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Simple Summary: Dengue is an infectious disease that affects thousand millions of people worldwide
every year. Here we applied statistical modeling for forecasting future epidemics in Brazil. Future
predictions were possible in some Brazilian states and with particular models. We strongly recommend
the use of the analysis protocol developed here on a routine basis in state health control services to
predict dengue epidemics in Brazil.

Abstract: We aimed to evaluate the accuracy of deterministic and stochastic statistical models
by means of a protocol developed in a free programming environment for monthly time-series
analysis of the incidence of confirmed dengue cases in the states and federal district of Brazil from
January 2000 to December 2017. This was an ecological time-series study conducted to evaluate
and validate the accuracy of 10 statistical models for predicting the new cases of dengue. Official
data on the monthly cases of dengue from January 2000 to December 2016 were used to train
the statistical models, while those for the period January–December 2017 were used to test the
predictive capacity of the models by considering three forecasting horizons (12, 6, and 3 months).
Deterministic models proved to be reliable for predicting dengue in a 12-month forecasting horizon,
while stochastic models were reliable for predicting the disease in a 3-month forecasting horizon.
We were able to reliably employ models for predicting dengue in the states and federal district
of Brazil. Hence, we strongly recommend incorporating these models in state health services for
predicting dengue and for decision-making with regard to the advanced planning of interventions
before the emergence of epidemics.

Keywords: dengue; decision support techniques; epidemiological monitoring; forecasting;
time-series studies

1. Introduction

Dengue is an infectious disease with a wide range of symptoms [1]. The illness is classically
characterized by high fever, headache, vomiting, myalgia, arthralgia, and rash. Dengue shares its
symptoms with many other infectious diseases that are common in the tropical environment [2].
The disease can become severe in a small proportion of patients in whom vascular extravasation can
be life-threatening [1]. In most cases of dengue fever (18–60%), the patients are asymptomatic [3].
However, such asymptomatic carriers may likely help in maintaining disease circulation and therefore
pose a considerable challenge in disease surveillance and control [4,5]. Despite the mild manifestation
of the disease in some individuals, the volume of cases under hospital care, particularly outpatient
consultations, is the main factor responsible for the burden imposed by dengue on society. Absence
from work and chronic problems such as depression and fatigue also add to the societal burden [6,7].
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The dengue virus (DENV) is a single-stranded RNA virus and the member of the Flavivirus
genus with the highest global prevalence. The virus is transmitted by Aedes (Stegomyia) Theobald
mosquitoes, which generally occupy human-made habitats. This is particularly true for the main
vector Aedes (Stegomyia) aegypti (Linnaeus), a species well-adapted to the current urban landscape [8].
Seasonality in DENV transmission within a year is affected by climatological factors. Higher rainfall
indices from October to March every year contribute to the increase in the number of available breeding
sites for this mosquito [9]. The rainy season increases the risk of cases of dengue in most of Brazilian
cities [10]. Even though dengue is a typically seasonal disease, cases of the disease can be reported
both in rainy and dry periods, as the reduction in the adult vector density in the colder and drier
months is not enough to cease DENV transmission [10]. Adding to this difficulty in establishing a
key seasonal pattern, the transmission of the disease throughout the year benefits from the complex
dynamics of viral infections, including the availability of susceptible humans and the introduction
of different DENV serotypes in the same area over the years [11]. For instance, DENV is classified
into four genetically distinct strains (serotypes I–IV), and infection with one of them causes specific
immunological responses in the human host and partial cross-immunity to the other serotypes [2].
Altogether, the broader pattern of dengue epidemic and interepidemic cycles is complex and therefore
poses a challenge to the disease surveillance and control.

In tropical regions, particularly in Latin America, the DENV has become the most important
human pathogen. Eggs of Ae. aegypti were periodically spread into the Americas by ships sailing
the Atlantic Ocean continuously from the Old World. This contributed to the emergence of urban
Yellow Fever in Brazil during the first half of the twentieth century. Considering that these urban
epidemics had commonly been threatening people in cities, such as Rio de Janeiro, the Brazilian federal
government launched eradication campaigns for eliminating this mosquito from urban scenarios.
Aedes aegypti was officially declared eradicated in the country in the 1940s; however, the mosquito has
been re-colonizing the entire country from the 1970s on [12]. Along with the continuous introductions
of DENV serotypes in the country, the magnitude and geographical reach of dengue epidemics have
been increasing over the years [13]. The last major dengue epidemics with 3.2 million cases reported
in Brazil occurred in 2015–2016 [14]. Today all four serotypes (DENV-I–IV) have been circulating
throughout the country, and more than 90% of the Brazilian municipalities are potentially infested
by Ae. aegypti [15]. In other words, the “dengue problem” in Brazil is absolutely unsolvable with the
current available tools. We further believe this is a problem common to all Latin American countries.

Predictive modeling of the incidence of confirmed dengue cases is an important tool for health
surveillance as well as for planning control measures [16,17]. Here, we present a study to evaluate
the accuracy of time-series statistical models in predicting symptomatic dengue in Brazilian states.
The monthly time series of new cases can be adjusted in statistical functions with the application of
computational algorithms [18–20]. The time series can be broken down into three basic components:
a seasonal component that represents the cyclical pattern of the disease over time; a linear component
that refers to the tendency of the disease to decrease or increase in a linear manner over time; and a
stochastic component that refers to the intervening factors affecting the time series without a specific
temporal pattern.

Time-series statistical models can be used to predict future cases. The autoregressive model
with integrated moving average (ARIMA) is a pioneering method for describing and predicting the
time series [21]. The exponential smoothing model (ETS) serves as an alternative to ARIMA [22].
Exponential smoothing models for adjusting complex seasonal patterns with trigonometric Box-Cox
transformations and autoregressive moving average errors (TBATS and BATS) are considered to be
more efficient than ARIMA [23]. An alternative model is the seasonal trend decomposition using Loess
(STLM), which breaks down the seasonal component into subcomponents [24].

The models described above are deterministic and have the statistical structure to break down
and adjust the seasonal and linear components of the time series; however, they cannot estimate
the stochastic component. Computational approaches to machine learning were therefore proposed
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to quantify the effect of this component. The structural model (StructTS), neural network model
(NNETAR), extreme learning machine and multilayer perceptron models (ELM, MLP) are all examples
of stochastic models [21,25,26]. The models to be evaluated can be compared with the null model
defined by the value of the last observation [27].

In this study, deterministic statistical models (those with superior performance in stable temporal
patterns) and stochastic models (those with superior performance in chaotic temporal patterns)
were used. The main assumption for model selection was having all selected models in a single,
open-software analytic environment in order to help in the implementation of these tools for the
state health secretaries in Brazil (Supplementary Material—Text S1). This study was based on the
need to elaborate a routine in an open source programming environment, which can be adopted
by the Brazilian state surveillance sector to predict future dengue epidemics. It is hoped that this
endeavor will help in the preparation and planning of control measures in a timely and effective
manner. This study aimed to evaluate the accuracy of different predictive methods in the time-series
analysis of the incidence of confirmed symptomatic dengue cases in the 26 states and federal district in
Brazil from 2000 to 2017. The evaluation focused on comparing and judging the merits of the available
statistical models [21–27] for predicting the incidence of future cases in each Brazilian state and federal
district. The real-time series of 2017 was used as the reference standard for calculating the predictive
accuracies of the methods and comparing them.

2. Materials and Methods

2.1. Design

A statistical and computational approach was applied for evaluating and validating the accuracy
of 10 statistical models (ARIMA, ETS, TBATS, BATS, STLM, StructTS, NNETAR, ELM, MLP, and null
model) to predict the time series of new dengue cases. Official data on the monthly dengue cases from
January 2000 to December 2016 were used to train the statistical methods, while those for the period
January–December 2017 were utilized to test the predictive capacity of each model by considering
three forecasting horizons (12, 6, and 3 months). Detailed information and rationale for each of the
selected models in this study are provided in Supplementary Material—Text S1.

2.2. Study Sites

Cases of dengue fever from January 2000 to December 2017 were confirmed in the 26 states and
federal district of Brazil (Figure 1). The region-wise states studied were as follows. North: Acre (AC),
Amazonas (AM), Amapá (AP), Pará (PA), Rondônia (RO), Roraima (RR), and Tocantins (TO); Northeast:
Alagoas (AL), Bahia (BA), Ceará (CE), Maranhão (MA), Paraíba (PB), Pernambuco (PE), Piauco (PI),
Rio Grande do Norte (RN), and Sergipe (SE); Central-West: Goiás (GO), Mato Grosso do Sul (MS),
and Mato Grosso (MT); Southeast: Espírito Santo (ES), Minas Gerais (MG), São Paulo (SP), and Rio de
Janeiro (RJ); South: Paraná (PR), Rio Grande do Sul (RS), and Santa Catarina (SC). The federal district
(DF), which is in the state of Goiás, was also studied.

2.3. Data Source

The non-nominal database of confirmed monthly dengue cases from 2000 to 2017,
without distinction by serotype, from the 26 states and the federal district were obtained from
the information systems of the Health Surveillance Secretariat (Ministry of Health of Brazil). All dengue
cases were confirmed through laboratory assays (serological methods, virus isolation, or antigen
and/or nucleic acid detection) or, when occurring in the course of epidemic, they were confirmed by
clinical-epidemiological protocols. Because of diagnostic challenges due to the unknown co-circulation
of Zika and chikungunya viruses, a possible bias in the time-series is higher numbers of dengue
cases from 2015 on than actually occurring [15]. The data requests were made via E-SIC through
Law No. 12,527/2011, known as the Law of Access to Information (Electronic System of the
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Citizen Information Service) of the Federal Government (request protocol No. 25820003166201892).
The database and scripts used in the analyses are available in the following online repository:
https://github.com/MVMLima/Doutorado.
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Figure 1. Distribution of total dengue cases from January 2000 to December 2017 across the study sites:
states and federal district of Brazil.

2.4. Variables

The following three discrete quantitative variables, which were transformed into natural
logarithms, were used [28]: (1) number of monthly dengue cases from January 2000 to December
2016: this variable was used to adjust the parameters of the statistical models; (2) estimated values
from January to December 2017 for each statistical model: forecasting variable; and (3) number of
monthly dengue cases from January to December 2017: test variable, which was compared with the
forecasting variable to assess the predictive capacity of the statistical models. The use of the natural
log transformation was recommended to increase model performance in forecasting [28].

https://github.com/MVMLima/Doutorado
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2.5. Data Analysis and Statistical Modeling

The employed statistical approach was based on time-series models. The first procedure was to
test whether the time series was stationary by means of the Dikey-Fuller test, which was increased to a
significance level of 5%. An assumption of stationariness was made in the use of the statistical models.

The time series covered 216 months from January 2000 to December 2017, which were divided
into two periods: (1) training period from January 2000 to December 2016; (2) test period from January
to December 2017. The number of monthly dengue cases during the training period was used to adjust
each of the statistical models and to estimate the parameters of the temporal components (seasonality,
linear trend, and stochastic effect). The number of monthly dengue cases in the test period was utilized
for comparison with the values estimated by the statistical models. The test was performed using
the three below-mentioned forecasting horizons: (1) 12 months in advance (January–December 2017);
(2) 6 months in advance (July–December 2017) and (3) 3 months in advance (October–December 2017).
The result of each test was used to evaluate the predictive accuracy of the models.

The statistical models used were as follows: (deterministic models) (1) ARIMA [21], (2) ETS [22],
(3) TBATS [23], (4) BATS [23], and (5) STLM [24,29]; (stochastic models) (6) StructTS [25],
(7) NNETAR [21], (8) ELM [30], and (9) MLP [31]; (10) null model [27].

Three criteria were considered to assess the predictive accuracy of the statistical models:

(1) Mean absolute percentage error (MAPE), in which the absolute difference (At − Ft) represents
the distance between the actual value At and the estimated value Ft in the forecast. The ratio
of the distance (At − Ft) to the actual value At was multiplied by 100% to obtain the percentage
distance. The sum of the percentage error calculated for each month of the time series was divided
by the number of months to obtain the average percentage distance according to the formula
given below:

MAPE =
100%

n

n∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣ (1)

(2) Relative MAPE scale, in which the MAPE of the null model is divided by the MAPE value of
each model. If the result of this division is ≤1, the model is classified as having poor predictive
accuracy. If the value is >1 and ≤2, the model is classified as having low predictive accuracy.
A relative MAPE value >2 means that the model possesses reliable predictive accuracy.

(3) Coefficient of uncertainty (Theil’s U) measures the relative accuracy by penalizing statistical
models with high deviations from the mean value. Values <1 represent reliable predictive
capability [27].

Acceptable predictive capacity was defined as a combination of three criteria in specific results:
(1) low MAPE value, (2) values >2 for the relative MAPE scale, and (3) values <1 for Theil’s U.

The analyses were performed through the computational environment of book access using
programming scripts that can be reproduced by surveillance teams of the municipalities and states [32].
These scripts have been made available in the online repository (see Data Source).
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3. Results

Totally, 16 million (16,654,340) dengue cases were confirmed in the states and federal district of
Brazil from 2000 to 2017 (Table 1), with an average of 77,000 (±108,341) cases per month.

Table 1. Descriptive statistics of the number of dengue cases confirmed according to the states and
federal district of Brazil from 2000 to 2017.

Brazilian States
and the Federal

District

Total Jan.
2000–Dec.

2017

Monthly Average
(Standard
Deviation)

n = 216

Median
Monthly
n = 216

Minimum
Monthly
n = 216

Maximum
Monthly
n = 216

Test of
Stationariness

n = 216

Acre 209,830 971 (1764) 323 6 10,653 Yes
Alagoas 272,832 1263 (1704) 611 22 10,818 Yes

Amazonas 210,506 975 (2395) 437 13 22,319 Yes
Amapá 58,500 271 (264) 187 0 1881 Yes
Bahia 894,494 4141 (6005) 1632 67 41,277 Yes
Ceará 975,734 4517 (5414) 2525 66 29,665 Yes

Distrito Federal 141,632 656 (1179) 216 7 6802 Yes
Espírito Santo 560,814 2596 (3365) 1329 67 18,937 Yes

Goiás 1,152,397 5335 (8135) 2191 51 40,608 Yes
Maranhão 168,909 782 (1018) 470 28 7986 Yes

Minas
Gerais 2,385,230 11,043 (27,958) 2565 8 202,922 Yes

Mato
Grosso do

Sul
512,062 2371 (5033) 551 1 27,348 Yes

Mato
Grosso 393,688 1823 (2584) 828 0 16,566 Yes

Pará 303,257 1404 (1270) 890 225 6812 Yes
Paraíba 235,798 1092 (1616) 470 0 12,189 Yes

Pernambuco 822,514 3808 (6554) 1442 193 41,966 Yes
Piauí 167,531 776 (782) 481 21 4714 Yes

Paraná 720,436 3335 (6170) 1164 15 37,914 Yes
Rio de
Janeiro 1,696,598 7855 (16,823) 1684 32 100,762 Yes

Rio Grande
do Norte 400,889 1856 (2665) 928 71 21,847 Yes

Rondônia 161,992 750 (1322) 336 9 11,556 Yes
Roraima 84,386 391 (358) 269 53 2480 Yes

Rio Grande do Sul 29,192 135 (339) 34 1 2621 Yes
Santa Catarina 35,900 166 (532) 35 2 4768 Yes

Sergipe 125,160 579 (1431) 233 22 17,612 Yes
São Paulo 3,687,743 17,073 (37,676) 4976 262 322,982 Yes
Tocantins 246,316 1140 (1194) 699 29 5730 Yes

The time series of dengue cases in the states and federal district of Brazil showed steadiness
(Table 1) and the presence of a seasonal pattern of the disease (Figure 2).
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Figure 2. Time series of dengue cases in the states and federal district of Brazil from January 2000
to December 2017. Y-axis: number of monthly-dengue cases. X-axis: time period (January/2000 to
December/2017).
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The deterministic models (ARIMA, ETS, BATS, TBATS, and STLM) were reliable for predicting
dengue in six states and the federal district (AC, CE, DF, MA, MT, PA, and PI) in the 12-month
forecasting horizon (Table 2). These models were also reliable for predicting dengue in seven states
(AC, AP, CE, MA, PI, PR, and SE) in the 6-month forecasting horizon. The stochastic models (NNETAR,
StructTS, ELM, and MLP) were reliable in two states (BA and RN) in the 6-month forecasting horizon
and in eight states (AM, BA, ES, GO, PI, PR, RN, and RO) in the 3-month forecasting horizon (Table 2).

Table 2. Reliable statistical models for predicting dengue cases in three forecasting horizons according
to the states and federal district of Brazil from 2000 to 2017.

Brazilian
States and the Federal

District

Reliable Models
(12-Month Forecasting

Horizon)

Reliable Models
(6-Month Forecasting

Horizon)

Reliable Models
(3-Month Forecasting

Horizon)

Acre ELM, BATS TBATS, NNETAR, BATS BATS, TBATS, ETS
Alagoas - - ARIMA

Amazonas - - ELM, MLP
Amapá - ETS, TBATS, STLM ETS, StructTS
Bahia - StructTS ELM
Ceará NNETAR, ARIMA ARIMA -

Distrito Federal STLM - -
Espírito Santo - - MLP

Goiás - - MLP
Maranhão ARIMA, TBATS, ETS STLM, TBATS, ARIMA ETS, BATS, ARIMA

Minas
Gerais - - -

Mato
Grosso do

Sul
- - -

Mato
Grosso ARIMA, ETS - -

Pará STLM - -
Paraíba - - -

Pernambuco - - ELM, StrucTS, STLM
Piauí ARIMA, STLM, BATS TBATS, BATS StructTS

Paraná - ARIMA ELM, MLP
Rio de
Janeiro - - -

Rio Grande
do Norte - StructTS StructTS

Rondônia - - ELM
Roraima - - -

Rio Grande do Sul - - -
Santa Catarina - - ARIMA

Sergipe - ETS, STLM -
São Paulo - - -
Tocantins - - -

Eighteen states (70%) and the federal district presented reliable models for predicting dengue in at
least one of the forecasting horizons (Figure 3). Three states (AC, MA, and PI) presented reliable models
for predicting dengue in all three horizons (Supplementary Material—Text S2). Eight states (MG, MS,
PB, RJ, RR, RS, SP, and TO) did not present any reliable model for predicting dengue. Full data and
results are presented in Supplementary Material—Text S3.
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4. Discussion

The models used here were adjusted with the training time series from January 2000 to
December 2016 and were tested against the actual data from the January–December 2017 time
series in the three forecasting horizons. The first interpretation of the results is that we did not find a
foolproof model that was capable of making reliable predictions for all the forecasting horizons and
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for all the states and the federal district of Brazil. It can also be stated that the deterministic models
(ARIMA, ETS, BATS, TBATS, and STLM) reliably predicted dengue in the 12-month forecasting horizon
for the states of AC, CE, MA, MT, PA, and PI and the federal district. The stochastic models (NNETAR,
StructTS, MLP, and ELM) were reliable in the 3-month forecasting horizon for the states of AM, AP, BA,
ES, GO, PE, PI, PR, RN, and RO. This difference in predictive performance between the deterministic
and stochastic models could be attributed to the seasonal pattern of the disease, which was observed
over the 12-month forecasting horizon. Deterministic models have predictive capacity to extrapolate
the seasonal pattern of the disease and should therefore be used for long-term forecasting horizons such
as 12 months. Stochastic models are more appropriate for short-term applications, such as 3 months,
during which the stochastic component predominates over seasonality. Finally, we would like to
highlight that these models were reliable in predicting dengue in the three states of AC, MA, and PI for
all the forecasting horizons. Therefore, we strongly recommend incorporating the work routine of this
study in the dengue surveillance activities of these states.

We observed that forecasting the future scenarios of disease distribution in the population enables
decision making and planning to reduce the societal burden [33]. Time-series analysis tools similar
to those investigated in this study have been widely advocated by several authors to predict the
occurrence of infectious diseases such as dengue fever [34]. The magnitude of the “dengue problem”
can be understood from the fact that the number of cases reported in the Americas in 2019 was 3,139,335.
This is the highest figure ever recorded and is 30% higher than the number of cases reported during
the 2015–2016 epidemic. In Brazil, 2,226,865 probable cases of dengue fever were reported in 2019,
including 789 deaths. Of these, 1,244,082 were confirmed in the laboratory, among which 19,187 were
classified as dengue with warning signs and 1453 as severe dengue [35]. These figures demonstrate the
pressing need to develop models capable of predicting the incidence of the disease [19,20,23,30,36].

The use of time series of dengue cases without resorting to other exogenous variables such as
environmental or socioeconomic variables [37,38] proved to be a strategy that maximizes the predictive
capacity of the statistical models [39]. Two deterministic statistical models that performed exceptionally
well were the ARIMA and TBATS, which were considered reliable for detecting dengue seasonality in
other studies too [40]. The TBATS model was also able to accurately describe the behavior of other
seasonally-distributed infectious diseases in England and Wales [41]. Although several approaches
exist for dengue prediction (e.g., [42]), the ARIMA model is preferred [43] because it is more reliable
and easier to interpret than other approaches based on fuzzy [44] or Bayesian logic [45,46]. It is inferred
that the use of this statistical model will allow surveillance services to effectively predict the number of
dengue cases, thereby providing a useful overview of the scenario to decision-makers.

Stochastic models constitute the more recent approaches to dengue forecasting. Baqueiro et al. [47]
comprehensively compared deterministic (ARIMA) and stochastic models (neural networks) for
predicting dengue with a forecasting horizon of 1 month in the city of São Paulo. Storlerman et al. [48]
employed machine learning algorithms to detect climatic signatures that correlated with the total
number of dengue cases in some Brazilian capitals. Guo et al. [49] developed dengue prediction models
using artificial intelligence algorithms for Guangdong, China. The stochastic ELM model was applied
in the present study and presented reliable performance in the 3-month forecasting horizon for the
states AM, BA, PE, PR, and RO. This result is in agreement with the study by Baqueiro et al. (2018) [47],
which predicted dengue for a 1-month forecasting horizon.

The health services in the Brazilian states today possess digitized disease data in the integrated
online system (SINAN), which can be fed into statistical models such as the ones used in the present
study. We recommend the use of these models for state surveillance, especially in AC, MA, and PI,
combined with the epidemiological data available in SINAN [50]. External variables (climate and social
environment) [51] are also important; however, the use of the SINAN data with the statistical models
presented here is totally feasible within the current structure of the state health services. Additionally,
there is a spatiotemporal correlation between incidence of symptomatic cases and the presence of
asymptomatic reservoirs in dengue transmission areas [52].
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The failure to consider the external factors (climatic, environmental, social, or immunological) [53]
and the building infestation index [54] could be viewed as a possible limitation of this study.

5. Conclusions

We identified statistical models (ARIMA, TBATS, and ELM) that can be used to predict dengue
in Brazilian states. If these models are applied by state health services, dengue epidemics could
be effectively predicted and their impact reduced through interventions such as vector control and
preparation of health systems to handle a large number of patients.

Dengue remains to be one of the most important global public health challenges. The possibility
of using a free tool to predict the emergence of epidemics can make a huge difference, since it enables
health services to offer enhanced assistance to the population. Therefore, we reinforce that the most
salient role of forecasting models in epidemiological studies is to aid in decision making for health
infrastructure planning to meet the needs of the population.

Supplementary Materials: Supplementary Materials are available online at http://www.mdpi.com/2075-4450/
11/11/794/s1, Text S1: Detailed information and rationale on each of the selected models for this study is herein
presented; Text S2: A more detailed description of results from specific states (AC, MA, PI) is shown; Text S3: Full
data and complete results are presented.
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