Relish as a candidate marker for transgenerational immune priming in a dampwood termite (Blattodae: Archeotermopsidae).

Erin L. Cole¹, Jessica S. Empringham², Colette Biro¹, Graham J. Thompson², and Rebeca B. Rosengaus¹, Supplemental Material

Supplemental Methods 1: Culturing protocol for Serratia marcescens

The *Serratia* strain used in these experiments was isolated from naturally infected Z. *angusticollis* corpses. A Tryptic Soy Agar (TSA) plate was streaked from a frozen stock of *Serratia marcescens*, and incubated at 37 °C for 24 hours. A single colony forming unit (CFU) was used to inoculate 200 mL of sterile TSB which was then incubated for 12 hours at 37 °C and 150 rpm. Following the incubation, 400 μ L was then transferred to 25 mL of sterile TSB and incubated for 2 hours at 37 °C and 150 rpm. For microinjections, serial dilutions of this stock were plated on TSA, and incubated for 24 hours at 37 °C to calculate the CFU/mL. A portion of the stock suspension was boiled for 10 minutes to produce the heat-killed *S. marcescens* suspension. The remaining stock suspension was then diluted to 2 × 10⁵ CFU/mL for use in the microinjection procedure as described in the main text.

Supplemental Methods 2: Culturing protocol for Arthrobacter VS10

A TSA plate was streaked from a frozen stock of *Arthrobacter*, and incubated at ambient room temperature (RT, ~ 25 °C) for 48 hours. A single colony forming unit

(CFU) was used to inoculate 200 mL of sterile TSB which was then incubated for 18 hours at RT and 150 rpm. 400 μ L was then transferred to 25 mL of sterile TSB and incubated for 4 hours at RT and 150 rpm. This stock solution was immediately used following the second incubation in the antibacterial assay as described in the main text.

Supplemental Methods 3: Calculating Growth Rate deviations

We converted the raw growth rates of our experimental *Arthrobacter* samples into deviations (GR_{dev}) from the *Arthorbacter* controls using the following formula:

$$GR_{dev} = GR_{Ei} - GR_{Ai}$$

Where GR_{Ei} = growth rate of *Arthrobacter* grown with embryonic sample on plate *i*; GR_{Ai} = average growth rate of the *Arthrobacter* controls grown without embryo sample on plate *i*. Since all cultures within a single 96 well plate contain bacterial suspensions from the same stock culture grown on the same day and each well/plate experienced the exact same ambient conditions, each experimental well could be compared to its corresponding controls in that specific plate. The resulting value for GR_{dev} therefore represents the degree to which the embryo homogenate inhibited ($GR_{dev} < 0$), enhanced ($GR_{dev} > 0$), or did not alter ($GR_{dev} = 0$) the growth of the *Arthrobacter* culture.

Factor / covariate*	df	F	P – value	
intercept	1, 96.2	6.8	0.01	
Q Treatment	3, 98.5	0.8	0.5	
K Treatment	3, 99.2	1.3	0.3	
Death of K	1, 99.2	1.2	0.3	
Q mass (mg)	1, 91.5	0.08	0.8	
K mass (mg)	1, 91.7	1.6	0.2	
Total eggs	1, 74.9	0.6	0.5	
Q Treatment × K	3, 98.9	0.2	0.9	
treatment				
Q Treatment × Q mass	3, 94.9	0.3	0.9	
Q treatment × death of K	3, 96.6	2.2	0.1	
Q treatment × total eggs	3, 96.0	0.7	0.6	
K treatment × K mass	3, 98.9	1.6	0.2	
Q mass × death of K	1, 82.01	0.2	0.7	
Q mass × total eggs	1, 97.1	1.0	0.3	
	df	Wald Z	<i>P</i> – value	
Q COO	11	0.03	0.9	
K COO	10	0.98	0.3	

Supplementary Table 1: Mixed effects model of total protein concentration of embryos

*Q = queen, K = king

Treatment*	Ν	Mean ± SE	Median ± IOR	Shapiro- Wilk	Shapiro- Wilk
			-2	statistic	P – value
Arthrobacter controls	20	0.05 ± 0.002	0.05 ± 0.02	0.95	0.4
Naïve Q & Naïve K	33	0.03 ± 0.002	0.03 ± 0.01	0.95	0.2
Saline Q & Naïve K	10	0.03 ± 0.003	0.03 ± 0.01	0.93	0.4
Saline Q & Saline K	15	0.04 ± 0.005	0.04 ± 0.03	0.96	0.6
Naïve Q & Saline K	17	0.03 ± 0.003	0.03 ± 0.02	0.90	0.06
HK-Sm Q & Naïve K	11	0.04 ± 0.003	0.04 ± 0.02	0.96	0.8
HK-SmQ & HK-SmK	15	0.04 ± 0.004	0.04 ± 0.02	0.94	0.4
Naïve Q & HK- <i>Sm</i> K	11	0.04 ± 0.003	0.04 ± 0.01	0.98	0.9
Live-Sm Q & Naïve K	21	0.03 ± 0.002	0.03 ± 0.01	0.91	0.05
Live-SmQ & Live-Sm	12	0.04 ± 0.004	0.04 ± 0.02	0.95	0.6
Κ					
Naïve Q & Live- <i>Sm</i> K	11	0.04 ± 0.003	0.04 ± 0.02	0.93	0.3

Supplementary Table 2: Descriptive statistics and tests of normalcy (Shapiro-Wilk) of *Arthrobacter* growth rates

*Treatment refers to the egg homogenate incubated with *Arthrobacter* and reflects the parental treatment of the eggs. Q = queen, K = king, SE = standard error, IQR = interquartile range. Bolded treatments indicates statistically significant Shapiro-Wilk tests, and hence, not-normally distributed.

Comparison*		df	T	D volue
Group 1 vs.	Group 2			r – value
Arthrobacter control	Naïve Q & Naïve K	51	5.9	< 0.001
	Saline Q & Naïve K	28	5.0	< 0.001
	HK-Sm Q & Naïve K	29	3.8	0.001
	Live-Sm Q & Naïve K	40	5.0	< 0.001
Naïve Q & Naïve K	Saline Q & Naïve K	41	0.2	0.8
	HK- <i>Sm</i> Q & Naïve K	42	1.2	0.2
	Live- <i>Sm</i> Q & Naïve K	53	1.0	0.2
Saline Q & Naïve K	HK-Sm Q & Naïve K	19	1.4	0.2
	Live- <i>Sm</i> Q & Naïve K	30	1.0	0.3
HK-SmQ & Naïve K	Live-Sm Q & Naïve K	31	0.4	0.7
Arthrobacter control	Naïve Q & Saline K	35	4.1	< 0.001
	Naïve Q & HK-Sm K	29	3.3	0.002
	Naïve Q & Live-Sm K	30	3.1	0.005
Naïve Q & Naïve K	Naïve Q & Saline K	48	0.8	0.4
	Naïve Q & HK- <i>Sm</i> K	42	1.4	0.2
	Naïve Q & Live- <i>Sm</i> K	43	1.7	0.1
Naïve Q & Saline K	Naïve Q & HK- <i>Sm</i> K	26	0.6	0.6
	Naïve Q & Live- <i>Sm</i> K	27	0.8	0.5
Naïve Q & HK-Sm K	Naïve Q & Live- <i>Sm</i> K	21	0.2	0.8
Arthrobacter control	Saline Q & Saline K	33	1.3	0.2
	HK-Sm Q & HK-Sm K	33	2.7	0.01
	Live-SmQ & Live-SmK	31	2.0	0.06
Naïve Q & Naïve K	Saline Q & Saline K	46	3.01	0.004
	HK- <i>Sm</i> Q & HK- <i>Sm</i> K	46	1.8	0.08
	Live-Sm Q & Live-Sm K	44	2.5	0.02
Saline Q & Saline K	HK- <i>Sm</i> Q & HK- <i>Sm</i> K	28	1.0	0.3
	Live-SmQ & Live-Sm K	26	0.4	0.7
HK-Sm O & HK-Sm K	Live-Sm O & Live-Sm K	26	0.6	0.6

Supplementary Table 3: Maternal Effects: T-tests of raw Growth Rates

*Q = queen, K = king. T-tests represent post-hoc comparisons following significant ANOVA tests. Data depicted in Figure 2 of the main text. Bolded variables indicates statistical significance following a Bonferroni correction which set the level of significance to 0.005 (= 0.05 / 10 comparisons). Although it is only listed once in this table, the *Arthrobacter* control vs. double naïve comparison was counted as one of the multiple comparisons for each test. Thus, each ANOVA was accompanied by 10 post hoc comparisons.

Factor / covariate*	df	F	P – value
intercept	1, 88.7	0.1	0.7
Q treatment	3, 87.8	0.2	0.9
K treatment	3, 88.9	0.6	0.6
Death of K	1, 88.5	0.1	0.8
Q mass (mg)	1, 88.9	0.2	0.6
K mass (mg)	1, 88.0	2.5	0.1
Day first egg	1, 88.9	0.1	0.8
Total protein	1, 88.7	1.8	0.2
Q treatment × K	3, 88.4	1.1	0.4
treatment			
Q treatment × QCOO	30, 78.4	1.3	0.2
Q treatment × total	3, 88.6	1.6	0.2
protein			
Q treatment × Q mass	3, 88.6	0.6	0.6
Q treatment × K mass	3, 88.3	0.7	0.6
Q treatment × death of K	3, 87.7	0.4	0.7
Q treatment × day first	3, 88.6	0.6	0.6
egg			
K treatment × K mass	3, 88.8	0.4	0.7
Q mass × death of K	1, 88.9	0.6	0.4
Q mass × day first egg	1, 88.8	0.01	0.9
	df	Wald Z	p – value
КСОО	10	0.3	0.8

Supplementary Table 4: Effects of parental treatment on embryonic antimicrobial activity (General linear mixed effects model)

*Q = queen, K = king

Treatment*	Ν	Mean ± SE	Median ± IOR	Shapiro- Wilk	Shapiro- Wilk
			-2	statistic	P – value
Naïve Q & Naïve K	33	0.36 ± 0.03	0.37 ± 0.26	0.94	0.09
Saline Q & Naïve K	10	0.41 ± 0.05	0.38 ± 0.26	0.93	0.42
Saline Q & Saline K	15	0.48 ± 0.04	0.49 ± 0.21	0.95	0.54
Naïve Q & Saline K	17	0.42 ± 0.05	0.44 ± 0.33	0.95	0.42
HK- <i>Sm</i> Q & Naïve K	11	0.49 ± 0.26	0.48 ± 0.11	0.92	0.30
HK- <i>Sm</i> Q & HK- <i>Sm</i> K	15	0.40 ± 0.05	0.41 ± 0.46	0.89	0.06
Naïve Q & HK- <i>Sm</i> K	11	0.37 ± 0.05	0.37 ± 0.28	0.95	0.68
Live- <i>Sm</i> Q & Naïve K	21	0.32 ± 0.05	0.29 ± 0.33	0.95	0.29
Live-Sm Q & Live-Sm	12	0.30 ± 0.05	0.24 ± 0.25	0.87	0.07
Κ					
Naïve Q & Live- <i>Sm</i> K	11	0.36 ± 0.03	0.37 ± 0.26	0.92	0.30

Supplementary Table 5: Descriptive statistics and tests of normalcy (Shapiro-Wilk) of total protein (mg/mL)

*Q = queen, K = king, SE = standard error, IQR = interquartile range