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Abstract: Acetylcholine (ACh) is the major excitatory neurotransmitter in the insect central nervous
system (CNS). However, besides the neuronal expression of ACh receptors (AChR), the existence
of non-neuronal AChR in honeybees is plausible. The cholinergic system is a popular target of
insecticides because the pharmacology of insect nicotinic acetylcholine receptors (nAChRs) differs
substantially from their vertebrate counterparts. Neonicotinoids are agonists of the nAChR and are
largely used in crop protection. In contrast to their relatively high safety for humans and livestock,
neonicotinoids pose a threat to pollinating insects such as bees. In addition to its effects on behavior,
it becomes increasingly evident that neonicotinoids affect developmental processes in bees that
appear to be independent of neuronal AChRs. Brood food (royal jelly, worker jelly, or drone jelly)
produced in the hypopharyngeal glands of nurse bees contains millimolar concentrations of ACh,
which is required for proper larval development. Neonicotinoids reduce the secreted ACh-content in
brood food, reduce hypopharyngeal gland size, and lead to developmental impairments within the
colony. We assume that potential hazards of neonicotinoids on pollinating bees occur neuronally
causing behavioral impairments on adult individuals, and non-neuronally causing developmental
disturbances as well as destroying gland functioning.
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1. Introduction

Acetylcholine (ACh) is an evolutionary highly-conserved signaling molecule. It preceded the
appearance of the nervous system since it is expressed in bacteria, archaea, in eucaryotic unicellular
organisms, and in higher organisms such as plants, fungi, and animals [1]. Therefore, the neuronal
system basically utilizes the existing cholinergic system and improved the communication speed by
releasing ACh from vesicles during synaptic transmission. However, the non-neuronal cholinergic
system remains side-by-side to the neuronal cholinergic system within animals. The functional
principles of both systems are basically similar. They comprise of choline acetyltransferase (ChAT)
to synthesize ACh, receptors for ACh of the muscarinic (mAChR) and the nicotinic type (nAChR),
ACh-degrading esterases (AChE) and choline transporters (ChT) for the uptake of choline after ACh
degradation. In addition to its expression in the nervous system, these components have been widely
localized in epithelial and endothelial tissues [2], in reproductive organs [3], and in muscle and immune
cells. Thus, numerous cell functions can be regulated by ACh, such as gene expression, proliferation,
differentiation, cytoskeletal organization, cell-cell contact, locomotion, migration, ciliary activity,
electrical activity, secretion, and absorption [4].

Compared to vertebrates, the non-neuronal cholinergic system of insects is largely understudied,
although it is crucial during all developmental stages, and ACh, AChE, and ChAT are present in very

Insects 2019, 10, 420; doi:10.3390/insects10120420 www.mdpi.com/journal/insects


http://www.mdpi.com/journal/insects
http://www.mdpi.com
http://dx.doi.org/10.3390/insects10120420
http://www.mdpi.com/journal/insects
https://www.mdpi.com/2075-4450/10/12/420?type=check_update&version=2

Insects 2019, 10, 420 20f 13

much higher titers than in nervous tissues [5]. In most insect species, two AChE are present, and a large
group of insecticides specifically target those esterases, such as organophosphates and carbamates [6].
In Apis mellifera one of the AChEs is membrane-bound and found in the CNS (AmAChE2), while the
other is soluble (AmAChE1) and additionally found in the thorax, abdomen, and leg in non-neuronal
tissue and the peripheral nervous system [7]. Apparently, the amount of the soluble AmAChE1 is
regulated by the breeding activity of honey bee colonies, which provides further evidence for the
influence of the cholinergic system on reproduction in insects [8]. In Tribolium castanaeum, expression of
the AChE gene TcAce2 is important during female reproduction, embryo development, and offspring
growth [9]. In Drosophila melanogaster, which has only one AChE gene, a non-neuronal effect was
reported in which ACh, after its transport through the hemolymph, regulates the heart rate [10].
The importance of ACh for the insect immune responses is suggested since cholinergic disrupting
chemicals impair immune responses [11,12]. Furthermore, initial evidence shows that hemocytes and
the fatbody express nAChRs subunits in bees [13].

Cholinergic synaptic transmission has been intensively studied as it is prevalent within the insect
brain. Nicotinic acetylcholine receptors have been localized in most brain neuropils, and functional
nAChRs were characterized in vitro in various species (cf. [14] for review). Insect nAChRs are
pentameric ionotropic receptors and cation channels with a high Ca?* permeability (e.g., [15,16]).
Their physiologies are in accordance with a function during excitatory synaptic transmission within
the insect brain. Their molecular and functional similarities (e.g., high Ca**-permeability and
sequence homologies) to the vertebrate neuronal nAChRs imply that they also mediate modulatory
functions. Accordingly, cholinergic signal transduction is required for olfactory learning and memory
formation in insects (reviews: [17-19]). Honeybee nicotinic receptors share many features of insect
nAChRs with respect to localization [20], pharmacology [21-23], permeability [15], and molecular
identity [24-26]. The pharmacology differs substantially from its vertebrate counterparts [27,28].
Therefore, neonicotinoids have been developed that specifically target insect nAChR-dependent
synaptic transmission, acting agonistically on the receptor with high specificity [29,30] (see also: [31]).

Neonicotinoids are a widely used group of insecticides. Not surprisingly, one of the problems
with agricultural neonicotinoid applications is that they also bind to cholinergic receptors and
induce currents through neuronal nAChRs [23,32-34] of pollinating insects, such as honeybees or
bumblebees, and impair cholinergic transmission and—as a consequence—behavioral output. Socially
living bees may be affected in several ways. Firstly, as adults, during foraging, during trophallactic
contact, or by consumption of stored contaminated nectar, honey, or pollen. Secondly, as larvae
after been fed with contaminated brood food. Therefore, bees need to be protected from exposure
to neonicotinoids. Many studies investigated survival after insecticide treatment targeting the
cholinergic system [35-42], and numerous studies have examined their effect on brood development by
registering colony constitutions of honeybees (e.g., [43-45]) or bumblebees (e.g., [46—48]). Furthermore,
sub-lethal neonicotinoid effects on adult honeybees comprise disturbances of navigation and
orientation [49-51], walking behavior [52], learning and memory [53,54], foraging behavior [55],
and nurse-larva-interactions [56]. For comprehensive overviews on sub-lethal neonicotinoid effects on
honeybees, see [57-60]. Despite the fact that field studies largely failed to unambiguously demonstrate
adverse effects of treated crop fields on whole hives the behavioral experiments clearly indicate
impairments on individually treated honeybees. It is plausible to assume that the reported deficits also
occur in those hives that appear vital upon superficial inspection.

The mode of action through which neonicotinoids induce these effects may be manifold. Certainly,
acting via neuronal nAChRs is one of the major routes. In addition to this mechanism, neonicotinoids
may affect muscarinic AChRs that are, as yet, largely uncharacterized in bees. A third way, which we
assume to be particularly important for developmental effects, is via non-neuronal AChRs. Here,
we review the properties of honeybee nAChRs and the actions of neonicotinoids on the neuronal
receptors. We will then discuss the effects of neonicotinoids on larval and adult development and
present an integrative model of cholinergic signaling and disturbances by neonicotinoids.
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2. Acetylcholine Receptors in the Honeybee

Acetylcholine is the major excitatory transmitter in the insect brain (reviews in [14]).
Immunolabelling of the nAChR or ChAT, as well as the histochemistry of AChE activity and in
situ hybridization studies of the various nAChR a-subunits identified several pathways and neuropils
that are presumably cholinergic in insects. In bees, the olfactory system and the visual neuropils
probably rely mainly on cholinergic signal transmission [20]. Axons of the olfactory receptor neurons
probably release ACh onto postsynaptic neurons within the antennal lobes (ALs), and a subpopulation
of projection neurons from the AL form cholinergic synapses with Kenyon cells within the mushroom
body (MB) lip regions. Honeybee AL neurons, as well as Kenyon cells, stain against nAChR
antibodies [20]. The lamina, medulla, and lobula of bees contain cholinergic neurons as well as neurons
of the central complex.

The honeybee nAChR is an ionotropic receptor of the cys-loop receptor family, a pentameric
receptor whose stoichiometry is as yet unknown [26]. Sequence analyses identified nine different
a-subunits, Amelx1-9, and two B-subunits, Amel1-2 [24,25,61]. Amela5, Amela7, and Amela8 are
expressed in MB Kenyon cells and in AL neurons. Amel(32 subunits are found in Kenyon cells. In the
optic lobes, Amela2, Amelx3, and Amelx7-2, expressions were identified [24,25]. The native honeybee
nAChRs in Kenyon cells and AL neurons are cation-selective channels with a neuronal pharmacological
profile. Pressure applications of ACh or nicotine induce rapidly activating inward currents in cultured
bee neurons [15]. The nAChR of Kenyon cells has a high Ca2+—permeability [15,62], and calcium
imaging experiments in vitro revealed a strong intracellular Ca* signal during the application of
nicotinic agonists [63,64]. The nAChR, therefore, mediates membrane depolarization and the direct
influx of Ca®" into the postsynaptic neuron upon activation. Currents through nAChR are blocked
by nicotinergic blockers curare, methyllycaconitine, dihydroxy-{3-erythroidine, hexamethonium, and
mecamylamine [15,21-23]. ACh, as well as carbamylcholine, are full agonists, whereas nicotine,
epibatidine, and cytisine are partial agonists [21]. Despite its neuronal profile, the honeybee nAChR
has a rather unusual pharmacology as compared to its vertebrate counterparts. Since atropine
blocks ACh-induced currents, a “mixed” pharmacology for the insect nAChR was suggested by
some authors [28,65]. However, muscarinic agonists muscarine, pilocarpine, or oxotremorine do not
induce currents through honeybee nAChRs [21]. Finally, the GABA (y-aminobutyric acid) receptor
blockers picrotoxin, bicuculline, and fipronil, as well as the glycine receptor blocker strychnine,
act antagonistically [21,22]. Neonicotinoids are agonists of the insect nAChRs (review: [66]). Due to
their low human toxicity and their relative specificity to insect over vertebrate nAChR, they represent
a commercially very successful insecticide group [67,68]. Imidacloprid is a partial agonist of the
honeybee nAChR (Kenyon cells: [23,33,34]; antennal lobe neurons: [22,32,62]), and clothianidin acts as
a full agonist [34].

Behavioral pharmacological studies indicate that nAChR are involved during various phases
of classical conditioning, memory formation, and retrieval (review: [18,19]). However, the effects
caused by nicotinic antagonists are complex and often contradictory. Injections of the nAChR
antagonists mecamylamine, x-bungarotoxin (BGT), or methyllylcaconitine (MLA) into the honeybee
brain impaired acquisition (mecamylamine, [69]) or long-term memory (BGT, MLA, [70]). Interestingly,
odor information processing appears to be largely unaffected by pharmacological treatments since
odor learning, per se, is not impaired while imidacloprid perfusions diminish odor signals in antennal
lobe glomeruli [71]. That may indicate that the native nAChR within the bee brain in vivo differs from
the nAChR investigated in vitro. At least several different receptors with differing pharmacologies
(probably also different stoichiometries) are expressed in honeybees. Given that various blockers
target different nAChR subtypes, it was assumed that at least two nAChR (one BGT-sensitive and one
BGT-insensitive nAChR) are differentially involved during olfactory learning and memory formation
in bees (e.g., [70]; review: [18]). Therefore, care is needed by assigning the effects of various drugs
or insecticides to certain nAChRs. Unfortunately, pharmacological experiments on the functions of
nAChRs within the honeybee visual system are missing, although the optic lobes express nAChRs.
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Muscarinic acetylcholine receptors are G protein-coupled receptors with seven transmembrane
domains. In humans, five mAChRs (m1-m5) have been characterized that are expressed not only
in the peripheral and central nervous system but also in epithelial (airway, skin, intestine, ovary,
urothelium), endothelial (pulmonary vessels), immune, and mesenchymal (fibroblasts, tenocytes,
smooth muscle fibres) cells [2]. The insect mAChRs are less well-studied. Two mAChRs were cloned
and described in D. melanogaster, and T. castaneum (an A- and B-type), both activated by ACh but have
different sensitivities to muscarine and binding of atropine and scopolamine. Both receptors have been
identified in all arthropods with a sequenced genome [72]. Recently, a third (C-type) mAChR family
has been described in D. melanogaster [73].

3. Acetylcholine in Bee Development

In several vertebrate tissues, ACh demonstrates a proliferative, trophic effect via nicotinergic and
muscarinic receptors [3]. In insects, the cholinergic system is crucial during all developmental stages,
and ACh, AChE, and ChAT are present in very much higher titers as compared to vertebrates [5].
Apart from its occurrence in honey and bee bread [74-78], bees apparently feed ACh to developing
larvae, as it was found in millimolar concentrations in larval food [76]. This recent study confirms and
extends earlier studies reporting surprisingly high ACh concentrations in brood food (see below).

Worker larval nutrition is categorized as “worker jelly” and “modified worker jelly”, indicating a
general shift in protein, sugar, and lipid contents [79] around day three of larval development [80].
This shift has also been reported for ACh content in worker nutrition. While larvae below 5 mg weight
receive a relatively high ACh amount in their food (1.1 mg free base per gram dry larval food [81];
erratum: ‘Die Naturwissenschaften 47, p. 456, 1960) food for larvae weighing between 10 and 20 mg
contains less ACh (0.73 mg g~!). The oldest larvae received modified worker jelly with the least amount
of ACh (0.16 mg g~!) [81]. This is generally consistent with the study by Wessler et al. (2016) reporting
4.13 mM (estimated 0.72 mg g~!) ACh in worker jelly if the developmental state of ‘larger larvae with
visible food’ [76] corresponds to 10 to 20 mg weighting larvae. Drone food also contains relatively
high ACh concentrations (1.8, 1.65, and 0.66 mg g~ for drone larvae weighing <5, 10-30, and >30 mg,
respectively) [81].

The reduction in the ACh content during worker development is conceivable since gland secretion
decreases in favor of sugar containing food from the honey stomach [79], and ACh is synthesized in
hypopharyngeal canal cells via membrane-bound ChAT [76]. The synthesis during jelly excretion and
the surrounding acidity of pH 4.0 makes ACh very stable in larval honey bee food [82] because AChE
is not enzymatically active under such acidic conditions. ACh in brood food can even be preserved
after two hours of boiling in water [74].

Royal jelly also contains high ACh amounts. It is fed to developing honey bee queens and,
compared to worker nutrition, contains a higher amount of sugar [79]. According to [81], ACh content
decreases from 1.7 to 1.1 mg g~! in royal jelly in cells of young (weight <5 mg) and old (>25 mg) larvae,
respectively. This represents a 35% decrease during queen development compared to an 85% decrease
during worker development and may influence caste determination. HPLC analyses quantified 8 mM
(14 mg g_l) ACh in freshly isolated royal jelly (2-3 h after the nursing of fertilized eggs) and 4.64 mM
(estimated 0.81 mg g™!) in commercially available royal jelly [76]. Experimentally reducing the ACh
content in artificial brood food increased larval mortality [76]. ACh-uptake by larvae is, therefore,
required for the proper development of queens, workers, and drones. It is produced from non-neuronal
tissue and probably acts via non-neuronal AChRs.

4. Neonicotinoids Affect Larval and Adult Development

Although ACh is important during larval development, only a few studies exist that have
investigated neonicotinoid effects on the bee ontogeny. However, most of the available studies
investigating larval development describe a developmental delay and some abnormal appearances.
Also, there is reason to assume that some effects occur in those adults that were exposed to neonicotinoids
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as larvae (e.g., [83,84]). Repeated administration of 0.2-20 mg L~! thiamethoxam in artificial Apis
mellifera rearing experiments caused more brownish larvae, delayed pupation time, and some larvae
failed in eclosion during metamorphoses [35]. Delayed development was also reported when the larvae
were fed 5 pg kg~! [85] or 10 mg L~ imidacloprid. Furthermore, honeybee larvae reared in combs with
insecticide residues, including 45 ug kg ! imidacloprid, showed retarded development [86]. While 30 or
300 pg kg~ imidacloprid fed to Osmia lignaria larvae delayed their development under field conditions,
no effects were reported under laboratory conditions [87]. A recent study described a doubling of
honeybee larval development time when fed 10 mg L~! clothianidin and of total development time
with 2 mg L™! clothianidin in vitro. However, the pupal development time was not affected [40].
Video registrations of development within observation hives [56] showed that 200 pg kg~! thiacloprid
in sugar syrup fed to the colony prolonged the feeding timespan until capping of the cell by half a
day. Similar effects were observed when colonies were fed 10 pg kg_l clothianidin. Furthermore,
high dosages of clothianidin (100 ppb) and thiacloprid (8.8 ppm) prolonged the development times of
eggs and from larval hatch to cell capping within the colonies. Interestingly, clothianidin increased
pupal development time, whereas thiacloprid decreased it [56]. In the stingless bee Scaptotrigona aff.
depilis thiamethoxam decreased development time in vitro from 15 to 10 days (0.044 ng/larva) or 8 days
(4.375 ng/larva) while pupal development increased from 12 to 18 and 17 days, respectively [39].

These in vitro insecticide experiments show that the cholinergic system is important for larval
development and is disturbed by neonicotinoids. However, a direct delivery of neonicotinoids from
nurse bees to larvae via brood food appears not to occur under field conditions. Virtually no pesticide
residues were found in royal jelly, even when colonies were fed with high (75-800 g L~! active ingredient)
pesticide concentrations. Only 0.016% of the consumed thiacloprid reaches the secreted royal jelly [88].
This is consistent with distributions of other insecticides within workers. Low radioactivity was
measured in hypopharyngeal glands after individuals were fed with radiolabelled carbaryl and
diflubenzuron [89] or carbofuran and dimethoate [90]. If direct transmission by honey was the main
reason for residues in royal jelly, worker larvae would receive very little neonicotinoids since royal jelly
seems to contain more sugar than worker jelly [79]. However, this may increase as the older worker
larvae are fed modified royal jelly. As several studies demonstrate delayed larval development within
honeybee colonies after chronic neonicotinoid treatment (e.g., [56,76,86]), impairments of important
nursing morphologies within workers may cause such effects rather than direct feeding of toxic
insecticides to larvae. As a consequence, cholinergic transmission could also be important for the
development and maturation of adult bees.

The cholinergic system continues to develop in the adult honeybee. During the first week after
adult eclosion, the brain activity of AChE increases and remains at this level until old age [91]. Due to
the plasticity of each individual worker, the bee colony as a whole is very adaptive in its division of labor
and can shift nursing and foraging activity due to environmental and colony demands. This adaptation
is under the influence of various internal (e.g., colony size, brood size, diseases) and external factors (e.g.,
nutrition, pollen supply, season or weather, stressors like pesticides) and involves nutritional stimuli
communicated via food exchange (cf. [92] for review). The subsequent development or degradation of
the hypopharyngeal glands [93] is hormone-dependent. Newly emerged workers have undeveloped
glands with small acini, and with nursing activity, they increase in size and produce the protein-rich
jelly. The glands decrease in size and activity again when the worker starts to forage. As the nursing
workers feed the young, other nest mates and the queen [94,95], glandular ACh could be consumed by
all individuals of the colony throughout their whole life span. Therefore, a regulatory influence of ACh
on adult development and behavior is plausible. If the exchanged food contains differing amounts of
ACHh, cholinergic social signaling is likely to contribute to gland development and function and would
explain the disturbing effects of neonicotinoids and other xenobiotics described below.

When newly emerged bees in cages were fed with 2 and 3 pg kg~! imidacloprid in sugar and
pollen pastry, respectively, the acini of hypopharyngeal glands were 14.5 and 16.3 percent smaller in
diameter than the control after 9 days and 14 days of exposure, respectively [96]. Similarly, after one
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week of 1 ppb imidacloprid application in sugar syrup to colonies, 14-day old workers displayed
reduced acini diameter sizes [97]. Similar effects were present when bees were exposed to 48 and 72 h
treatment with 0.5 pg kg~! imidacloprid in sugar solution [98] and in 10-day old bees after continuous
feeding of 5 or 200 ug kg~ imidacloprid under field and laboratory conditions [99]. Furthermore,
caged honeybees chronically exposed to imidacloprid at LCs(/5 in sugar and pollen showed reduced
acini diameter sizes after 6, 9, and 14 days [100]. Comparable results were published for 8 and 12 days
of exposure to 10 and 40 pg L™! thiamethoxam [101]. In addition to these morphological abnormalities,
neonicotinoid exposure also impairs hypopharyngeal gland function because acetylcholine secretion
into the brood food diminishes after clothianidin or thiacloprid feeding [76]. This probably leads to
brood impairments in small hives under semi-field conditions. Expression of Amela3 and Amelx4
nAChR subunits in the hypopharyngeal glands indicates an ACh-dependency of the glandular function,
although ChAT activity is not acutely blocked by neonicotinoids, but requires chronic exposure [76].
Obviously, other xenobiotics that interfere with cholinergic signaling in honeybees may lead to similar
disruptions in glandular function. Among them are the acaricide coumaphos, an organophosphate that
inhibits the AChE, and other insecticides like the carbamate fenoxycarb (for review see: [102]). Effects
on hypopharyngeal glands were also reported for the GABA receptor blocker fipronil, the herbicide
glyphosate, or the fungicide pyraclostrobin [102].

5. How Do Neonicotinoids Affect Honeybee Development?

Several mechanisms may underlie the delays in development, including impairments of the
endocrine system, altered gene expression of metabolic pathways, and an increased energy use due to
detoxification mechanisms. Some studies suggest that neonicotinoids interfere with the honey bee
endocrine system [103-105]. Juvenile hormone slows down larval development, as ligaturing the
corpora allata results in shortened worker ontogenesis [106]. Therefore, neonicotinoids may increase
juvenile hormone titers in bees. However, so far, it has only been demonstrated in Lepidopterans that
imidacloprid increases juvenile hormone titers in larvae and adult females of Chilo suppressalis [107] and
that the corpora allata is under a cholinergic regulation in Mythimna loreyi [108]. Several gene expression
studies report an upregulation of detoxification enzymes, such as cytochrome p450s, and effects on
protein translation involved in metabolic pathways after insecticide treatment [99,109-112]. Honeybees
show 10-fold or greater shortfalls in detoxification enzymes compared to Drosophila melanogaster or
Anopheles gambiae [113], which may cause unspecific health deficits due to low detoxification capacities.
Moreover, some studies report a general reduction in protein amounts in workers after neonicotinoid
treatment [101,114,115] that promotes developmental delays. Imidacloprid and clothianidin were
stated to alter protein, lipid, glucose, and glycogen levels and reduced bee body weight [105].
By contrast, newly emerged honeybees fed with nicotine up-regulate proteins involved in lipid, amino
acid, glutathione, and nucleotide metabolism. The most up-regulated protein groups are related
to energy metabolism and carbohydrate metabolism [116]. In larvae, proteins involved in energy
and carbohydrate metabolism and developmental pathways were enriched after nicotine was fed
in in vitro rearing experiments. Therefore, nicotine may promote larval growth [117]. These reports
consistently show an influence of the cholinergic system on developmental processes within larvae and
adult workers. The impairments of metabolic pathways could then result in morphological deficits in
nurses and provoke reduced hypopharyngeal gland sizes that secrete less ACh into the queen, worker,
and drone food.

6. Conclusions and Outlook

Neonicotinoid exposures affect honeybee vitality in various ways, behaviorally, morphologically,
immunologically, and developmentally. These effects are mediated by neuronal and non-neuronal
AChR. Figure 1 summarizes our current view concerning the developmental aspects of the cholinergic
systems. We assume that ACh has a proliferative and/or trophic effect within honeybees and regulates
gene expression, potentially via modulating juvenile hormone levels. Although evidence that juvenile
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hormone (JH) titers are affected by cholinergic pathways is weak, it is likely, because JH plays a
central role in honeybee developmental and maturing processes. The ACh-induced gene expression
affects metabolic pathways that control larval development and adult hypopharyngeal gland size and
function. This, in turn, regulates ACh secretion from the glands with the described effects on larval
development. Therefore, neonicotinoid effects can translate into disturbed colony development due to
impairments of cholinergic systems in the offspring, nurses, or both.

(non-)neuronal Endocrine

/ AChRs system

® ACh JH®

Nutrition \

©OHG Neonicotinoids Gene

size & activity expression
@Develok Ans ®

duration Metabolism

Figure 1. Metabolic and endocrine functions of acetylcholine (ACh) in honeybee adults and larvae
and its disturbances by cholinergic pesticides, such as neonicotinoids. Impairments of neuronal or
non-neuronal acetylcholine receptors (AChRs) of honeybees by neonicotinoids have been shown to
increase (+) development duration of larvae and adults while reducing (—) hypopharyngeal gland (HG)
size and its ACh secretion. This is likely to be a consequence of impaired energy and carbohydrate
metabolism, preceded by up- or downregulation (+; via gene expression) of involved proteins,
altering lipid, glucose, and glycogen metabolism. Therefore, ACh may directly or indirectly affect the
endocrine system, as increased juvenile hormone (JH) titers result in developmental delays (see text for
further details).

We conclude that acetylcholine is a key signaling molecule in the individual bee, within the
honeybee colony, and possibly in other social insect societies as well. As it acts on neuronal and
presumably non-neuronal pathways and is socially transmitted between individuals, it is crucial for
colony development and vitality. Interfering with this key molecule by insecticides causes multiple
disturbances or unexpected side effects that may sum up to harmful threats even at low concentrations.

Obviously, several gaps exist in our knowledge of the mode of action of ACh signaling. While we
know a lot about the neuronal AChR, hardly anything is published on the molecular identity or
localization of the (various?) insect non-neuronal AChR. Such studies, however, are required to establish
hypotheses on the interactions between ACh and the endocrine system, to understand the physiological
mode of action of ACh during larval and adult development and, finally, to develop novel insecticides
that are safer for beneficial insects.
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