a crucial
factor affecting bee health. It is already known that nutrient content can modulate the bacterial
composition in the bumblebee gut [81]. In the same way, secondary compounds in pollen could affect
bees via changes in the gut microbiota, acting as post-ingestive defenses.

Overall, the chemical traits of Taraxacum pollen acting as defenses against excessive harvesting
merit further investigation. On one hand, many other secondary compounds could account for the
chemical defense of Taraxacum pollen (e.g., alkaloids). On the other hand, nutrient concentration
and composition may also act as chemical defense since both excessive and deficient amounts of
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macronutrients are detrimental [82]. For instance, too high concentration of proteins or lipids may
affect survival and reproduction [41,83,84], and malnutrition can also reduce investment in producing
offspring [20]. The nutrient balance is therefore highly delicate and should not be neglected when
investigating pollen defense mechanisms.

5. Conclusions

The observed patterns clearly point to the importance of chemical and mechanical defenses in
shaping the relationships between bees and flowers, as highlighted in traditional plant–herbivore
interactions [85]. We found that the mechanical defenses of Asteraceae pollen appear quite negligible,
while chemical protection may act through the presence of toxic compounds or imbalanced nutrient
content. Such unsuitable chemical properties of pollen can be assessed by bees based on chemotactile
cues and induce a feeding deterrence resulting in reduced pollen collection (i.e., pre-ingestive effects).
Malnutrition, as well as physiological costs linked to detoxification, can also reduce offspring production
or increase mortality in bees (i.e., post-ingestive effects). These pre- and post-ingestive effects may
explain why Asteraceae pollen is rarely a component of the diet of bumblebees, including the most
polylectic species (e.g., Bombus terrestris) [12], despite the diversity and the abundance of this plant
family [10]. However, it is important to note that, compared with post-ingestive defenses, pre-ingestive
defenses may benefit both partners as they are less costly for plants (i.e., reduction of pollen lost)
and allow bees to avoid physiological damage (i.e., reduced reproduction and increased mortality or
digestive damage). Future experiments should aim to accurately determine the pollen traits responsible
for chemical defense in Asteraceae pollen and help to elucidate the Asteraceae paradox in bee–plant
interactions, considering host–microbiome interactions.
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