Compound	Linear Range	Slope	Intercept	Regression	LOD c	LOQ d	Codes ^e of the Compounds
	(ng)	(k, Mean \pm SD ^b , $n = 3$)	(m, Mean \pm SD ^b , $n = 3$)	$(r^2, n = 6)$	(ng)	(ng)	Calculated by This Curve
Aldehyde							
Octanal	0.004-40	0.047 ± 0.0019	0.01±0.0008	0.99982	0.0003	0.0011	a1, a2
Decanal	0.0041-41	0.096 ± 0.0027	0.007±0.0002	0.9974	0.0004	0.0014	a3
Ester							
Methyl tridecanoate	0.0044 - 44	0.168 ± 0.0047	0.019 ± 0.0041	0.9994	0.00048	0.0016	e1
Hydrocarbon							
Tetradecane	0.0017-17	0.097 ± 0.0061	0.0063±0.00059	0.9997	0.00039	0.0013	h1, h2, h3
Ketone							
6-Methyl-5-hepten-2-one	0.0038-38	0.277±0.0005	0.08±0.0015	0.9992	0.00036	0.0012	k1
Terpenoid							
(<i>E</i>)-β-Ocimene	0.005-50	0.282 ± 0.005	0.080 ± 0.008	0.9993	0.00102	0.0034	t1, t2, t3, t4, t5, t6, t7

Table S1. Linearity of response for standards. Calibration fitting: y = kx + m^a.

^a In the regression equation y = kx + m, y refers to the peak area ratio of target compound to internal standard, x is the concentration ratio of target compound to internal standard, r² is the correlation coefficient of the equation; ^b Standard deviation is abbreviated as SD; ^c Limit of detection, S/N = 3; ^d Limit of quantitation, S/N = 10; ^e The codes correspond to the volatile codes listed in Table 1.