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Abstract: Grain production is an important component of food security in Kenya but due to
environmental conditions that favor rapid growth of insect populations, farmers and other agricultural
stakeholders face ongoing and novel challenges from crop and stored product pest insects. To assist
development of methods to reduce economic losses from stored product insect pests in Kenya, acoustic,
visual, and pitfall trap surveys were conducted in five grain storage warehouses. Two commercially
available acoustic systems successfully detected the pests of greatest economic importance, Sitophilus
zeamais (Motschulsky) and Prostephanus truncatus (Horn). Other insects of lesser economic importance
also were observed in the visual surveys, including Sitotroga cerealelln (Olivier) (Lepidoptera:
Gelechiidae), and Tribolium castaneum (Herbst). This study demonstrated that the use of acoustic
technology with visual surveys and pitfall traps can help managers to identify and target infestations
within their warehouses, enabling them to reduce postharvest losses. With most warehouses being
located in relatively noisy urban or peri-urban areas, background noise considerations are being
incorporated into the design of future acoustic detectors for stored pest infestations. Kenya must
import grain yearly to meet consumption needs; however, if the current yearly postharvest losses of
20-30% in warehouses decreased, import costs could be reduced considerably.

Keywords: Prostephanus truncatus; Sitophilus zeamais; Tribolium castaneum; Sitotroga cerealella;
postharvest loss; grain; pest; background noise

1. Introduction

Over $4 billion USD in food losses occur yearly in Africa due to inefficiencies in the chain of
production, storage, and marketing activities that connects farmers to consumers [1]. Kenya has
developed a Strategic Grain Reserve to store sufficient grain for release into markets if supplies fall
below typical levels of consumption [2]. The government purchases backup maize yearly that can be
released in an emergency. There is wide recognition that strategic grain reserves play a vital role in
ensuring Kenyan food security. Additionally, it is anticipated that the recent invasion of Spodoptera
frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) [fall armyworm] into sub-Saharan Africa will lead to
20-50% maize yield loss [3], further increasing the need for imports to bolster backup maize supplies.

Insects 2019, 10, 105; doi:10.3390/insects10040105 www.mdpi.com/journal/insects


http://www.mdpi.com/journal/insects
http://www.mdpi.com
https://orcid.org/0000-0001-9155-6423
https://orcid.org/0000-0002-7732-0278
https://orcid.org/0000-0003-3369-8110
http://www.mdpi.com/2075-4450/10/4/105?type=check_update&version=1
http://dx.doi.org/10.3390/insects10040105
http://www.mdpi.com/journal/insects

Insects 2019, 10, 105 20f12

Kenya currently experiences an estimated 20-30% postharvest loss of staple grains yearly, which
poses great challenges to the country’s food security and economic development [4]. Prostephanus
truncatus (Horn) (Coleoptera: Bostrichidae) [larger grain borer], Sitophilus zeamais (Motschulsky)
(Coleoptera: Curculionidae) [maize weevil], Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)
[red flour beetle] and Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae) [Angoumois grain moth]
are the major maize pests in sub-Saharan Africa [5]. Postharvest losses significantly endanger the
livelihoods of stakeholders across the value chain by reducing income and profitability, and given that
overall production in sub-Saharan Africa is increasing while the percentage postharvest loss remains
unchanged, the nature and extent of such losses is coming under increased scrutiny [6].

Managers of bulk grain storage facilities fumigate with phosphine gas routinely; however,
Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae) [lesser grain borer], T. castaneum, and
possibly other postharvest pests have been developing resistance to phosphine [7]. In addition, gas
tightness is not complete in many warehouses and fumigation needs to be augmented with additional
management. Routine monitoring and timely inspection for pests facilitates alternative treatment of
infestations before they cause economic damage. Commonly used monitoring methods include visual
inspections in and around warehouses, examination of grain samples, measurements of temperature
changes in bulk grain, and widespread placement/inspection of insect traps [8]. Visual examination
and insect traps unfortunately cannot detect larvae hidden inside the grain kernels until they finish
development and emerge.

Acoustic technology can detect both adult and hidden larval infestations [9-11], providing
estimates of population density [12] and spatial distribution [13,14] to warehouse managers who time
and target grain management efforts. Also, acoustic technology can be used to test the efficacy of
other control treatments such as hermetic storage [15,16]. Recently, significant effort has been directed
towards integrating acoustic technology into grain storage management in Africa [17-19]. Several
grain storage sites near Nairobi were visited to gain consent for acoustic surveys of hidden stages and
adult insects within their premises and consider the feasibility of incorporating acoustic technology
into Kenyan postharvest pest management programs. This report presents the results of a survey
conducted using two commercially available acoustic sensor systems concurrently with commonly
used pitfall traps at five sites where consent was obtained. It was hypothesized that (i) detection of
adult and larval infestations would be possible in the presence of background noise, (ii) data from two
different measurement platforms would be comparable, and (iii) pitfall trap catch data would correlate
with acoustic signals recorded.

2. Materials and Methods

2.1. Recording Sites

A preliminary survey was conducted in March 2016 to assess background noises in the vicinity of
four warehouses located in urban and peri-urban settings (Nairobi and Thika) as well as rural settings
(Embu and Ishiara). Previous acoustic surveys in field and warehouse environments [9] suggest
that, at a very early stage in the planning of acoustic sensor installation in commercial and strategic
warehouses for grain storage, it is necessary to identify sources of background noise and mitigate
their effects when possible. Recording equipment was set up and left overnight for 24 h recordings to
be taken in each location. Aural screening of the recordings confirmed that background noise levels
were generally higher at Nairobi and Thika than at Embu and Ishiara, but sufficient periods of low
background noise occurred at all locations to enable acoustic surveys in the warehouses.

In June 2016, insect sound recordings were collected from 50 kg bags of maize at warehouses
in five separate counties: Nairobi, Kiambu, Kirinyaga, Nyeri, and Nakuru, as shown in Figure 1.
The sites had similar, subtropical highland climatic conditions with moderate daily temperatures,
varying slightly with altitude: Thika, 1631 m; Sagana; 1762 m, Nairobi, 1795 m; Nakuru 1850 m; and
Kiganjo, 2161 m. Their average temperatures in June are 21.3 °C, 22.4 °C, 19.0 °C, 18.8 °C, and 17.5 °C,
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respectively. Each warehouse had several stacks of maize bags under routine fumigation, most of
which nevertheless contained various postharvest pest species at different infestation levels.
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Figure 1. Locations of maize warehouses acoustically surveyed in Kenya. Names of counties
are underlined.

2.2. Sampling Methods

Visual inspection for infestation was conducted to identify likely infested stacks which, according
to the recommendations of ISO Standard 6322-1 [20], typically were along the stack edges, at the top
of the bulk, and areas with spillages. After identifying a stack likely to support infestation, 12 bags
were drawn randomly from the surface of the stack, brought to the floor, and set vertically for acoustic
recordings and pitfall trap insertion, except for several high stacks at Thika and Kiganjo, where the
acoustic system was brought to the top of the stack for signal collection.
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2.3. Insect Trapping

For each of the 12 selected bags per warehouse, non-pheromone Storgard WB Probe II traps (pitfall
traps) were set up prior to acoustic recording to collect samples of free-moving insects in the grain.
The grain probe trap excludes grain kernels but permits insect entry through its perforated walls after
which the insects fall into the collecting vial from which they cannot escape. All traps were labelled as
well as the plastic containers in which the trap contents were emptied. The traps were retrieved 2-3 h
later, at the end of the acoustic recordings, and the contents were taken to the laboratory where they
were poured into vials and sealed. After surveys were completed, the insects were identified to species
level and counted.

The most frequently encountered insects were distinguished based on their morphological
features [21]. Sitophilus zeamais was identified by its 2.5-4.4 mm long rostrum and dark brown color,
sometimes with four lighter spots on the wing cases [18]. Prostephanus truncatus was recognized
by the position of its head, “tucked” under the thorax so that it is invisible from above, and the
prominent pattern of tubercles on the thorax [18]. Tribolium castaneum was identified as an elongated
reddish-brown beetle [8]. Other less frequently encountered insects that did not match these three
were counted as “other species”. Larvae were not identified to species level and were reported as
“mixed larvae”. Means and standard errors of the counts in different categories in the 12 bags from
each site were subjected to analysis of variance.

2.4. Recording Equipment and Set-Up

The recordings were collected using two different acoustic systems, hereafter designated IMC
and AEC, enabling direct comparison of the detection ranges and background noise discrimination
capabilities of each system in Kenyan warehouse environments. The IMC system included a 0.5”
microphone (Model 378B02, PCB Piezotronics Inc., New York, NY, USA) attached to a preamplifier
system (imc C-SERIES, CS-3008-N, imc Mefisysteme GmbH, Frankfurt, Germany), as described
in [18,19]. The AEC system included a 16 cm length X 6 mm diam stainless steel probe attached to a
sensor—preamplifier module (model SP-1L, Acoustic Emission Consulting [AEC] Inc., Sacramento, CA,
USA) connected to an amplifier (AED-2010, AEC Inc. Sacramento, CA, USA), leading to a digital audio
recorder (model HD-P2, Tascam, Montebello, CA, USA) which stored signals at a 44.1 kHz digitization
rate, as described in [17,22]. Records of 3-5 min each were collected over a 5 day period from a total of
60 different bags.

Weather conditions were dry with no rain or wind present throughout the survey periods. Each
site was unique, with Kiganjo and Sagana located in relatively quiet environments and Nairobi,
Nakuru, and Thika in urban or peri-urban environments characterized by intermittently high levels
of background noise. Other sources of noise included birds singing, vehicle movement and beeping,
on-site machine noises, and worker activity. Monitoring was conducted with headphones before each
recording to help identify times when background noise levels greatly exceeded the insect sound
pressure levels, in which cases recording was postponed. Nevertheless, recordings were rarely totally
free of nontarget background noise, and automated signal processing was conducted to discriminate
the targeted insect signals from the noise (see below). Testing began at approximately 10:00 a.m. and
typically continued for about 3 h. For each bag, recordings were made simultaneously with both
systems except at the Thika warehouse when a several-hour power failure precluded data collection
by the IMC, which required a standard line connection.

2.5. Automated Classification of Insect Sounds and Background Noise Signals

Signals from the IMC system were converted from .ccv (curve configuration files) to .wav (wave
audio files) format using a custom program written in MATLAB Release 2012b (The MathWorks Inc.,
Natick, MA, USA). The AEC signals already were in .wav format. The recordings were band-pass
filtered between the 1-10 kHz range of greatest insect sound amplitude [9] and pre-screened using
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Raven Pro 1.5 Beta Version software [23] (Cornell Lab of Ornithology, New York, NY, USA; Charif et
al., 2008). Prescreening entailed playback, oscillogram, and spectrogram analysis of each file to locate
periods of insect sound impulses and discard periods of loud background noises.

To discriminate insect sounds from background noise, we analyzed the signals using DAVIS signal
processing algorithms [9,24]. Preliminary screening of initially collected files indicated that the IMC
microphone and the AEC sensor had different patterns of spectral sensitivity; consequently, the mean
spectra (profiles) [9] of insect sounds were different for each system and separately constructed,
system-specific profiles were applied by the DAVIS algorithms to identify and discriminate the insect
sounds from background noise. Two spectral profiles were constructed from frequently occurring insect
sounds recorded by each system. For AEC recordings, one profile was collected as a mean spectrum
of 139 consecutive impulses recorded over a 62 s interval from the Kiganjo warehouse. The second
profile was constructed as a mean spectrum of 33 consecutive impulses recorded over a 20 s period
from a bag at the Nakuru warehouse. These same AEC profiles were used successfully as well in the
study by [18]. For IMC recordings, the first profile was constructed as a mean spectrum of 26 impulses
collected over a 26 s period from a bag at Kiganjo. The second was constructed from 61 impulses
collected over a 42 s period, also from a bag at Kiganjo. In addition, prescreening identified bird noise
that occurred frequently in all the warehouses surveyed, and therefore a bird profile was calculated to
facilitate discrimination between insect sound impulses and background noise, as described in [25].
The IMC and AEC bird profiles were obtained from recordings at Kiganjo. The warehouse at Nairobi
also had considerable numbers of recordings with bird noise.

The sound impulses in each IMC or AEC recording were least-squares matched by DAVIS against
the three corresponding insect and bird profiles above and were assigned to the profile type of best
fit as in [9]. Impulses classified as bird or other background noise were discarded. DAVIS classified
impulse trains containing >2 and <200 impulses that matched the two insect sound profiles as insect
sound bursts in each recording, based on the high likelihood that they were produced by insects and
not by background sounds [9,24]. The discrimination was based on the fact that insect movement and
feeding activity generates distinctive trains (groups) of 1-30 ms impulses that only rarely occur as
features in background noise [9,26].

The times of occurrence and profile type of each insect sound burst were saved in a spreadsheet
for statistical analyses. Three parameters of quantifying different aspects of acoustic activity were
calculated for signals classified under the two insect sound profile types: rate of bursts, R;, with units of
number of bursts/s (which is a measure of the frequency of occurrence of individual insect movements);
counts of impulses per burst, Nj, (indirectly quantifying the duration of individual insect movements);
and rates of burst impulses, Ry (number of impulses detected only within bursts, divided by the
recording duration in s), which is a measure of the total insect effort as described in [18,19]. Overall
measures for the acoustic parameters for each recording were calculated as the sums of the values
obtained for each insect sound profile, as in [18,19].

3. Results

3.1. Pitfall Trap Counts and Visual Surveys

Trap capture data is shown in Table 1 with assessments of mean captures across species and
warehouses. P. truncatus and S. zeamais were present in four out of five, while T. castaneum was present
in all five warehouses surveyed. Other species and mixed larvae were observed in three and four sites,
respectively. It is notable that T. castaneum were found in high numbers at all five sites. The highest
mean counts recorded per site were obtained for P. truncatus in Kiganjo at 39.08, and T. castaneum in
Nairobi, Nakuru, Sagana, and Thika at 39.42, 27.11, 5.86, and 12.50, respectively. Also of interest was
the presence of large numbers of S. cerealella larvae at Thika. They were not captured in the traps,
as they were mostly on walls, floors, and on top of bags with some also dropping from the ceiling.
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Significant differences were observed in the species counts across warehouses, as shown in Table 1.
For P. truncatus and other species there was little variation in Nairobi, Nakuru, Sagana, and Thika.
The biggest variation was observed for T. castaneum, but other species also showed considerable
variation across warehouses. Overall, Sagana had the lowest infestation levels while Kiganjo had the
highest levels.

Table 1. Analysis of counts of insects captured per 50 kg bag in each warehouse (mean + standard
error of mean [SEM]). Means for different species in the same warehouse that are followed by the same
(small) letter are not significantly different from each other (p > 0.05). Means of the same species in
different warehouses that are followed by the same (capital) letter are not significantly different from
each other (p > 0.05). Means were separated using the Bonferroni adjustment.

Location
Insect Category
Kiganjo Nairobi Nakuru Sagana Thika

Prostephanus truncatus ~ 37.69 + 13.80aA  0.25 + 0.25aB 0.89 + 0.54aB 0.57 £ 0.42aB 0.00 + 0.00aB
Sitophilus zeamais 6.23 + 5.82bA 2042 £ 6.71bB  24.56 + 8.70bB  0.00 + 0.00aC 0.25 + 0.25aC
Tribolium castaneum 39.08 £7.37aA 3942 +4.75cA 27.11+7.64bB 586 +1.74bC  12.50 + 1.84bD
Other 4.07 + 0.78bA 0.08 + 0.08aB 0.56 + 0.44aB 0.00 + 0.00aB 0.00 + 0.00aB

Mixed larvae 7.54 £ 1.75bA 0.00 + 0.00aB 3.67 +1.09aC 0.14 + 0.14aB 0.42 + 0.42aB

3.2. Acoustic Assessment of Infestation

Means =+ standard error of mean (SEM) of three acoustic parameters of insect activity in different
warehouses are shown in Table 2, based on analyses of variance across locations, as shown in Table 3,
and Student’s f test analyses of means obtained by AEC and IMC acoustic systems, as shown in Table 4.
It should be noted that we attempted to redo recordings when background noise occurred for long
periods in recordings, but it was not always feasible to do so, and complete pairs of AEC and IMC
recordings were obtained only for eight bags at Kiganjo, seven at Nairobi, six at Sagana, and five
at Nakuru.

Table 2. Mean comparisons of burst rate, Rj, impulses per burst, N}, and rates of impulses in bursts,
Rpimp, recorded by the AEC and IMC systems in bags at different warehouses. Lack of line current
precluded use of the IMC system at Thika. Means of a given acoustic parameter obtained with different
acoustic systems at the same warehouse that are followed by a different letter are significantly different
from each other (p > 0.05) under the Tukey-Kramer honest significant difference (HSD) test.

Mean + SEM of Acoustic Parameter Measured by AEC or IMC System
Location R, Np

Rbimp
AEC IMC AEC IMC AEC IMC

Kiganjo 1.204a £ 0432 0.209b +£0.085 11.52+396 41.63+19.86 1532+7.13 6.87 +4.29

Nairobi 0.581 £0.381  0.0446 + 0.0170 4.84 £ 0.42 20.27 £11.43 291 +1.96 0.777 £ 0.367

Nakuru 0.358 +£0.121 0.125+0.056  32.26 + 13.78 9.79 + 3.45 1518 £ 7.67 1.85 +1.02
Thika 0.200 + 0.067 - 43.60 + 22.94 - 723 +3.77

Sagana 0.093 + 0.034 0.094 £0.038 3544 +13.24 11.41 +845 5.38 +3.26 1.28 £ 0.64

Table 3. One-way analysis of variance of acoustic parameter means across locations.

Df (Parameter,

Acoustic Parameter Error) F p
AECRy 4,27 222 0.094
IMC Ry, 3,22 1.50 0.242
AEC N 4,27 1.90 0.139
IMC Ny, 3,22 1.17 0.343
AEC Rypimp 4,27 1.18 0.340

IMC Ryjp 3,22 1.22 0.325
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Table 4. Student’s t test comparisons of differences between means of AEC and IMC acoustic parameters
at different locations.

Acoustic Parameter Df t P
Kiganjo Ry 8 2.26 0.028 *
Nakuru Ry, 5 1.75 0.117
Nairobi Ry 7 1.40 0.210
Sagana Ry, 6 0.008 0.992
Kiganjo N, 8 1.48 0.178
Nakuru N 5 1.58 0.181
Nairobi Ny, 7 1.35 0.226
Sagana N, 6 1.75 0.132

Kiganjo Rp;yp 8 1.02 0.327
Nakuru Rpjpp 5 1.72 0.157
Nairobi Rpjmp 7 1.07 0.323
Sagana Rpipp 6 1.24 0.245

* Values of p designated by asterisks are statistically significant at p < 0.05 level under the Tukey-Kramer HSD test.

Because the infestation levels in different bags varied considerably within warehouses,
no significant differences were found across warehouses in rates of bursts, impulses per burst,
or rates of impulses within bursts compared separately for AEC and IMC systems, as shown in Table 3.
Only one significant difference (p > 0.05) was observed between AEC and IMC measurements in any
warehouse—a comparison between the rates of bursts, R, detected by AEC and IMC systems at the
Kiganjo warehouse, as shown in Tables 2 and 4. When bags were pooled across warehouses, the values
of R, measured across bags were proportional to the numbers of insects later recovered from the bags,
as reported in the next section.

3.3. Relationship between Burst Rates and Counts of Insects Recovered from Bags

Sound impulses matching insect spectral profiles were detected in all recordings at each site and
all bags tested were rated at medium or high likelihood of infestation based on the total rates of insect
sound bursts exceeding a detection threshold of 0.02 burst/s [24]. It was of interest to sum the trap
counts of the two most important pests, P. truncatus and S. zeamais, as a single total, T¢, given that the
acoustic signals of these two insects were not readily distinguishable. Previous studies [9] suggested
that the insect sound burst rates, Ry, from each of the systems, AEC and IMC, would be approximately
proportional to T¢, i.e., the statistical model would be:

Ry=T.. 1)

In addition, the AEC and IMC systems were expected to detect sound bursts at different rates
within maize bags due to differences in the positions of the insects relative to the detectors as well as
differences in the range of detection. The IMC detected insects over approximately 25 cm distances
from the top of the bag, while the AEC collected signals along the whole 16 cm length of the probe [17].
On average, however, randomizing over position between sensor and insect, the insect sound burst
rate detected by the IMC system, imcRy, was expected to be proportional to the rate detected by the
AEC system, aecRj, with the statistical model:

imcRy, = aecRy. (2)

The models were tested for insect sound burst rates from 21 bags at the Kiganjo, Nairobi, Nakuru,
and Sagana warehouses in which recordings were obtained from both AEC and IMC systems. The slopes
of the regressions were statistically significant for each of the models, as shown in Table 5, and the
regression lines are shown in Figures 2—4.
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Table 5. Intercepts and slopes (+SEM) for regression equations fitting the models in Equations (1)

and (2).

Model Intercept £ SEM ¢ for Intercept p>t Slope + SEM ¢ for Slope p>t
aecr, = T, 0.326 + 0.210 1.55 0137 0013200039 3.34 0.004
imery = T 0.078 + 0.039 2.0 0.063 0.0016 f 0.0007 2.13 0.047

imcry, = aecry 0.070 + 0.041 1.72 0.102 0.073 +0.033 * 2.16 0.044
* Statistically significant values of ¢ (p < 0.05) for slopes are marked by asterisks.
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Figure 2. Relationship between insect sound burst rates and total counts of P. truncatus and S. zeamais
for the IMC system in recordings from 21 bags at Kiganjo, Nairobi, Nakuru, and Sagana warehouses.
Filled circles indicate burst rates from individual bags with specified total counts of the two species.
Dotted line indicates the linear regression of insect sound bursts/s on the total counts.
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Figure 3. Relationship between insect sound burst rates and total counts of P. truncatus and S. zeamais
for the AEC system in recordings from 21 bags at Kiganjo, Nairobi, Nakuru, and Sagana warehouses.
Filled circles indicate burst rates from individual bags with specified total counts of the two species.
Dotted line indicates the linear regression of insect sound bursts/s on the total counts.
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Figure 4. Comparison of insect sound burst rates from 21 bags at the Kiganjo, Nairobi, Nakuru, and
Sagana warehouses in which recordings were obtained from both the IMC and AEC acoustic system.
Filled circles indicate IMC system burst rates from individual bags with specified AEC system burst
rates. Dotted line indicates the linear regression of IMC rates on AEC rates.

4. Discussion

Previously reported [1] as well as predicted [3] economic losses from crop and stored product
insect pests in Kenya and surrounding regions indicate concern for the high magnitude of current
and future losses associated with storage of staple cereals in sub-Saharan Africa. The survey results
concur with such concerns, reporting infestation of at least two species of postharvest insect pests in all
warehouses surveyed. Visual inspection of storage bags provided a subjective impression while the
pitfall traps and acoustic surveillance helped quantify estimates of infestation in the warehouses at the
time of survey.

Pitfall trap counts provide sampling information about local insect populations that can be useful
for pest management programs [8]. Two of the species found in the traps, P. truncatus and S. zeamais,
are of great economic significance in maize storage in sub-Saharan Africa. Their presence in bulk grain
storage poses a threat to the food security of the populations depending on that grain for survival.
Other examples of significant numbers of internally feeding pests observed in the pitfall traps included
S. oryzae, S. granarius, R. dominica, and several bruchids noted also in [8]. Though T. castaneum levels
were high in all warehouses surveyed, it was not considered a serious pest because it is an external
feeding species amongst others such as Plodia interpunctella (Hiibner) (Lepidoptera: Pyralidae) [Indian
meal moth] and Oryzaephilus surinamensis (Linnaeus) (Coleoptera, Silvanidae) [sawtoothed grain beetle].

The results of the visual and acoustic assessments of infestation of the 50 kg storage bags suggest
that both the AEC and IMC systems provided consistent quantitative measurements. Previous research
has shown, however, that among the commercially available detection systems, piezoelectric sensors
have greater sensitivity to insect-produced sounds because the signals encounter less attenuation
as signals traverse from the insects to the sensors across different media [27]. In addition, skill and
experience were needed to identify periods when background noise was low enough for automated
discrimination of insect sounds from background noise.

Proximity of the insects to the sensors is known to be another important factor contributing to the
sensitivity of an acoustic system to detect insect infestation. The use of waveguide probes can improve
the detection range by increasing the volume of grain close enough to the sensor for detection, thus
improving the accuracy of detection. In this study, the rates of insect sound bursts detected and the
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rate of burst impulses, were consistently greater for the AEC probe system than for the IMC system.
Such results were in agreement with Leblanc et al. [10], who compared acoustic data collected with a
4 cm diam, 1.4 m long field probe (Early Warning Diagnosis (EWD) P3™, Systelia Technol., Hyéres,
France) with acoustic data from a short probe for kg-sized samples, EWD LAB™. The sensitivity of the
LAB system was lower than that of the P3 system due to the difference in detection range.

To improve the sensitivity and accuracy of detection in the presence of background noise, efforts
have been directed towards constructing sound-attenuating boxes lined with foam and fitted with
piezoelectric sensors, an example of which is shown in [28]. These innovations are of interest for
African agriculture because the sound-attenuator boxes can be fabricated from locally available material.
A sound-attenuation box coupled with prototype sensors such as those of [17], can be used for low-cost
insect detection in African grain stores. This will complement prototypes and sensors developed
previously, e.g., the EWD [10].

The statistically significant correspondence between the magnitude of insect sound burst rates
and counts of insects captured in the probe traps confirms that acoustic detection is a useful tool for
detecting and monitoring infestations in Kenyan grain warehouses. An important benefit of acoustic
systems is their identification of hidden as well as visible infestations of important P. truncatus and
S. zeamais pest species, which provides earlier detection. However, the effects of distance between
insect and sensor on detectability noted above, as well as the considerable variation of an insect’s level
of activity over time [9], and the effects of temperature on insect activity [29], combine to reduce the
precision of any single acoustic measurement of insect activity, which explains much of the variability
seen in the relationships between sound burst rate and insect counts in Figures 2 and 3. Nevertheless,
the use of acoustic indicators to estimate infestation likelihood [9,24] in individual bags can provide
guidance to warehouse managers in targeting infestations. Acoustic methods can readily complement
other efforts to reduce economic and qualitative losses in warehouses in Africa, including the use of
modified atmospheres [30] and hermetic storage bag technology [31].

It is worth noting that several cell phone sound detection apps have been developed, e.g., [32],
some of which already have been adapted for insect detection [33]. There is potential that these or
similar apps can be modified or further developed for stored product insect detection by incorporation
of the DAVIS [9] signal analysis algorithms [34]. Microphone or piezoelectric sensor systems can be
coupled with the smart phones and the app creating a useful tool for scouting for insects in grain
stores. In addition, there is the potential that sensor output can be routed to WIFI and, instead of
being used only in scouting programs, they could be placed at strategic locations in the warehouse
and programmed to text the warehouse managers when acoustic indices register a high likelihood of
insect infestation.

5. Conclusions

Experience gained from the Kenyan stored product insect acoustic detection study indicates that
acoustic, visual, and pitfall trap surveys all contribute information useful for early detection and
management of visible and hidden pest infestations but suggests that challenges remain in designing
user-friendly acoustic systems that automatically discriminate out background noise often present in
warehouses. Efforts are in progress to incorporate additional spectral and temporal pattern features
of sounds produced by target insects into cost-effective acoustic detection systems. Knowledge of
early infestation can assist warehouse managers in maintaining strategic grain reserves with scarce
resources. Improved monitoring combined with innovations such as hermetic storage bags may enable
reduced reliance on grain imports.
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