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Abstract: Dengue fever is one of the most rapidly spreading arthropod-borne diseases. Diurnal
vectorial properties of Aedes albopictus contribute to the dispersion of the dengue viruses. Frequent and
injudicious use of synthetic insecticides led to the evolution of resistant phenotypes in Ae. albopictus
which necessitates the search for an alternative of current control strategies. Developing a long-lasting
and environmentally safe tactic based on knowledge of ecology and population dynamics of
Ae. albopictus is critical. Therefore, with a view towards biological control and ecology, the effect of
entomopathogenic fungi (EPF) Beauveria bassiana on filial and first filial generations of Ae. albopictus
were studied. Investigations showed 87.5% adulticidal activity leading to altered fecundity and adult
longevity in a filial generation. The lethal (LC50) and sublethal (LC20) concentrations of B. bassiana
were applied to filial generation (F0) to study demographic parameters in the first filial generation (F1).
Results showed reduced net reproductive rates (Ro) intrinsic rate of increase (r), and mean generation
time (T) compared to uninfected controls. Prolonged larval and pupal duration were observed
followed by reduced longevity of male and female adults. Fecundity in the first filial generation was
significantly changed with the lethal and sublethal concentrations of B. bassiana. Thus, it is concluded
that B. bassiana has the potential to play a vital role in integrated mosquito management strategies.
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1. Introduction

Mosquito-borne diseases have been a primary concern for the human population for a long time.
Due to Aedes albopictus, more than 100 nations in tropical and subtropical regions around the world are
confronting the dangers of dengue fever, yellow fever, and chikungunya [1]. Diurnal and repeated
blood-feeding behavior of Ae. albopictus makes it more dangerous than other mosquito species, it also
facilitate the rapid transmission of diseases [2]. Moreover, past injudicious use of synthetic insecticides
against larvae and adults of mosquito led to the evolution of resistant phenotypes [3], environmental
contamination, and human health risks. Specifically, indoor use of synthetic insecticides against
medically-important pests like mosquito negatively impact human health [4,5]. Non-target and broad
spectrum insecticides negatively impact biodiversity [6–8] and life cycles of non-target insects [9–11].
All these issues contribute for the need of research for alternative control methods which would be
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long-lasting and safe for the environment and humans. As biological control agents, entomopathogenic
fungi (EPF) are cosmopolitan and can be used safely against insect pests [12–21]. In recent studies, EPF
have also shown promising adverse effects on different mosquito species [22–24].

EPF can be used more efficiently if the impacts of the life cycle of Ae. albopictus are better
known. Population dynamics and population ecology of insects play a vital role in the development of
long-lasting control with EPF [22,25,26]. Life table analysis of Ae. albopictus can help to determine the
best time and stage upon which EPF should be applied for management [27,28].

Life table studies for Ae. albopictus have been conducted with a focus on immature stages but the
adult populations (male especially) are overlooked [29]. Life table analysis without the inclusion of the
male population cannot predict valid demographic parameters; hence age stage two-sex life tables are
used [30–32]. The age stage two-sex life table, developed by Chi [33] subsequently and mathematically
proven [34], can differentiate the stage and male populations.

The current study was planned with Ae. albopictus, and assessments of Beauveria bassiana isolated
from two different sources were done. The best isolate was used to examine transgenerational effects
on demographic parameters of filial offspring and first generations offspring by utilizing the age stage
two-sex life table, which will guide us towards the effective use of B. bassiana at the most impactful
time and stage of Ae. albopictus. This will contribute to development of a useful, and eco-friendly tool
for integrated pest management of this urban pest.

2. Material and Method

2.1. Rearing of Ae. albopictus

Ae. albopictus (Foshan strain) eggs were collected from Guangdong Center for Disease Control
and Prevention Guangzhou, China (2017). Eggs were brought on disinfected media (jars cleaned
with ethanol 90%, air dried 30 mints) to the Laboratory of Bio-Pesticide Innovation and Application
of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou,
China. Filter papers containing the eggs were placed in glass beakers (200 mL) containing water for
hatching under controlled (Temperature: 28 ± 2 ◦C, Relative Humidity:64 ± 5% and photoperiod
11:13 h light:dark) laboratory conditions (pathogen-free environment) [35]. Two-day old post-hatching
larvae were transferred in 1000 mL glass jars (15 × 10 cm). Well-ground fish food (Godzilla, CST945)
was provided to larvae as food [36]. Pupae were collected and placed in a separate glass beaker
(200 mL) which was placed in white cloth cage (30 × 30 cm) for adult emergence [22]. Male and female
adults were provided a 10% sugar solution (w/v) while egg-laying female adults were blood-fed on
mice with ethical approval (SCAU-AEC-2010-04-16) by the Guangdong Province Administration Office
of Laboratory Animals. Conical shaped wet filter paper fitted in a 200 mL glass beaker (filled with
distilled water) was used as an oviposition site.

2.2. Fungi Culture

Two soil extracted isolates of B. bassiana (Bb-01 and Bb-10), were obtained from the Laboratory
of Insect Microbiology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan [24,37].
Bb-01 was isolated from multan Punjab Pakistan (30◦05′11.65”N 71◦39′15.65”E) while Bb-10 was
isolated from soil of Mansehra, Khyber Pakhtunkhwa, Pakistan (34◦20′2”N 73◦12′5”E).

Isolates were passaged multiple times to prevent aging [38]. A two-week-old potato dextrose
agar grown monoconidial culture maintained at 25 ◦C was used in suspension formation. For stock
solutions, disinfected spatulas were used to harvest the conidia in 0.05% Tween-80 (Sigma-P1754)
diluted in distilled water [39]. Stock solutions were stored at 4 ◦C for further use [40,41]. Serial
dilutions were made to provide the desired concentrations from the stock solution.
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2.3. Bioassay

2.3.1. Screening of Beauveria bassiana Isolates

Two isolates of B. bassiana (Bb-01 and Bb-10) were screened out against the adult (2 days old males
and females) of Ae. albopictus. Five concentration (3 × 108, 3 × 107, 3 × 106,3 × 105, 3 × 104 spores/mL)
were prepared for both isolates, whereas 0.05% Tween-80 (Sigma-P1754) diluted in distilled water was
taken as tween control and distilled water was a general control [39]. Plastic jars (10 × 10 × 10 cm)
were sprayed with fungal concentrations (10 mL) and air-dried for two hours. Ten adults were added
to the jar of each concentration of every isolate. The whole experiment was repeated four times. Sugar
solution (10%) was provided to male and female while the additional blood meal was provided to
females for egg-laying. All experiments were conducted under controlled laboratory conditions as
described above. Data regarding adult mortality for 7 days (24 h interval) [12,13,22]. Adults showing
no movement were considered dead.

2.3.2. Selection of Beauveria bassiana Isolate

The LC50 was calculated for both isolates of B. bassiana (POLO-PC software). The fungal isolate
with the lowest LC50 was chosen for further experimentation with the age stage two-sex life table.

2.3.3. Assay of Blood-Fed Females

A selected isolate of B. bassiana was again tested on blood-fed and non-blood-fed females, five
concentrations (3 × 108, 3 × 107, 3 × 106, 3 × 105, 3 × 104 spores/mL) were prepared and applied with
the same methodology as described above. Females used in experimentation were 2 days old (24 h
starved) and concentrations were applied 8 h post blood-feeding.

2.3.4. Validation of Lethal (LC50) and Sublethal (LC20) Concentrations

Lethal and sublethal concentrations (LC50, LC20) for the life table studies were practically evaluated
against adults of Ae. albopictus. For experimentation jars (10 adult/replication) sprayed with desired
concentrations were used with the same procedure as described above.

2.3.5. Influence of Beauveria bassiana on Longevity and Fecundity of Filial Generation (F0)

A total of 1000 newly emerged adults (1:1) were selected for bioassays. Males and females
(250 each) were separated with an electric aspirator and subjected to Lethal (LC50) and sublethal
(LC20) concentrations separately, in treated jar assays (500 adults, 1:1) water diluted 0.05% Tween-80
(Sigma-P1754) was used as control. Mortality was observed every 24 h for 7 days, after the seven days
of treatment the remaining adults of filial generation (F0) were copulated (1pair/cage) in plastic cages
covered with a white cloth. Blood meals were provided every four days until the death of females
(Scholte et al. 2006). Glass beakers with wet filter paper were used as ovipositional sites. Fecundity
and longevity were observed until the death of every individual of the filial generation [42].

2.3.6. Transgenerational Effect of Beauveria bassiana on First Filial Generation (F1)

Eggs laid by filial generations, 100 eggs were collected from each group (LC50, LC20, and control).
Eggs were placed individually on disinfected plastic trays (150 mL distilled water) without fungal
exposure in pathogen-free environment. Powered fish food (Godzilla, CST945) was individually given
to larvae as food. The transgenerational effects were studied from larva to adult stage. Data were
recorded every 12 h until the death of all individuals. On the emergence of adults, individuals of
the first filial generation were paired and shifted in cages for seeking the data regarding longevity
and fecundity.
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2.4. Statistical Analysis

The calculation of lethal and sublethal concentrations was conducted by using POLO-PC
software [43]. Mortality data were analyzed by one-way ANOVA. Means were separated by using
Tukey’s HSD test in Minitab 16 software at a 5% level of significance. Life table parameters like
development, fecundity and, longevity were obtained by using the age-stage two-sex life table [33,44–46].
The bootstrap technique (n = 100,000) was used for the calculation of standard errors for life table
parameters [47]. The program (TWO SEX-MS Chart) for age-stage two-sex life table analysis was
designed in visual basics for the window operating system and can be obtained from the following
link [33,46] (http://140.120.197.173/Ecology/prod02.html) (Chung Hsing University).

In age stage two-sex life table net reproductive rate (R0), which shows a total number of offspring
by an individual throughout its life was calculated via the equation

R0 =
∞∑

x=0

lxmx (1)

while lx, the probability of a newly laid egg surviving to age x can be calculated as

lx =
k∑

j=1

sxj (2)

mx is mean fecundity of individuals at age x can be obtained from the following equation

mx =

∑k
j=1 sxj fxj∑k

j=1 sxj
(3)

The intrinsic rate of increase (r) was evaluated utilizing the iterative bisection strategy and adjusted
with the Euler–Lotka condition with the age-indexed (Goodman 1982).

∞∑
x=0

e−r(x+1)lxmx = 1 (4)

The finite rate was calculated as
λ = er (5)

Length of time that a population needs to increase to R0-fold of its population size at the stable
age-stage distribution is called as mean generational time, and is calculated as

T = 1nR0|r (6)

exj, the length of time that an individual of age x and stage j is expected to live could be obtained from
the equation below [44]

exj =
∞∑

i=x

β∑
y= j

S′iy (7)

The reproductive value (vxj) was calculated according to [48,49] and was calculated as

Vxj =
er(x+1)

sxj

∞∑
i=x

e−r(i+1)
β∑

y= j

S′iy fiy (8)

http://140.120.197.173/Ecology/prod02.html
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3. Results

3.1. Screening of Beauveria bassiana Isolate

Both isolates of B. bassiana (Bb-01, Bb-10) revealed a direct relationship between concentration and
mortality (Figure 1). At the maximum concentration of 3 × 108 (spores/mL), Bb-01 exhibited the highest
adulticidal activity (87.5 ± 0.47) followed by Bb-10 (65 ± 0.5). Mortality in both control treatments was
low and lowered then all concentrations of both isolates (p < 0.05, DF = 4) dead specimens were put in
humid chamber for conidal growth (supplementary material)
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Figure 1. Adulticidal activity of B. bassiana (isolates). Green bars represent the mortality of adult
Ae. albopictus, after exposure to different concentrations of B. bassiana first isolate (Bb-01). Red bars
represent the mortality of adult Ae. albopictus to different concentrations of the second isolate (Bb-10)
from B. bassiana. Error bars show 95% confidence intervals (CI). Different letters indicate significant
differences at p < 0.05.

3.2. Selection of Beauveria bassiana Isolate

Lethal (LC50) and sublethal (LC20) doses for both isolates (Bb-01, Bb-10) of B. bassiana were
calculated from pre-experimentation data (Table 1). The isolate with the lowest LC50 was selected for
further studies; hence B. bassiana isolate Bb-01 met the desired criteria.

Table 1. Lethal and sublethal doses of Beauveria bassiana isolates (spores/mL).

Isolates LC50 LC20 Slop ± SE χ2 p-Value df

Bb-01 3.0 × 106 2.1 × 103 0.296 + 0.042 1.023 0.796 4
Bb-10 1.4 × 107 3.2 × 104 0.515 + 0.048 16.477 0.001 4

3.3. Assay of Blood-Fed Females

Blood-fed and non-blood fed females of Ae. albopictus were exposed to five concentrations
of B. bassiana (Bb-01) by contact assay in the jar. Non-significant results were seen (Figure 2)
between blood-fed and non-blood fed females. Blood meal did not affect the adulticidal activity of
B. bassiana (Bb-01).
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Figure 2. Feeding assay of B. bassiana (isolates) against Ae. albopictus (females). Black bars represent the
mortality of non-blood-fed females on different concentrations of selected B. bassiana isolate (Bb-01),
while grey bars represent the mortality of blood-fed females. Error bars show 95% confidence intervals
(CI). Different letters indicate significant differences at p < 0.05.

3.4. Validation of Lethal (LC50) and Sublethal (LC20) Concentrations

Calculated lethal (LC50) and sublethal (LC20) concentrations of B. bassiana (Bb-01) were
experimentally validated, lethal concentration LC50 showed 51.54 ± 0.98% adult mortality followed by
sub-lethal concentration LC20 (23.11 ± 1.11).

3.5. Influence of Beauveria bassiana on Longevity and Fecundity of Filial Generation (F0)

After the treatment of Lethal (LC50) and sublethal (LC20) concentrations of B. bassiana (Bb-01),
the effect of longevity and fecundity of Ae. albopictus (filial generation, F0) were seen (Table 2). For the
filial generation exposed to LC50 and LC20 of Bb-01, male longevity was reduced to 21.33 and 26.09 days
respectively, while maximum male longevity was seen in controls (29.91 ± 1.20). Female longevity also
showed a similar tread to male longevity (days), where LC50 of Bb-01 presented the lowest longevity
(22.22 ± 1.21) followed by LC20 of Bb-01 (27.65 ± 1.77) as compared to the control (30.07 ± 0.41).
A significant reduction in fecundity (eggs/female) was also observed. Exposure to LC50 of Bb-01 results
in the fewest number of eggs (189.31 ± 8.11) followed by the LC20 exposure (230.47 ± 9.32) and controls
(357.33 ± 9.30).

Table 2. Influence of Beauveria bassiana on adult longevity and fecundity of filial generation (F0).

Parameters
Means ± SE

Control B. Bassiana (LC20) B. Bassiana (LC50)

Adult mortality (days) 1.9 ± 0.17 c 23.11 ± 1.11 b 51.54 ± 0.98 a

Male longevity (n = 50) 29.91 ± 1.20 a 26.09 ± 2.01 b 21.33 ± 3.21 c

Female longevity (n = 50) 30.07 ± 0.41 a 27.65 ± 1.77b 22.22 ± 1.21c

Fecundity (1/50) 357.33 ± 9.30a 230.47 ± 9.32b 189.31 ± 8.11c

Male longevity, Female longevity = Days. Means in the same row followed by the same letter are not significantly
different (p > 0.05).
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3.6. Effect of Beauveria bassiana on First Filial Generation (F1)

For evaluation of transgenerational changes in the first filial generation of Ae. albopictus, an age
stage two-sex life table was used. Basic parameters of life table such as developmental time, longevity,
and fecundity are presented in Table 3. Egg hatching of 100% was observed with both control and
sub-lethal (LC20) concentration of B. bassiana, while 95% of egg hatching was observed after treatment
of lethal (LC50) concentration of Bb-01. An opposite trend was observed in egg duration, where control
(2.00 ± 0.01 days) and sublethal concentration (LC20) of B. bassiana (2.00 ± 0.01) showed prolongs
the egg hatching duration, while early egg hatching (days) was seen in lethal (LC50) concentration
(1.95 ± 0.54) of B. bassiana. Significantly different total larval duration was reported, LC50 of B. bassiana
showed maximum (8.38 ± 0.16) development time (days) follow by LC20 (7.97 ± 0.01), while minimum
developmental time (7.89 ± 0.03) was seen in the control group. In pupal duration (days), LC50

of B. bassiana showed minimum pupal duration (2.55 ± 0.59) then LC20 (3.00 ± 0.59) and control
(3.00 ± 0.11). A significant reduction was seen in the life span of male Ae. albopictus, an increase in the
concentration of B. bassiana had an inverse effect on the reduction of the male life span. Male adults of
Ae. albopictus showed minimum life span (27 days) on LC50 of B. bassiana then LC20 (30.10 days) and
control (30.00 days). A similar trend was observed in the female life span. Fecundity had an inverse
relation with lethal and sublethal concentrations of Bb-01, females treated with LC50 of B. bassiana laid
a minimum mean number of eggs (320/female), while females from LC20 of B. bassiana laid more eggs
(349/female) then LC50. The maximum mean number of eggs was observed in control (380/female).

Population parameters calculated with the help of the age stage two-sex life table are shown in
Table 4. The intrinsic rate of increase (r) was inversely related to concentration, which varied from
0.27 to 0.25 and 0.23 in the control, LC20, and LC50 respectively. Mean finite rate of increase (λ) had a
significant difference (per day) between control (1.32 ± 0.01), LC20 (1.29 ± 0.02) and LC50 (1.26 ± 0.06).
The net reproduction rate (R0) (offspring/individual) was high in control (133.0 ± 16.21) and then
gradually decrease significantly in LC20 (89.16 ± 9.31) and LC50 (50.62 ± 8.31). Significant differences
were also observed between mean generation times (T), 17.83 days for control and 17.80 and 17.09 days
in LC20 and LC50 respectively (p < 0.05).

Table 3. Effect of Beauveria bassiana on first filial generation (F1).

Parameters
Control LC20 Treated LC50 Treated

Means ± SE Means ± SE Means ± SE

Percent hatching 100 ± 0.00 a 100 ± 0.00 a 95 ± 2.11 b

Egg duration 2.00 ± 0.01 a 2.00 ± 0.00 a 1.95 ± 0.54 b

L1 2.00 ± 0.02 b 1.99 ± 0.00 b 2.31 ± 0.71 a

L2 1.99 ± 0.11 b 1.99 ± 0.10 b 2.02 ± 0.61 a

L3 1.99 ± 0.10 a 1.99 ± 0.10 a 1.99 ± 0.54 a

L4 2.00 ± 0.02 b 2.00 ± 0.00 b 2.06 ± 0.59 a

Total Larval duration 7.89 ± 0.03 c 7.97 ± 0.01 b 8.38 ± 0.16 a

Pupal duration 3.00 ± 0.11 a 3.00 ± 0.59 a 2.55 ± 0.59 b

Pre-oviposition period 13.00 ± 0.00 a 13.01 ± 0.00 a 12.95 ± 0.59 b

Female longevity 32.95 ± 0.53 a 32.00 ± 2.79 a 29.00 ± 2.81 b

Male longevity 30.00 ± 1.67 a 30.10 ± 1.53 a 27.00 ± 3.45 b

Fecundity 380.27 ± 11.12 a 349.87 ± 7.31 b 320.00 ± 5.42 c

L1 = 1st instar larva; L2 = 2nd instar larva; L3 = 3rd instar larva; L4 = 4th instar larva: Except for fecundity
(eggs/female), units are days. Means in the same row followed by the same letter are not significantly different
(p > 0.05).
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Table 4. Population parameters of Ae. albopictus after treatment with Beauveria bassiana.

Parameters
Control LC20 Treated LC50 Treated

Means ± SE Means ± SE Means ± SE

Intrinsic rate of increase (r) 0.2744 ± 0.007 a 0.2506 ± 0.002 b 0.2295 ± 0.005 c

Net reproduction rate (Ro) 133.0 ± 16.21 a 89.16 ± 9.31 b 50.62 ± 8.31 c

Mean length of a generation (T) 17.83 ± 0.12 a 17.80 ± 0.16 a 17.09 ± 0.09 c

Finite rate of increase (λ) 1.316 ± 0.01 a 1.285 ± 0.02 b 1.258 ± 0.06 c

Birth rate (at SASD) 0.319 ± 0.12 a 0.2883 ± 0.21 b 0.264 ± 0.21 c

Survival rate (at SASD) 0.997 ± 0.02 a 0.997 ± 0.03 a 0.995 ± 0.01 b

Death rate (at SASD) 3.206 ± 1.03 c 3.491 ± 1.04 b 5.499 ± 1.07 a

r = Intrinsic rate of increase (per days); Ro = Net reproduction rate (offspring/individual); T = Mean length of a
generation (days); λ= Finite rate of increase (per days); SASD = Stable age-stage distribution. Means in the same
row, followed by the same letter are not significantly different (p > 0.05).

The age stage survival rate (Sxj) signifies that in the first filial generation overall life span of
Ae. albopictus in the control group was longer and was reduced after treatment of LC20 and LC50 of
B. bassiana (Figure 3A–C, respectively). A similar trend was also observed in age-stage life expectancy
(Exj) where treated group individuals had a lower life expectancy and overall life span (Figure 4A–C).

Age stage reproductive value (Vxj) shows the maximum reproductive value of a stage in life span,
adult females from the control group showed the highest peak of reproductive value as compared to
lethal and sublethal concentrations of B. bassiana (Figure 5). Daily reproduction (Figure 6) also showed
a significant difference in the mean number of eggs (p < 0.05). Egg-laying started 2 days post blood
meal; in the beginning, controlled females showed a maximum number of eggs followed by females of
LC20 and LC50. With time reduction in a mean number of eggs was seen in treated females.
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Figure 3. Age-stage specific survival rate (Sxj) of Ae. albopictus after treatment with Beauveria bassiana:
3A (control), 3B (LC20), 3C (LC50). Ae. albopictus age-stage specific survival rate (Sxj) of the control
group is shown as Figure 3A, while Figure 3B,C showed the age-stage specific survival rate (Sxj) after
exposure to sub-lethal (LC20) and lethal (LC50) concentrations of a selected isolate of B. bassiana (Bb-01)
respectively. Life stages are shown in distinctive colors.
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Figure 4. Age-stage life expectancy (Exj) of Ae. albopictus after treatment with Beauveria bassiana:
4A (control), 4B (LC20), 4C (LC50). Ae. albopictus age-stage life expectancy (Exj) of the control group is
shown as Figure 3A, while Figure 3B,C showed the age-stage life expectancy (Exj) after exposure to
sub-lethal (LC20) and lethal (LC50) concentrations of a selected isolate of B. bassiana (Bb-01) respectively.
Life stages are shown in distinctive colors.
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Figure 5. Age stage reproductive value (Vxj) of Ae. albopictus after treatment with Beauveria bassiana:
5A (control), 5B (LC20), and 5C (LC50). Ae. albopictus age stage reproductive value (Vxj) of the control
group is shown as Figure 3A, while Figure 3B,C showed the age stage reproductive value (Vxj) after
exposure to sub-lethal (LC20) and lethal (LC50) concentrations of a selected isolate of B. bassiana (Bb-01)
respectively. Life stages are shown in distinctive colors.
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Figure 6. Daily mean number of eggs from Ae. albopictus after treatment with Beauveria bassiana at
LC20 and LC50 doses. The figure is showing the daily reproduction rate of females, where the control
group is represented with the gray color line while sub-lethal (LC20) and lethal (LC50) concentrations
of B. bassiana selected isolate (Bb-01) are presented with yellow and blue colors lines respectively.

4. Discussion

The life table of tracheal arthropods (insects) is directly related to the control of insects. Increased
knowledge of insect stages, survival, and reproduction, can lead us towards promising and long-lasting
control of insect pests [36,50–55]. Two virulent isolates of B. bassiana (extracted from different soils) were
screened against Ae. albopictus with both isolates showing noteworthy adulticidal activity. The isolate
extracted from soil of (Bb-01) in Pakistan showed more virulence than the isolate from the soil of cold
area (Bb-10) soil. Bb-01 provided 87.5% adult mortality which also goes in favor of previous studies
where Ae. albopictus and Culex spp. showed 80–90% adult mortality after treatment of EPF [23,40,56,57].
Due to the least LC50 and high adulticidal activity, Bb-01 was selected for further studies to assess its
transgenerational effects on the filial and first filial generation of Ae. albopictus.

Insect chitin made cuticle is the main line of defense against EPF. In the case of medical insects
like mosquito, complete control (Mortality) via EPF is not so easy. While EPF causes mortality in two
weeks, an essential aspect is the effect of EPF on life parameters of mosquito. B. bassiana produces
secondary products like beauvericin, bassianin, bassianolide, beauverolides, beauveriolides, tenellin,
oosporein, and oxalic acid which evade the humoral and immune system of the insect [58,59]. Hyphae
of B. bassiana absorbs the sugar contents from the hemolymph of insect which contributes towards
insect weakness and disrupts various biological parameters of insect pests [60,61]. The current study
strengthens this argument because egg hatching, larval duration, pupal duration, adult longevity,
and fecundity in a filial and first filial generation were affected significantly. Lower egg hatching was
observed due to the treatment of lethal concentration (LC50) from Bb-01 which goes in favor of previous
studies in Aedes spp and S. litura (Fabricius 1775) where EPF causes a reduction in egg hatching [62–64].

EPF penetrates the cuticle and affects the fat body of the insect depleting energy resource which
directly affects the insect stadium [65–67], which resulted in prolonged larval and pupal duration.
A similar trend was observed in the current study, where the lethal and sublethal concentration of
Bb-01 showed long larval and pupal duration. Prolonged larval and pupal duration has also been
reported in past studies of Musca domestica (Linnaeus 1758) and Culex spp. [22,23,68].

In epidemiological models for diseases of Ae. albopictus, adult control is the most important
thing [69–71]. Short longevity of Ae. albopictus adults will help in the control of vector-borne
diseases [72]. Our findings showed reduced male and female longevity in filial and first filial generation



Insects 2020, 11, 178 13 of 17

due to the treatment of lethal and sublethal concentrations of Bb-01, previously Ae. albopictus and
Ae. aegypti had also shown a significantly short life span after infection of EPF [40,41,69]. Anopheles spp.
also showed low adult survival after the treatment of EPF [69,73–76]. A similar trend was observed in
Rhynchophorus ferrugineus (Olivier) and Trogoderma granarium, where 20-30% reduced longevity was
observed after treatment of EPF [77,78].

The infection of EPF fluctuates the body temperature of females, resulting in the loss of appetite,
which led to reduced fecundity [79]. In current studies, the concentration of Bb-01 was inversely
proportional to the mean number of eggs from females of Ae. albopictus. In past studies reduction in
blood-feeding [80], retardation in fecundity has been significantly reported due to infection of EPF [41].
Musca domestica and S. litura showed less mean number of eggs after the treatment of EPF [18,68].
B. bassiana showed a significant effect on all demographic parameters of Ae. albopictus in a filial and
first filial generation.

5. Conclusions

This study is first of his kind and provides basic yet important time-specific and age-specific
information for a better understanding of Ae. albopictus population dynamics under the influence
of B. bassiana. From our investigation, the conclusion can be drawn that B. bassiana has lasting
effects on the developmental parameters of Ae. albopictus. Mainly the impact of the Bb-01 on adult
longevity and female fecundity was significantly affected. Considering the impact of B. bassiana on
transgenerational parameters of filial and first filial generation, it can be integrated with effective
dengue vector control strategies.
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